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We establish the equivalence between the continuum limit of the quantum spherical model with

competing interactions, which is relevant to the investigation of Lifshitz points, and the OðNÞ nonlinear
sigma model with the addition of higher order spatial derivative operators, which breaks the Lorentz

symmetry and is known as Lifshitz-type (or anisotropic) nonlinear sigma model. In the context of the 1=N

expansion, we also discuss the renormalization properties of this nonlinear sigma model and find the

nontrivial fixed points of the � functions in various dimensions, which turn out to be connected with the

existence of phase transitions in the quantum spherical model.
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I. INTRODUCTION

The connection between quantum field theory and criti-
cal phenomena has been a prosperous subject over the
years and in fact it has produced an interesting confluence
of ideas and unification of several concepts, providing new
and relevant insights. One of the best examples of this
relation is the renormalization group [1], which is an
essential framework to deal with systems involving a large
number of degrees of freedom.

This work is dedicated to the study of the equivalence
between the quantum spherical model with competing
interactions and the OðNÞ nonlinear sigma model with
addition of higher spatial derivative operators in the limit
of N tending to infinity. We explore several properties
at both sides of this connection, as the existence of
Lifshitz points and the critical behavior of the competitive
quantum spherical model, as well as renormalization
and renormalization group aspects of the anisotropic non-
linear sigma model. This relationship generalizes the
equivalence between the quantum spherical model with
short-range interactions and the relativistic nonlinear
sigma model [2].

The classical spherical model was introduced by Berlin
and Kac in 1952 [3]. It is a representative example of a
soluble statistical model that exhibits a nontrivial critical
behavior. Due to these characteristics, it became an excel-
lent laboratory to investigate several aspects of phase
transitions and critical phenomena [4]. The quantum ver-
sions of the spherical model [2,5–7] share with the classical
counterpart essentially the same good characteristics and
are then instrumental in the study of critical phenomena at
very low temperatures (eventually zero) as quantum phase
transitions [8].

One aspect that plays a central role throughout this
work is the so-called Lifshitz point. A Lifshitz point in a

given phase diagram is the meeting point between ordered,
disordered, and modulated phases [9]. This kind of
structure is of great interest since it occurs in several
systems as magnetic compounds, liquid crystals, and
polymers [10,11].
An essential requirement for describingmodulated struc-

tures in the phase diagram is the presence of competing
interactions favoring different orderings [12–14]. A well-
known example is the Axial-Next-Nearest-Neighbor-Ising
model, designated as the ANNNI model [15], with ferro-
magnetic interactions between first neighbors along all
directions and antiferromagnetic interactions between
second neighbors along one specific direction, originating
the competition ferro/antiferro in that direction. This model
exhibits modulated, disordered, and ordered phases, meet-
ing at a Lifshitz point.
Of special interest for the developments of this work is

the case in which the competing interactions are extended
to m � d directions, where d is the dimension of the
lattice. We will consider the quantum spherical model
with competing interactions along m ¼ d directions plus
a form of diagonal interactions that will be specified
shortly. Some studies with classical and quantum versions
of the spherical model with competing interactions were
performed by a number of investigations [16–19].
From the field theory perspective, the relativistic non-

linear sigma model has a long history [20], constituting
an important prototype both from the theoretical point of
view as well as in phenomenological applications. It is
renormalizable in two dimensions in the perturbative
expansion [21] and in two and three spacetime dimensions
in the context of the 1=N expansion [22,23], exhibiting
interesting properties as dynamical mass generation and
asymptotic freedom [24].
As we shall see, by taking the continuum limit of the

quantum spherical model with competing interactions, we
are naturally led to a nonlinear sigma model with the
presence of higher spatial derivative operators. Despite
the obvious Lorentz symmetry breaking, this model has
better ultraviolet behavior as compared with the relativistic
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one and so opens the possibility to obtain renormalizable
sigma models in higher dimensions.

From a pure field theory perspective, the possibility of
constructing unitary theories with a better ultraviolet
behavior by adding higher spatial derivative operators
has drawn much attention recently [25–28]. For example,
in this framework it has been argued to be possible to
construct a quantum gravity theory that is power counting
renormalizable [29]. In this context, the Lorentz symmetry
would arise as a low energy manifestation. In spite of the
plausibility of such an idea, renormalization group studies
of these theories have shown that this is a delicate point, in
general depending on specific fine-tunes [30,31].

Our work is organized as follows. In Sec. II, we discuss
aspects of the quantum spherical model with competing
interactions, as the determination of certain relations
between the parameters of the model, corresponding to
different phases separated by the Lifshitz point, as well
as the continuum limit. Section III is focused on the
equivalence between the spherical model with competing
interactions and the anisotropic nonlinear sigma model by
considering the large-N effective action. In Sec. IV, we
study the quantum critical behavior of the competing
spherical model and determine the critical dimensions.
Section V is dedicated to the study of renormalization of
the anisotropic nonlinear sigma models. A summary and
additional comments are presented in Sec. VI. There is also
an Appendix in which we illustrate the application of the
subtraction scheme to a divergent Green function involved
in the renormalization procedure.

II. THE QUANTUM SPHERICAL MODELWITH
COMPETING INTERACTIONS

We start this section by outlining some basic facts about
the classical spherical model as well as its quantum ver-
sion. The classical Hamiltonian is defined by

H c ¼ � 1

2

X
r;r0

Jr;r0SrSr0 � h
X
r

Sr; (1)

where r and r0 are lattice vectors, fSrg is a set of continuous
spin variables on a d-dimensional hypercubic lattice with
periodic boundary conditions, Jr;r0 is the interaction energy
that depends only on the distance between the sites r and r0,
Jr;r0 � Jðjr� r0jÞ, and h is an external field. The spin

variables are subject to the spherical constraintX
r

S2r ¼ N; (2)

with N being the total number of lattice sites.
The quantum version of this model can be obtained as

follows [2,5]. We first add to the Hamiltonian a kinetic
term involving the conjugated momentum to Sr, denoted
by Pr, such that

H ¼ g

2

X
r

P2
r � 1

2

X
r;r0

Jr;r0SrSr0 � h
X
r

Sr: (3)

The parameter g plays the role of a quantum coupling. By
assuming the commutation relations

½Sr;Sr0 � ¼ 0; ½Pr;Pr0 � ¼ 0; and ½Sr;Pr0 � ¼ i�r;r0 ; (4)

we obtain the quantum version. In this approach, it is easier
to implement the so-called mean spherical model, which
means that the constraint must be enforced as a thermal
average,

P
rhS2ri ¼ N. Alternatively, we may simply con-

sider the variables as classical ones and proceed with
the quantization by means of a path integral. This last
approach is more appropriate to impose the strict spherical
constraint (2) and furthermore makes clear the connection
with the nonlinear sigma model. We will return to it in
Sec. III when discussing the equivalence between models.
Now let us consider a particular form for the exchange

energy Jr;r0 , which involves competing interactions. We

assume ferromagnetic interactions between first neighbors
and antiferromagnetic interactions between second neigh-
bors and also between diagonal neighbors belonging to the
same plane. As mentioned in the Introduction, this is
the generalization of the ANNNI interactions along all
directions plus the diagonal interactions. In fact, this is
the isotropic case in the sense that the interactions are
equally distributed along all directions. For the case of
the spherical version it is also denoted as the ANNNS
model (see for example [32]).
For concreteness, we shall consider the spherical model

on a two-dimensional square lattice, although we will
generalize the analysis to arbitrary higher dimensions.
Hereafter, we consider the system in the absence of the
external field, h ¼ 0. The Hamiltonian can be written as

H ¼g

2

X
r

P2
r�J1

X
hr;r0i

SrSr0 �J2
X

hhr;r0ii
SrSr0 �J3

X
�r;r0�

SrSr0 ;

(5)

with J1 > 0 favoring the ferromagnetic ordering, J2 < 0
and J3 < 0 favoring the antiferromagnetic. The symbols hi
and hhii indicate a sum restricted to the first and second
neighbors (along the Cartesian axes) respectively, whereas
�� means a sum restricted to diagonal neighbors. The
geometric illustration is shown in Fig. 1. The usual iso-
tropic ANNNS case corresponds to J3 ¼ 0 and its quantum
version was analyzed in [19]. The diagonal interaction
J3 has an important role in the continuum limit as we
shall see.
We may determine certain relations between the

parameters J1, J2, and J3, corresponding to different phases
in an appropriate phase diagram, by analyzing the maxi-
mum of the Fourier transformation of the interaction
energy,
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JðqÞ ¼ X
h

JðjhjÞeiq�h; with h ¼ r� r0: (6)

For the interactions in (5), in the two-dimensional case,
JðqÞ becomes

JðqÞ¼2J1½cosðqxÞþcosðqyÞ�þ2J2½cosð2qxÞþcosð2qyÞ�
þ4J3 cosðqxÞcosðqyÞ: (7)

Looking for the maximum values of JðqÞ and the corre-
sponding values for q, designated by qc, we find

qcx ¼ qcy ¼ 0; for p � 1=4 (8)

and

qcx ¼ qcy ¼ cos�1

� �J1
4J2 þ 2J3

�
; for p > 1=4; (9)

where p � �ðJ2þJ3=2Þ
J1

and J3 � 2J2.

The case J3 ¼ 2J2 must be treated separately, and gives

qcx ¼ qcy ¼ 0; for ~p � 1=4; (10)

with ~p � �2J2=J1. The solution for values of qcx and qcy
different from zero does not completely fix its values.
Instead, it gives a restriction over the sum

cos qcx þ cos qcy ¼ �J1
4J2

; for ~p > 1=4: (11)

Thus we have freedom to choose the value for one of these
parameters, say qcx, and the above condition determines qcy
as a function of qcx. This choice does not affect the critical
behavior of the model, as may be seen from the analysis in
Sec. IV. For simplicity, let us consider the symmetric case
where qcx ¼ qcy, which yields

cosqcx ¼ cos qcy ¼ �J1
8J2

: (12)

With this choice, we may unify the results for J3 � 2J2 and
J3 ¼ 2J2 simply by considering the relations (8) and (9)
for all values of J2 and J3. We observe that the point
p ¼ 1=4 is a divider separating regions with different
critical values of q. It is called a Lifshitz point, correspond-
ing to the meeting point between ordered, disordered and
the modulated phases.

In order to further explore the properties of the system at
the Lifshitz point, let us expand JðqÞ around the critical
value qc ¼ ð0; 0Þ,
JðqÞ¼4ðJ1þJ2þJ3Þ�ðJ1þ4J2þ2J3Þq2

þ 1

4!
ð2J1þ32J2þ4J3Þðq4xþq4yÞþJ3q

2
xq

2
yþ��� :

(13)

Observe that at the Lifshitz point, p ¼ 1=4, the coefficient
of the quadratic term vanishes, J1 þ 4J2 þ 2J3 ¼ 0, and
the term of fourth order becomes important. The conse-
quence of this is a different behavior between space and
time in the system under a scaling transformation with
parameter �, i.e., t ! �t whereas r ! �2r.
By taking the Lifshitz point, we may eliminate J1 in the

expression (13) by means of J1 ¼ �4J2 � 2J3, such that it
reduces to

JðqÞ¼�4ð3J2þJ3ÞþJ2ðq4xþq4yÞþJ3q
2
xq

2
yþ��� : (14)

We immediately note that when J3 ¼ 2J2 this expression
can be written in a rotational invariant way in terms of the
modulus of q,

JðqÞ ¼ �20J2 þ J2jqj4 þ � � � : (15)

Incidently, this is exactly the point that was treated sepa-
rately culminating with conditions (10) and (11). The issue
of rotational invariance will be important to obtain a field
theory in the continuum limit. The generalization for
higher dimensional lattices is straightforward and will be
discussed from now on.
The generalization of the Eq. (7) for an arbitrary

d-dimensional lattice is given by

JðqÞ ¼ 2J1
Xd
i¼1

cosqi þ 2J2
Xd
i¼1

cos 2qi

þ 4J3
Xd
i<j

cosqi cos qj; (16)

and it is straightforward to find the maximum values of
JðqÞ. As in the two-dimensional case, for p � 1=4, we
have qc ¼ ð0; 0; . . . ; 0Þ. For p > 1=4, with the same
assumption that led us to the Eq. (12), namely, qc1 ¼
qc2 ¼ � � � ¼ qcd, we have

cos qci ¼
�J1

4½J2 þ 1
2 ðd� 1ÞJ3�

; (17)

with i ¼ 1; . . . ; d and p � �½J2þ1
2ðd�1ÞJ3�
J1

. Of course, when

d ¼ 2 we recover Eq. (9) as well as the corresponding
relation for p. The expansion of JðqÞ around qc ¼
ð0; 0; . . . ; 0Þ takes the form

FIG. 1. Competing interactions in the square lattice.
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JðqÞ ¼ 2d½J1 þ J2 þ ðd� 1ÞJ3�
� ½J1 þ 4J2 þ 2ðd� 1ÞJ3�jqj2

þ 1

12
½J1 þ 16J2 þ 2ðd� 1ÞJ3�

Xd
i

q4i

þ J3
X
i<j

q2i q
2
j þ � � � : (18)

By taking the Lifshitz point and J3 ¼ 2J2 it reduces to

JðqÞ ¼ �2dð1þ 2dÞJ2 þ J2jqj4 þ � � � : (19)

A. Continuum limit

We now investigate the connection between the quantum
spherical model with competing interactions and a special
form of the nonlinear sigma model. A natural way to
investigate this connection is just by taking the continuum
limit of the lattice. In this situation, the lattice is replaced
by a continuous structure giving rise to an underlying field
theory and it would be interesting to recognize this field
theory. In the above discussion, the spacing between the
sites was set a � 1, but now we have to restore it, in order
to take a ! 0. The analysis below shows us precisely the
effect of each interaction between neighbors on the corre-
sponding field theory.

For our purpose here it is convenient to consider
the Lagrangian, obtained from a Legendre transformation
of (5),

L ¼ 1

2g

X
r

�
dSr
dt

�
2 þ J1

X
hr;r0i

SrSr0

þ J2
X

hhr;r0ii
SrSr0 þ J3

X
�r;r0�

SrSr0 : (20)

Now we write this expression in a more explicit way, by
detailing the interactions between the neighbors over the
two-dimensional lattice,

L ¼ 1

2g

X
x;y

�
dSx;y
dt

�
2 þ J1

X
x;y

ðSx;ySxþa;y þ Sx;ySx;yþaÞ

þ J2
X
x;y

ðSx;ySxþ2a;y þ Sx;ySx;yþ2aÞ

þ J3
X
x;y

ðSx;ySxþa;yþa þ Sxþa;ySx;yþaÞ; (21)

and also the spherical constraint,X
x;y

S2xy ¼ N: (22)

In the continuum limit of the lattice, a ! 0, the variables
Sr become functions of the continuous position variable r,
SrðtÞ ! Sðr; tÞ, the sums are replaced by integrals accord-
ing to ad

P
r !

R
ddr and the interactions are identified

with derivatives. For the first neighbors interactions, the
term Sxþa;ySx;y, for example, can be written as

Sxþa;ySx;y � S2x;y � 1

2
a2
�
@Sx;y
@x

�
2
: (23)

In this expression we took advantage of the sum over x and
y that is present in the Lagrangian, which implies equalities
as

P
xyS

2
xþa;y ¼

P
xyS

2
x;y. Similarly, the interaction between

second neighbors, Sxþ2a;ySx;y, becomes

Sxþ2a;ySx;y � S2x;y � 2a2
�
@Sx;y
@x

�
2 þ 1

2
a4
�
@2Sx;y

@x2

�
2
: (24)

The interactions between first and second neighbors
along the y direction are analogous the Eqs. (23) and
(24), respectively. Finally, the diagonal interactions are
written as

Sxþa;yþaSx;y þ Sxþa;ySx;yþa

� 2S2x;y � a2
�
@Sx;y
@x

�
2 � a2

�
@Sx;y
@y

�
2 þ 1

2
a4
�
@2Sx;y
@x@y

�
2
:

(25)

In Eqs. (24) and (25) we also used the fact that there is a
sum over x and y. By summing all contributions, the
Lagrangian (21) takes the form

L ¼
Z d2r

a2

�
1

2g

�
@S

@t

�
2 þ 2ðJ1 þ J2 þ J3ÞS2

� 1

2
a2ðJ1 þ 4J2 þ 2J3ÞðrSÞ2

þ 1

2
a4J2

��
@2S

@x2

�
2 þ

�
@2S

@y2

�
2 þ J3

J2

�
@2S

@x@y

�
2
��
; (26)

where we are omitting the spacetime dependence, S �
Sðx; y; tÞ. The spherical constraint in this limit becomesZ

d2rS2 ¼ Na2 � fixed: (27)

The Lifshitz point is characterized by the vanishing
of the coefficient of the term ðrSÞ2 in (26), i.e., when
J1 þ 4J2 þ 2J3 ¼ 0, in accordance with the discussion
below Eq. (13). Its special feature, as already discussed,
is the anisotropic scaling between space and time, with a
dynamical critical exponent z ¼ 2. On the other hand,
when J2 ¼ J3 ¼ 0 (without competing interactions), the
Lagrangian (26) exhibits the relativistic symmetry, corre-
sponding to z ¼ 1.
From this analysis it is clear that the inclusion of inter-

actions between more distant neighbors is equivalent, in
the field theory side (continuum limit), to consider spatial
derivative terms of higher order, which may give rise to
arbitrary values for the dynamical critical exponent z.
For field theoretical purposes, it is desirable to have

a rotational invariant Lagrangian, which requires that the
last line of (26) must be recognized as ðr2SÞ2, where
r2 � @i@i (with the sum convention over repeated
indices). This is obtained when J3 ¼ 2J2, and we get
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L ¼
Z d2r

a2

�
1

2g

�
@S

@t

�
2 þ 2ðJ1 þ 3J2ÞS2

� 1

2
a2ðJ1 þ 8J2ÞðrSÞ2 þ 1

2
a4J2ðr2SÞ2

�
; (28)

up to surface terms that vanish due to the periodic
boundary conditions. Notice that the lattice spacing a
can be eliminated through the rescaling xi ! axi. This
Lagrangian shows the structure of spatial derivatives in
the field theory arising as the continuum limit of a model
with competing interactions.

The generalization of this result for arbitrary dimensions
d is straightforward and we just write the result for the
Lagrangian in the continuum limit, assuming J3 ¼ 2J2,

L ¼
Z ddr

ad

�
1

2

�
@S

@t

�
2 þ d½J1 þ ð2d� 1ÞJ2�S2

� 1

2
a2½J1 þ 4dJ2�ðrSÞ2 þ 1

2
a4J2ðr2SÞ2

�
; (29)

whereas the constraint is

Z
ddrS2 ¼ Nad � fixed: (30)

The development presented along this section revealed
the characteristics of the field theory underlying the spheri-
cal model with competing interactions. In the following
section we will formulate and proceed with the quantiza-
tion of the nonlinear sigma model with the addition of a
higher spatial derivative term in order to investigate the
equivalence with the competing quantum spherical model.

III. THE QUANTUM SPHERICAL AND
THE NONLINEAR SIGMA MODELS

In this section we establish, at the quantum level, the
equivalence between the strictly quantum spherical model
with competing interactions and the nonlinear sigma model
with a higher spatial derivative operator, in the limit of the
number of fields tending to infinite. This equivalence holds
in the sense that both partition functions and, consequently,
the quantities that follow from them coincide. Our strategy
is to consider the effective action of the nonlinear sigma
model in the context of the 1=N expansion and then take
the limit N ! 1.

As we mentioned in Sec. II, the strictly quantum
spherical model can be obtained by the functional integra-
tion [33]

Z ¼
Z

DSr�

�X
r

S2r � N

�
e�

R
�

0
d�LE ; (31)

with the Euclidean Lagrangian,

LE ¼ 1

2g

X
r

�
@Srð�Þ
@�

�
2 � 1

2

X
r;r0

Jr;r0SrSr0 ; (32)

where � ¼ it, � 2 ½0; �� (� is the inverse of the tempera-
ture), and the variables Srð�Þ satisfying the periodic
condition in the imaginary time Srð0Þ ¼ Srð�Þ. The func-
tional integration measureDSr symbolically stands for the
product over all sites,

Q
rDSr.

By employing the saddle point method, which is exact
in the thermodynamic limit, we obtain the saddle point
condition

1� 1

N

X
q

g

2!q

coth

�
�!q

2

�
¼ 0; (33)

with !2
q � 2gð�� JðqÞ=2Þ, and � being the saddle point

value of the auxiliary field that implements the constraint
(Lagrange multiplier). In the thermodynamic limit the sum
over the momentum q must be understood as an integral,
1
N

P
q ! R

ddq. As we saw in Sec. II, the expansion of JðqÞ
around its critical value has the structure

JðqÞ¼A0þA1jqj2þA3

Xd
i

q4i þA4

X
i<j

q2i q
2
j þ��� ; (34)

where the coefficients Ai depend on the interaction
parameters and on the dimension d of the lattice, Ai �
AiðJ1; J2; J3; dÞ, that can be obtained from Eq. (18). At the
Lifshitz point, where A1 ¼ 0, and with the special relation
between the parameters J3 ¼ 2J2, JðqÞ reduces to

JðqÞ ¼ ~A0 þ ~A1jqj4 þ � � � : (35)

As we shall discuss in the next section, the critical behavior
of the system can be studied by considering the saddle
point condition (33) near the critical point, with the above
forms for JðqÞ.
Now let us consider the nonlinear sigma model. The

OðNÞ anisotropic (z ¼ 2) nonlinear sigma model involves
N scalar fields, ’a, a ¼ 1; . . . ; N, with the Lagrangian
including a higher spatial derivative operator term,

L ¼ 1

2
@0’@0’� a21

2
@i’@i’� a22

2
�’�’; (36)

where� � r2, and we are omitting theOðNÞ index a. The
fields ’a are subjected to the constraint

’2
a � ’2 ¼ N

2g
; (37)

with g being the coupling constant. The relativistic situ-
ation corresponds to a2 ¼ 0 and a1 � 0, whereas the
analogous field theory Lifshitz point corresponds to the
opposite case, a1 ¼ 0 and a2 � 0. As it will be discussed
later, both terms may be necessary for the renormalization
in the anisotropic case. Due to the constraint we may add a
mass term (�’2 ¼ constant) to the Lagrangian without
modifying the physical content of the theory,

L¼1

2
@0’@0’�a21

2
@i’@i’�a22

2
�’�’�m4

2
’2: (38)
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The procedure for the determination of the effective
action, in the context of the 1=N expansion, may be out-
lined as follows. The constraint is implemented in the
partition function by means of a delta function written in
terms of an integral over some auxiliary field, say �,
playing the role of a Lagrange multiplier. With this, we
may perform the integration over the fields ’a and then
obtain an effective action in terms of �. The effective
action has the structure of an 1=N expansion,

Seff ¼ N1=2S1 þ N0S2 þ N�1=2S3 þ � � � ; (39)

with Sn being the contribution for the effective action of
the referred order in 1=N, and n indicating the correspond-
ing power of the auxiliary field �. To make sense of the
expansion (39) as N ! 1, the vanishing of the term S1 is
necessary, associated with the positive power of N. This
will lead us to the gap equation, which in the Euclidean
space reads

1

2g
�

Z ddþ1q

ð2�Þdþ1

1

q20 þ a21q
2 þ a22ðq2Þ2 þm4

¼ 0: (40)

This equation is similar to the saddle point condition (33)
in the thermodynamic limit. In fact, by considering the
system at finite temperature, we need to take into account
that the integral over momentum (zero component) is
replaced by a sum over the Matsubara frequencies, such
that

Z ddþ1q

ð2�Þdþ1
! 1

�

X
n

Z ddq

ð2�Þd ; (41)

and q0 ! !n ¼ 2�n
� , with n 2 Z. The sum over n can be

evaluated according to

X1
n¼�1

1

n2 þ y2
¼ �

y
coth ð�yÞ; y > 0; (42)

which enables us to get the final expression,

1

2g
�

Z ddq

ð2�Þd
1

2!q

coth

�
�!q

2

�
¼ 0; (43)

with !q �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21q

2 þ a22ðq2Þ2 þm4
q

. This equation must be

compared with (33). With an appropriate identification
between the parameters of the quantum spherical model
and of the nonlinear sigma model we may establish the
following equivalences. First, outside the Lifshitz point,
JðqÞ is dominated by a quadratic term in the momenta, as
can be seen from (34). This corresponds to the relativistic
situation, where a1 � 0 and a2 ¼ 0. Second, at the Lifshitz
point, the quadratic term in JðqÞ vanishes and JðqÞ has
the form (35), corresponding to the choice of parameters
a1 ¼ 0 and a2 � 0, which is the nonrelativistic nonlinear
sigma model with the presence of a higher spatial deriva-
tive term.

An important observation concerns the integration
limits. In the integral in Eq. (43) they do not have any
restriction, whereas in (33) they belong to the first Brillouin
zone. Actually, the equivalence is achieved in the contin-
uum limit, with the lattice spacing a ! 0. In the case of the
spherical model, we were considering unitary spacing,
such that it did not appear explicitly. By restoring its
dependence, the first Brillouin zone, which for a hyper-
cubic lattice is delimited by ½��=a;�=a� for each
momentum component, will extend to the infinity. The
last step in order to establish the complete equivalence is
by taking the limitN ! 1. This means that in the effective
action (39) only the S2 term will contribute. This is exactly
the Gaussian approximation for the � integration, equiva-
lent to the saddle point method.

IV. QUANTUM CRITICAL BEHAVIOR

In this section we will discuss the critical behavior of
the quantum spherical model with competing interactions
in order to verify the existence of phase transitions and
then determine the lower and upper critical dimensions.
We can identify the dimensions in which the system
exhibits trivial (mean-field) and nontrivial critical behav-
iors, or even if there is not a phase transition. We will not
perform the analysis of the behavior of thermodynamic
quantities nor will calculate critical exponents. The results
obtained here will be contrasted with the � function of
the renormalization group of the nonlinear sigma model
and are related to the existence of trivial and nontrivial
fixed points.
In the study of critical behavior we essentially need to

analyze the convergence properties of the integral in the
saddle point condition (33) and the dependence with the
parameters �, g, and the temperature T. We will consider
two cases separately according to the values of the parame-
ter p, i.e., p � 1=4 and p ¼ 1=4, because the different
forms for the expansion of JðqÞ in each of these situations
will lead different convergence properties. As we are
interested in quantum phase transitions, we study only
the transitions that occur at zero temperature.
The critical behavior can be obtained by analyzing

Eq. (33) near the critical point. Actually, we first consider
it exactly at the critical point, where the parameters assume
the critical values �c and gc. Next, we consider this
expression near the critical point. In this case, we expand
JðqÞ around the critical point and then subtract it from the
equation at the critical point. The difference between them
enables us to relate the chemical potential� in terms of the
distance from the quantum critical point, which we defined
as � � ðg� gcÞ=gc. The critical value that maximizes the
interaction energy JðqÞ depends on the value of parameter
p, as discussed in Sec. II.
Analyzing the convergence of Eq. (33) we see that for

p � 1=4 the sum converges if d > 1, defining the lower
critical dimension, dl ¼ 1. In this case, we have
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ð���cÞ �

8>><
>>:
�; d > 3
�
ln � ; d ¼ 3

�2; d ¼ 2;

(44)

with � ¼ ðg� gcÞ=gc. There is no phase transition for
d ¼ 1. For d ¼ 2 the system exhibits a critical point with
nontrivial critical behavior, for d > 3 we have mean-field
critical behavior, and d ¼ 3 is the threshold dimension
between these two behaviors involving logarithmic correc-
tions to the mean field, defined as the upper critical
dimension.

At the Lifshitz point, p ¼ 1=4, the sum in (33) con-
verges if d > 2, which defines the lower critical dimension,
dl ¼ 2. So, for d ¼ 2 the system does not exhibit a phase
transition. For other dimensions, we obtain

ð���cÞ �

8>>>>>>><
>>>>>>>:

�; d > 6
�
ln � ; d ¼ 6

�3=2; d ¼ 5

�2; d ¼ 4

�5=2; d ¼ 3:

(45)

In this case, for d ¼ 3, 4, and 5 the system exhibits non-
trivial critical behaviors. For d > 6 we obtain a mean-field
behavior, and d ¼ 6 is the threshold dimension (upper
critical dimension) between these behaviors with loga-
rithm corrections to the mean field.

We may compare the above results with that of Ref. [19]
by means of an appropriate redefinition of the involved
parameters. In the mentioned reference it was analyzed the
quantum spherical model with ferromagnetic interactions
J1 > 0 between first neighbors along all directions and
antiferromagnetic interactions J2 < 0 between second
neighbors along m � d directions, originating the compe-
tition. By redefining a combination of antiferromagnetic
interactions energies J2 and J3 as J2 þ 1

2 ðd� 1ÞJ3 ! J2,

we obtain exactly the results of [19] in the case of
competing interactions along all dimensions m ¼ d
(isotropic case).

Finally, as we shall see later, the existence of nontrivial
critical behavior is connected with the existence of the
nontrivial fixed points in the � functions of the nonlinear
sigma model.

V. GENERALIZED ANISOTROPIC
NONLINEAR SIGMA MODEL

In the previous section we have seen how the anisotropic
nonlinear sigma model is related with the continuum limit
of the spherical model with competing interactions. Now
we will discuss some aspects of the former model by
considering a generalization of the Lagrangian (36) for
arbitrary values of z, namely,

L ¼ 1

2
@0’a@0’a � 1

2

Xz
s¼1

a2s@i1 . . . @is’a@i1 . . . @is’a

� �ffiffiffiffiffiffiffi
2N

p
�
’2 � N

2g

�
: (46)

Classically, the field ’a, i ¼ a; . . . ; N, must satisfy the
equation of motion2

4@20 þ
Xz
s¼1

a2sð�1Þsð4Þs þ
ffiffiffiffi
2

N

s
�

3
5’a ¼ 0 (47)

and the constraint ’2 ¼ N
2g . At the quantum level, the

presence of higher spatial derivative terms improves the
ultraviolet behavior of Feynman amplitudes so enlarging
the class of renormalizable models. In this context, we will
analyze the 1=N expansion for the nonlinear sigma model
in various dimensions.
The Lagrangian (46) furnishes the following propaga-

tors in the large-N limit:
(1) Propagator for the ’a field:

�abðpÞ ¼ i�ab

p2
0 �

Pz
s¼1 a

2
sp

2s �m2z
; (48)

where a mass term was included. Notice that the
presence of a nonvanishing mass is essential to
evade infrared divergences if d ¼ z.

(2) Propagator �� for the auxiliary field �:

���1
� ðpÞ¼

Z dk0
2�

ddk

ð2�Þd

	 i

ðk0þp0Þ2�Pz
s¼1a

2
sðpþkÞ2s�m2z

	 i

k20�
Pz

s¼1a
2
sk

2s�m2z
; (49)

which is finite for 3z > d. At the bordering situation,
z ¼ 1 and d ¼ 3, which corresponds to the Lorentz
covariant setting, the integral is logarithmically
divergent and the renormalizability requires the
introduction of a vertex proportional to �2, but
this would turn the model indistinguishable from a
’4 theory destroying its geometric nature. In such a
condition, the model is therefore nonrenormalizable
and can be at most treated as an effective low energy
theory. Let us therefore restrict ourselves to values
of z and d such that 3z > d. In that situation, for
large momentum the above integral behaves as
pd�3z. Thus, for a generic graph � with L loops,
n’ and n� internal lines of the ’ and � fields we

have the following degree of superficial divergence:

dð�Þ ¼ ðzþ dÞL� 2zn’ þ ð3z� dÞn�
¼ zþ dþ ðd� zÞn’ þ 4zn� � ðzþ dÞV;

(50)
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where V is the number of vertices of �. This could
be further simplified using

2n’ þ N’ ¼ 2V and 2n� þ N� ¼ V; (51)

with N’ and N� being the number of external lines

of the corresponding fields. This gives

dð�Þ ¼ zþ d� ðd� zÞ
2

N’ � 2zN�: (52)

Notice that d�z
2 and 2z are precisely the canonical

anisotropic dimension of ’ and � fields.
Renormalizability requires that graphs without external

’ lines be finite. From the above expression and as
remarked before, this will be possible only if 3z > d; it
seems also convenient to impose z � d so that the diver-
gence of individual graphs does not increase with the
number of external lines. Thus we shall have

3z > d 
 z; (53)

but we still have to discuss the divergences in the ’ sector.
Graphs with N� ¼ 0 and N’ ¼ 2 have degree of diver-

gence 2z so that the subtraction of this divergences will
induce bilinear counterterms containing a number even of
derivatives ranging from 0 to 2z. Thus, by considering the
simplest anisotropic situation, namely z ¼ 2 that from
now on we assume, we see from (53) that d may vary
from 2 to 5. The model with d ¼ 3 may be useful in
possible phenomenological applications as it is a four
spacetime dimensional version, renormalizable as we shall
prove, of the nonlinear sigma model. The case with d ¼ 2
is atypical since the basic field’ is dimensionless and mass
generation becomes crucial to eliminate infrared divergen-
ces; unless for the tadpole graphs, which are logarithmi-
cally divergent, all Feynman amplitudes are quartically
divergent.

For all situations with d ¼ 3, 4 or 5 the unrenormalized
Lagrangian is given by

Lun ¼ 1

2
@0’@0’� a21

2
@i’@i’� a22

2
@i@j’@i@j’

�m4

2
’2 � �ffiffiffiffiffiffiffi

2N
p

�
’2 � N

2g

�
; (54)

where, due to stability reasons, all parameters, a1, a2, g,
andm are taken to be non-negatives. For d ¼ 2, as we shall
argue shortly, the inclusion of quadrilinear derivative cou-
plings is also necessary. A discussion which overlaps ours
about power counting renormalizability was done in [26].

Without loss of generality, we may assume that h�i ¼ 0
as a nonzero value for this expectation value would merely
change the coefficient of the mass term (we also assume
h’ii ¼ 0 so that rotational symmetry is not broken). Now,
this condition implies that the gap equation,

1

2g
¼

Z dk0
2�

ddk

ð2�Þd
i

k20 � a21k
2 � a22ðk2Þ2 �m4

; (55)

must be obeyed. In setting the Feynman rules the diagrams
of Fig. 2 are forbidden as they have already been used to
construct the sigma propagator (49) and above tadpole
equation. The integral in the above expression is divergent
so that an, up to now unspecified, regularization is neces-
sary. From this relation we may determine the � functions.

A. � functions

Let us calculate now the � functions for the dimensions
in which the model is renormalizable, d ¼ 2, 3, 4, and 5.
We have two distinct situations: the case d ¼ 2, where the
coupling constant is dimensionless; and the cases d ¼ 3, 4,
and 5, where the coupling constant is a dimensionful
parameter. As we shall see, the � functions have different
fixed points structure in these two situations, which is
related to the existence of quantum phase transitions.
We will consider the calculation of the� functions at the

Lifshitz point, i.e., when the coefficient of the term @i’@i’
vanishes, a1 ¼ 0. This is the case of main interest because
as we saw the equivalence with the competing spherical
model is established at the Lifshitz point. The results can
be related to the critical behavior of Sec. IV.
By adopting the Pauli-Villars regularization, the inte-

grand of (55) is replaced by its regularized expression
involving the regulator �:

1

2gð�Þ ¼
Z dk0

2�

ddk

ð2�Þd
�

i

k20 � a22ðk2Þ2 �m4

� i

k20 � a22ðk2Þ2 ��4

�
: (56)

Isolating the divergent part, by using the dimensional
regularization as an intermediate step, we obtain

1

2gð�Þ �
hðdÞ
ad=22

�

�
2� d

4

�
ðmd�2 ��d�2Þ þ finite ¼ 0;

(57)

where hðdÞ � �ðd=4Þ
2dþ2�ðdþ1Þ=2�ðd=2Þ is a positive function and

‘‘finite’’ denotes terms which are finite as � ! 1. To
absorb the divergent part, we introduce the renormalized
coupling constant gR, defined at some positive mass scale
�, according to

FIG. 2. Forbidden diagrams. The continuous and dashed lines
represent the ’ and � field propagators, respectively.
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1

2gð�Þ¼
1

2gR
þhðdÞ
ad=22

�

�
2�d

4

�
ð�d�2��d�2Þ� finite¼0;

(58)

so that the relation between the renormalized coupling
constant gR and the mass m reads

1

2gR
� hðdÞ

ad=22

�

�
2� d

4

�
ðmd�2 ��d�2Þ ¼ 0: (59)

At this point it is convenient to introduce a dimensionless
coupling constant 	d as 	d � �d�2gR. Thus the relation
above can be written in terms of 	d,

1

2	d

� hðdÞ
ad=22

�

�
2� d

4

���
m

�

�
d�2 � 1

�
¼ 0: (60)

The mass ratio can be isolated according to�
m

�

�
d�2 ¼ 1

	d

ð	d � 	c
dÞ; (61)

with the critical coupling constant 	c
d defined as

	c
d � �ad=2

2

2hðdÞ�ð2�d
4 Þ . Notice that for the case d ¼ 2 the critical

coupling constant vanishes. Another observation is that
as the parameters m and � are positive, we must have
	d > 	c

d. In fact, we are considering here only the case

where the OðNÞ symmetry is not broken, 	d > 	c
d. When

	d < 	c
d, the symmetry is broken and at least one of

components of ’a acquires a nonzero vacuum expectation
value, for example, h’1i � 0.

From expression (60) we may immediately obtain the
renormalization group � functions depending on the
dimension,

�d ¼ �
@gR
@�

¼ � 8hðdÞ
ad=22

�

�
6� d

4

�
ð	d � 	c

dÞ	d: (62)

Some observations are in order. At the dimensions we are
considering (where the model is renormalizable), namely
d < 6, we have �ð6�d

4 Þ> 0which implies that the theory is

stable in the ultraviolet [remember that hðdÞ is a positive
function of dimension]. As it happens for the relativistic
situation (corresponding to d ¼ z ¼ 1), the case d ¼ 2
shows that the theory is asymptotically free and has only
the trivial fixed point at origin due to the vanishing of the
critical coupling constant. Namely, the � function (62)
reduces to

�2 ¼ � 1

2�a2
g2R: (63)

The perturbative calculation of the � function in the case
d ¼ z ¼ 2 was performed in [34]. The result obtained
there coincides with the above one after taking the
large-N limit and with an appropriate identification
between the parameters of the models.

For the case d > 2, the � functions (62) exhibit Wilson-
Fisher nontrivial fixed points 	c

d, given by

	c
3 ¼

2a3=22 �5=2

ð�ð3=4ÞÞ2 ; 	c
4 ¼ 16�2a22;

and 	c
5 ¼

36�7=2a5=22

�ð1=4Þ�ð5=4Þ :
(64)

The existence of nontrivial fixed points is associated with
phase transitions. In fact, by comparing with Eq. (45) of
Sec. IV, we observe that in d ¼ 2, where the competing
quantum spherical model does not exhibit a phase transi-
tion, the � function has only a trivial fixed point. For
d ¼ 3, 4, and 5 the spherical model exhibits a nontrivial
critical behavior, which corresponds in the sigma model
the existence of nontrivial fixed points of the � functions.
For d 
 6 the spherical model exhibits a mean-field
behavior that corresponds to the nonrenormalizability of
the nonlinear sigma model.
Before closing this section it is opportune to comment

about the relativistic sigma model. It is known that the
model is renormalizable in the 1=N expansion in d ¼ 1
and 2 (remember that d denotes only spatial dimensions).
In the case d ¼ 1, the � function has only a trivial fixed
point whereas in d ¼ 2 it exhibits a nontrivial fixed point
[35]. These results can be compared with Eq. (44), i.e.,
outside the Lifshitz point, where JðqÞ is dominated by
quadratic terms giving rise to an essentially relativistic
behavior. We see that the spherical model does not exhibit
phase transition in d ¼ 1 and has a nontrivial phase tran-
sition for d ¼ 2. For d 
 3, where the behavior of the
spherical model is of mean-field type, it corresponds to
the nonrenormalizability of the nonlinear sigma model.

B. The renormalization procedure

The renormalization scheme that we will employ rests
heavily on the graphical identity depicted in Fig. 3, first
found in the relativistic situation in [35,36]; it is a conse-
quence of the unrenormalized sigma propagator being
minus the inverse of the amplitude associated with the
bubble diagram. It is important to notice that the graphical
identity remains valid even if there is in the integrand a
factor linear in the momentum carried by one of the lines in
the loop. This is so because

FIG. 3. A basic identity. It is a consequence from the fact that
the � field propagator is minus the inverse of the bubble
diagram.
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Z dk0
2�

ddk

ð2�Þd k��ðkÞ�ð�kþ pÞ

¼ p�

2

Z dk0
2�

ddk

ð2�Þd �ðkÞ�ð�kþ pÞ ¼ � p�

2��ðpÞ ;
(65)

where �� is the sigma field propagator and for simplicity
we omitted the OðNÞ indices. This result may be used to
prove the cancellation of divergences on some graphs.
Take for example the 1=N-leading contribution to the
four point function hT’a’a’b’bi where a and b are
different OðNÞ indices; its graphical representation is
shown in Fig. 6(d). It is then found that, once all the graphs
in Fig. 6 are taken into account, there is a complete
cancellation of subtraction terms generated by the appli-
cation of the second order Taylor operator around zero
external momenta (see details in the Appendix). For
a discussion of subtraction of divergences with Taylor
operators and Bogoliubov-Parasiuk-Hepp-Zimmermann
(BPHZ) renormalization procedure in anisotropic theories,
see [31,37].

We will now examine the renormalization parts
(proper graphs with non-negative degree of divergence)
contained in an arbitrary diagram. There are the following
possibilities:

(1) Graphs with N� ¼ 1 and N’ 
 2. For d ¼ 2 irre-

spectively of N’, any graph will be logarithmically

divergent. For d > 2 only diagrams with N’ ¼ 2

will be (logarithmically) divergent.
(2) Graphs withN� ¼ 0 andN’ 
 6. Regardless ofN’,

for d ¼ 2 any graph will be quartically divergent.
For d > 2 the divergence of an arbitrary graph may
be at most quadratic.

(3) Graphs with N� ¼ 0 and N’ ¼ 4. Taking aside the

case d ¼ 2 where the divergences are quartic, the
worst divergence is cubic and occurs for d ¼ 3;
nevertheless, due to the rotational symmetry, sub-
traction terms containing odd powers of the external
momenta in amplitudes adequately regularized do
not require counterterms. Thus, if regularized the
global divergences appear in the coefficient of a
polynomial in the external momenta of at most
second order degree.

(4) Graphs with N� ¼ 0 and N’ ¼ 2. Here for any

dimension that we have been considering every
graph is quartically divergent. The overall subtrac-
tion may be done by applying the Taylor operator

t2;4p0;p of second order in p0 and fourth order in p,
where p0 and p are the components of the external
momentum. Aside a possible mass counterterm,
these subtractions generate counterterms propor-
tional to @0’@0’, @i’@i’ and �’�’; they may
be generated by a wave function renormalization
and reparametrizations of the couplings of the terms

with two and four space derivatives. As we will see
shortly, the mass counterterm is not necessary as it
can be removed by adjusting the parameters in the
renormalized Lagrangian.

With the exception of cases (1) and (4), where repar-
ametrizations of the original Lagrangian automatically
furnish the needed counterterms, cases (2) and (3) need
special consideration. We now argue that no additional
counterterm is necessary if we restrict ourselves to the
Green function of the ’ field (no external sigma lines).
To verify this result, let us consider a generic diagram G

as the one in Fig. 4, where the hatched bubble represents a
graph irreducible with respect to all fields, without external
sigma lines and havingN’ 
 6. We suppose that all proper

subgraphs of G have been made finite by subtracting their
divergences according to the BPHZ forest formula and will
prove now that all these subtractions cancel. Indeed, as the
maximum divergence is quartic and there are at least 6
external lines, it is always possible to find in the subtraction
terms a pair of lines with the sameOðNÞ index and carrying
momenta which appears at most linearly in the subtraction
operator. To G we associate an expanded diagram �G
obtained from G by joining two external lines carrying
the same OðNÞ index in a �’2 vertex and by attaching two
external lines to a new �’2 vertex linked to the first vertex
by a � line (see Figs. 4 and 5). This expanded diagram has
the same diagram G as its largest divergent subgraph and
by construction G and �G have the same order in 1=N.
Notice now that, because of Fig. 3, the reduced diagram
�G=G (recall that a reduced diagram G=� is the graph
obtained by contracting the subgraph � of G to a point)
is precisely the one associated with the corresponding
subtraction for G. The amplitude for the reduced diagram
has however an additional minus sign and so cancels with
the subtraction for the graph G.
To conclude our analysis, let us now look at the situation

(3) in the list above, the four point function for the ’ field.
If d � 2 it is also possible to find a pair of lines with the
same OðNÞ indices and carrying momenta which appear at
most linearly in the subtraction terms. Thus the same
construction as in the case before applies and no counter-
term is necessary.

FIG. 4. A generic diagram. The hatched bubble represents a
graph proper with respect to all fields.
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Differently from the previous case, if d ¼ 2 the graphs
are quartically divergent and it is possible to have sub-
traction terms in which each pair of lines with the same
OðNÞ index carries more than one momentum factor com-
ing from the subtraction operator. They will require coun-
terterms with four derivatives, as ð’a 4 ’aÞð’b 4 ’bÞ and
ð’a@i@j’aÞð’b@i@j’bÞ.

To sum up, in accord with the above scheme most of
the divergences are automatically canceled whereas, for
d ¼ 3, 4 and 5, the remaining ones are eliminated by
defining renormalized quantities through the replacements

’ ! Z1=2
’ ’ ¼ ð1þ aÞ1=2’;

� ! Z�� ¼ ð1þ bÞ�;
a1 ! Z1=2

a1 a1 ¼ ð1þ cÞ1=2a1;
a2 ! Z1=2

a2 a2 ¼ ð1þ dÞ1=2a2;
1=g ! Zg=g ¼ ð1þ fÞ=g:

(66)

For simplicity of notation we are considering the same
letters for the renormalized parameters. The Lagrangian
takes the form

L ¼ Lun þLct; (67)

with the counterterm Lagrangian given by

Lct ¼ a

2
@0’@0’� B

2
@i’@i’þ C

2
@i@j’@i@j’

�m4a

2
’2 � Dffiffiffiffiffiffiffi

2N
p �’2 þ F

ffiffiffiffi
N

2

s
�

2g
; (68)

where we introduced

B ¼ ð1þ aÞð1þ cÞ � 1; C ¼ ð1þ aÞð1þ dÞ � 1;

D ¼ ð1þ aÞð1þ bÞ � 1; F ¼ ð1þ bÞð1þ fÞ � 1:

(69)

As remarked before and can be straightforwardly veri-
fied, the mass counterterm is innocuous since, due to the
identity of Fig. 3, it cancels in the contributions to the
Green functions. The surviving divergences in the two
point function of the ’ field are then eliminated by
adjusting the counterterms with derivatives, those with
coefficients a, B and C in Lct. Notice also that the F
counterterm may be chosen as to eliminate higher order
tadpoles and ensure that m is the ‘‘physical’’ mass in the
sense that

�ð2ÞðkÞ ¼ 0; for k20 ¼ a1k
2 þ a2ðk2Þ2 þm4; (70)

where �ð2ÞðkÞ is the two point 1PI (with respect to the ’
fields) vertex function. Similarly, theD counterterm is also
irrelevant as far as the Green functions of the ’ field are
concerned. Actually, since only the ’ field has a physical
interpretation for renormalization purpose any graph con-
taining external lines of the sigma field will be considered
just as a subgraph of large graphs without external sigma
lines.
A special situation arises at d ¼ 2 which, for consis-

tency, requires the introduction of new interaction terms in
the Lagrangian (54) so that by reparametrizations the
needed counterterms are produced. These are OðNÞ invari-
ant composite operators made of just four basic fields and
their derivatives of the form

	1ð’a 4 ’aÞð’b 4 ’bÞ þ 	2ð’a@i@j’aÞð’b@i@j’bÞ:
(71)

VI. SUMMARY

We investigated various statistical mechanical and field
theoretical aspects arising from the connection between the
continuum limit of the quantum spherical model with
competing interactions and the Lifshitz-type OðNÞ non-
linear sigma model with N tending to infinity.
We started by discussing some features of the quantum

spherical model with competing interactions. Certain
relations between the parameters J1, J2, and J3 were
determined by considering issues as Lifshitz point and
rotational symmetry. The maximum of JðqÞ depends on a
special combination of the interaction energies defined

through the parameter p � �½J2þ1
2ðd�1ÞJ3�
J1

. For p � 1=4 its

maximum is given by qc ¼ 0, whereas for p > 1=4 we
have qc � 0. The point p ¼ 1=4 separates these two
regions characterizing the Lifshitz point. At the Lifshitz
point the system exhibits an anisotropic behavior between
space and time coordinates.
The rotational symmetry reduces the number of inde-

pendent parameters since it relates the antiferromagnetic
couplings J2 and J3, according to J3 ¼ 2J2. This situation
is important mainly when we take the continuum
limit in order to identify the underlying rotational

FIG. 5. An expanded diagram associated with the graph 4.
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invariant field theory with the presence of higher spatial
derivative terms.

In the quantum derivation of the equivalence between
the models, our strategy was to analyze the large-N quan-
tum effective action of the anisotropic nonlinear sigma
model and then to take the limit N ! 1. We ended up
with the gap equation, which when taking into account the
temperature reduces to the saddle point condition of the
quantum spherical model.

Regarding the critical behavior of the quantum spherical
model at zero temperature, we found the critical dimen-
sions of the model by analyzing the saddle point condition
nearby the critical point. Specifically, we determined the
lower critical dimension, where the quantum fluctuations
are too strong preventing the formation of an ordered state,
and the upper critical dimension, above which the fluctua-
tions are not relevant anymore and the system has a typical
mean-field behavior. Between these two dimensions the
system exhibits a nontrivial critical behavior. At the
Lifshitz point, p ¼ 1=4, the lower and upper critical
dimensions are dl ¼ 2 and du ¼ 6, respectively. In this
situation we have a nontrivial critical behavior in dimen-
sions d ¼ 3, 4, and 5. These results were compared
with the fixed point structure of the � functions of the
anisotropic nonlinear sigma model in the corresponding
dimensions. Outside the Lifshitz point, p � 1=4, the criti-
cal dimensions are dl ¼ 1 and du ¼ 3, and we have a
nontrivial critical behavior in d ¼ 2, what corresponds to
the nontrivial fixed point in the relativistic nonlinear sigma
model in 2þ 1 spacetime dimensions.

We formulated a general anisotropic nonlinear sigma
model for arbitrary values of z and the conditions for
large-N renormalizability by systematic power counting
depending on z and d. We then restricted our attention to
the case z ¼ 2, studying in detail the renormalization
procedure in the context of the 1=N expansion and per-
forming the calculation of the � functions in d ¼ 2, 3, 4,
and 5, the dimensions in which the model is renormaliz-
able. In the case d ¼ 2, there is only the trivial fixed
point which corresponds to the nonexistence of phase

transitions in the quantum spherical model, i.e., when we
are considering the system at the lower critical dimension.
In the cases, d ¼ 3, 4, and 5, on the other hand, we found
Wilson-Fisher nontrivial fixed points corresponding to the
existence of nontrivial critical behavior in the quantum
spherical model at the Lifshitz point.
Concerning the renormalization of the model, we ana-

lyzed the structure of divergent 1PI Green functions. The
majority of the divergences are automatically canceled in
the 1=N expansion while the remaining ones are absorbed
in the redefinition of the parameters of the theory. Only for
the case d ¼ 2 was it necessary to add to the Lagrangian
counterterms proportional to ð’a 4 ’aÞð’b 4 ’bÞ and
ð’a@i@j’aÞð’b@i@j’bÞ. These are renormalizable vertices

that because of the graphical identity in Fig. 3 do not
generate additional counterterms.
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APPENDIX: AN ILLUSTRATIVE EXAMPLE

In this Appendix we will illustrate the general mecha-
nism of cancellation of divergences by analyzing the lead-
ing contributions to the Green function hT’a’a’b’biwith
a � b. The example involves the diagramsG, �1, �2 and �,
shown in Fig. 6, which are of the same order in 1=N
although individually they have different number of loops.
We will concentrate on space dimensions d greater than
two but less than six. In these situation diagrams �1 and �2

are both logarithmically divergent whereas � has degree of
superficial divergences equal to 6� d. To cope with the
subtraction terms separately, we suppose that all integrals
are dimensionally regularized so that the actual physical
dimension d is taken at the end of the calculation. Diagram

(c)(b)(a) (d)

FIG. 6. Nontrivial leading contributions to the four point function of the ’ field.
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G has ��1, ��2 and � as subgraphs and therefore in the BPHZ
scheme presents the following forests ;, ��1, ��2, �, f ��1; �g
and f ��2; �g. Thus the subtracted integrand for the diagram
G is given by

RG ¼ IG � IG= ��1
t0��1

I ��1
� IG= ��2

t0��2
I ��2

� IG=�t
6�d
� I�

þ IG= ��1
t0��1

I ��1=�t
6�d
� I� þ IG= ��2

t0��2
I ��2=�t

6�d
� I�; (A1)

where IG denotes the unsubtracted amplitude associated
with the graphG. Similarly, the amplitudes associated with
the graphs �1, �2 and � are, respectively,

R�1
¼ I�1

� I�1= ��1
t0��1

I ��1
� I�1=�t

6�d
� I�

þ I�1= ��1
t0��1

I ��1=�t
6�d
� I�; (A2)

R�2
¼ I�2

� I�2= ��2
t0��2

I ��2
� I�2=�t

6�d
� I�

þ I�2= ��2
t0��2

I ��2=�t
6�d
� I�; (A3)

and

R� ¼ I� � t6�d
� I�: (A4)

By the use of the identity in Fig. 3, we may immedi-
ately cancel (after integrating on loop momenta) various

(a)
(b)

FIG. 7. Example of the cancellation of subtraction terms when
the derivatives are just with respect to the momenta in the upper
line. The small circle denotes a derivative.

(d)(c)(b)(a)

FIG. 8. Flow of external momenta in the ‘‘direct’’ channel (p1 and p2 entering at vertices linked by just one sigma line).

(d)(c)(b)(a)

FIG. 9. Flow of the external momenta in the ‘‘crossed’’ channel (same as in Fig. 8 but with p2 and p4 exchanged).
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terms in the sum of the subtracted amplitudes such that,
effectively,

RG þ R�1
þ R�2

þ R� ¼ IG þ I�1
þ I�2

þ I�

� IG=�t
6�d
� I� � I�1=�t

6�d
� I�

� I�2=�t
6�d
� I� � t6�d

� I�: (A5)

To describe the action of the derivatives in t6�d
� we will

represent by a small circle on a line the effect of one
derivative applied to the propagator associated with the
line. Using this representation, notice that the subtraction
terms in which the derivatives in t6�d

� act just on the
upper line or just in the lower line of � cancel among
themselves. In fact, suppose that two derivatives with
respect to the external momenta act on the upper line of
Fig. 6(d), as indicated in Fig. 7(a). Then, it is easy to see
that this contribution will be canceled by the one coming
from the Fig. 7(b).

It remains to analyze the cases in which there are deriva-
tives acting both in the upper and lower lines of �. By
symmetric integration, we need to consider only the situ-
ation where there are two derivatives, one with respect to
the momentum in the upper line and the other with respect
to the momentum in the lower line. The cancellation here is
more complicated due the occurrence of a momentum
factor in the integrand of reduced graphs which produces
an additional factor of 1=2, as indicated in Eq. (65). In
Fig. 8 we have redrawn the diagrams of Fig. 6 displaying a
specific choice for the route of the external momenta (but
omitting the loopmomenta); wewill verify the cancellation
of the subtraction terms proportional to p1p2 or to p2p3.
The sum of the contributions coming from graphs 8(a) and
9(a) give the result which, because of the identity in
Eq. (65), vanishes when the sum of the contributions com-
ing from 8(b) and 9(b) is taken into consideration. The same
happens with the sum of contributions coming from 8(c)
and 9(c) which is canceled by the sum of 8(d) with 9(d).
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