

SOLUTIONS OF A CAUCHY-GOURSAT PROBLEM

Reinaldo Salvitti

In a former paper [R] we studied a Goursat abstract problem and now we shall apply these results to a Cauchy-Goursat problem. The purpose is to verify how one can solve a concrete problem using the Goursat problem on Banach Spaces Scales and also, with convenient hypotheses, to prevent quasi-linearization processes.

§1. The Goursat non linear abstract problem [R].

Definition

A Banach Spaces Scales is a vector space over \mathbb{C} , which is the union of a family $(X_s)_{0 < s < 1}$ of complex Banach spaces such that if $0 < s' < s < 1$ then $X_{s'} \supset X_s$ and $\| \cdot \|_{s'} \leq \| \cdot \|_s$.

Theorem - Consider the system,

$$(1.1) \quad \begin{cases} D_t^\alpha u(t) = F(u, t) \\ u - u^0 = O(t^\alpha) \end{cases}$$

where $\alpha = (\alpha_1, \dots, \alpha_N)$, $\alpha_i \in \mathbb{N}^*$, $D^\alpha = D_1^{\alpha_1} \dots D_N^{\alpha_N}$ and $v = O(t^\alpha) \iff$

$D_j^r V = 0$ when $t_j = 0$, $0 < r < \alpha_j$, $j = 1, \dots, N$. Let F be the map such that,

$$(1.2) \quad F: V(0, R) \times D_\eta \longrightarrow X = \bigcup_{0 < s \leq 1} X_s$$

where $V(0, R) = \bigcup_{0 < s \leq 1} B_s(0, R)$, $B_s(0, R)$ is the ball with center 0 and radius R of X_s , $D_\eta = \{t \in \mathbb{C}^N; |t| < \eta\}$.

(1.3) The restriction of F on $B_s(0, R) \times D_\eta$ is G -analytic with values in X_s , $0 < s' < s \leq 1$ and $\|F(u, t)\|_{s'} \leq \frac{C}{(s-s')^{m(\alpha)}}$, $m(\alpha) = \{\alpha_i, i = 1, \dots, N\}$.

(1.4) The map u^0 is holomorphic in D_η with values in X_1 , where $D_t^\beta u^0(0) = 0$, $\beta > \alpha$ and $\sup_{D_\eta} \|u^0(t)\|_1 < \rho < R$. Then there exists a unique map u and a number Δ , $0 < \Delta < \eta$, such that for each s , $0 < s \leq 1$, $u(t)$ is the unique solution of (1.1), holomorphic in $\{t \in \mathbb{C}^N; |t| < \Delta(1-s)\}$ with the values in X_s . Further

$$\Delta = \min\left\{\frac{\eta}{2}, \sqrt{\frac{R}{(32e)^N e C \alpha^2}}\right\}$$

with $|\alpha| = \alpha_1 + \dots + \alpha_N$ and $\alpha^2 = \alpha_1^2 + \dots + \alpha_N^2$.

Remark

If $\alpha_j = 0$ the variable t_j can be considered as a parameter.

§2. Solution of a Cauchy-Goursat problem

Consider the system,

$$(2.1) \quad \begin{cases} D_t^\alpha u(t) = f(t, z, D_z^{\beta_1} u, \dots, D_z^{\beta_p} u) \\ u(z, t) - u^0(z, t) = 0(t^\alpha) \end{cases}$$

where $t \in \mathbb{C}^N$, $z \in \mathbb{C}^n$, $\beta^i = (\beta_1^i, \dots, \beta_N^i)$, $1 \leq i \leq p$, with $0 \leq |\beta^i| \leq m(\alpha)$ and f is a complex analytic function of variables $(t, z, w_1, \dots, w_p) \in \mathbb{C}^{N+n+p}$ when $|t| < n$, $|z| < 1$, $|w_i| < R$, $i = 1, \dots, p$, which is bounded by $M > 0$. The function u^0 is analytic with $D_t^\theta u^0(0, z) = 0$, $\theta \geq \alpha$, $\sup_{D_\eta} \|u^0(t, z)\| < R$ if $|z| < 1$.

Then there exists a unique analytic solution u of (2.1).

Proof

We call $X_s^0 = H(B_s, \mathbb{C})$, the complex Banach space of functions of n complex variables $z \in \mathbb{C}^n$, with values in \mathbb{C} , holomorphic and bounded, with partial derivatives bounded in the ball

$$B_s = \{z \in \mathbb{C}^n, |z| < s\}, |z| = \max_{1 \leq j \leq n} |z_j|,$$

with the norm

$$\|u\|_s = \sup_{B_s} \max_{0 \leq |\beta| \leq m(\alpha)} (|D_z^\beta u(z)|), \quad 0 < s < 1.$$

Let $F(u, t)$ be the function defined by

$$F(u, t)(z) = f(t, z, D_z^{\beta_1} u, \dots, D_z^{\beta_p} u)$$

with $\|u\|_s < R$, $|z| < s$, if $0 < s < 1$.

We have

$$|F(u, t)(z)| \leq M \leq \frac{M}{(s-s')^{m(\alpha)}}$$

and by Cauchy's inequality

$$|D_z^{\beta_i} F(u, t)(z)| \leq \frac{M}{(s-s')^{(\beta_i)}} \leq \frac{M}{(s-s')^{m(\alpha)}}$$

if $\|u\|_s < R$, $0 < |z| < s' < s \leq 1$, then

$$F(u, t) \in X_{s'}, \quad \|F(u, t)\|_{s'} \leq \frac{M}{(s-s')^{m(\alpha)}}, \quad 0 < s' < 1.$$

By §1 there exists a unique map u and a number Δ such that $u(t)$ is the unique analytic solution in $\{t \in \mathbb{C}^N, |t| < \Delta(1-s)\}$ with values in X_s . Then $u(t, z)$ is the unique analytic solution in $\{(t, z); \frac{|t|}{\Delta} + |z| < 1\}$.

This theorem generalizes a similar result in $|D|$, for a non-linear Cauchy-Kovalevska system.

[R] - SALVITTI, Reinaldo - Solution d'un système non linéaire abstrait de Goursat et dépendance des conditions initiales - C.R. Acad. Sc. Paris.

[D] - PISANELLI, Domingos - Solutions of a non-linear abstract Cauchy-Kovalevska system as a local Banach analytic manifold - Proceedings of the Brazilian Math. Soc. Symp. of Funcional Analysis - 1974 - ed. D.G. Figueiredo M. Dekker, Inc. New York - 1976.