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Abstract
In this work, we use the framework of effective field theory to couple Ein-
stein’s gravity to scalar electrodynamics and determine the renormalization of
the model through the study of physical processes below Planck scale, a realm
where quantum mechanics and general relativity are perfectly compatible. We
consider the effective field theory up to dimension six operators, corresp-
onding to processes involving one-graviton exchange. Studying the renor-
malization group functions, we see that the beta function of the electric charge
is positive and possesses no contribution coming from gravitational interac-
tion. Our result indicates that gravitational corrections do not alter the running
behavior of the gauge coupling constants, even if massive particles are present.

Keywords: quantum gravity, quantum electrodynamics, renormalization in
field theory

1. Introduction

Quantum gravity based in Einstein’s theory of gravitation has been the subject of several
papers over the last 50 years, including the seminal papers by Feynman [1] and DeWitt [2].
The quantum aspects of gravity coupled to scalar electrodynamics have also been discussed,
for example, in [3, 4], where the effective action was computed (for a more comprehensive
discussion, see [5]).
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The theory is notoriously nonrenormalizable [6—8], since it requires a set of infinite
parameters to absorb all the divergences coming from the loop diagrams. The potential harm
of a nonrenormalizability, however, can be overcome in the effective field theory (EFT)
framework, where there is an unambiguous way to define a well-behaved and reliable
quantum theory of general relativity, if only we agree to restrict ourselves to low energies
compared to the Planck scale [9, 10]. In the core of the EFT argument is the fact that if we
respect all the symmetry of the problem to write down in the Lagrangian all the terms that
contribute to a process of energy scale E, all new terms eventually required by the renor-
malization procedure can be neglected because they must contribute only to higher energy
processes. This EFT’s methods have been used to compute several gravitational corrections
(see [11] and references therein).

Motivated by this modern view of quantum gravity, Robinson and Wilczek [12] con-
sidered a non-Abelian gauge field coupled to gravity and found the gravity contributes with a
negative term to the beta function of the gauge coupling, meaning that quantum gravity could
make gauge theories asymptotically free. The origin of this effect would be the arising of
quadratic UV divergences, associated with the one-graviton exchange graph, that could be
absorbed in a gauge coupling constant redefinition. This remarkable conclusion motivated a
lot of research on the subject. A few months after Robinson-Wilczek’s paper, their conclusion
was questioned by Pietrykowski, who repeated their calculation for an abelian field and
reproduced their result for a particular gauge choice and showed that a different gauge could
lead to no gravitational contribution at all [13]. Pietrykowski also suggested at the end of [13]
that if dimensional regularization is applied, the quadratic divergence would not be present,
and that claim was investigated further by Felipe et al in [14], where it is argued that the
gravitational correction to the beta function computed in [12] is regularization dependent and
therefore ambiguous. The absence of gravitational correction at one-loop order was reinforced
by Ebert, Plefka, and Rodigast in a paper where they follow diagrammatic approach using
both a cutoff and a dimensional regularization [15]. A detailed study of the use of the
Vilkovisky-DeWitt method to this problem was done in [16], where Nielsen shows for the
Einstein-Maxwell system that quadratic divergences would break the Ward identities, so the
method would guarantee only the gauge invariance of finite and logarithmic divergent parts of
the effective action.

The role of the cosmological constant was also investigated, and the result was that it
should induce an asymptotic freedom behavior to the electric charge [17-19] and for the \¢*
model [20]. There have also been some results for other (nongauge) interactions; for exam-
ple, it was argued that massive particles with Yukawa [21] and ¢* [22] share the same
property of asymptotic freedom, an effect that vanishes when the masses are withdrawn.

The controversy over beta function calculations is still unresolved, and some studies
have questioned the physical meaning of the definition of running coupling constants
[11, 23, 24]. These papers argue that a scattering matrix computation is needed to give a
physical definition for the running of the coupling constants. Using S-matrix, it was found in
[24] that an attempt to compute the running of the Yukawa coupling can be ambiguous, since
it would seem to run in the direction of asymptotic freedom in one process but will increase
with energy for another process, and therefore what appears to be asymptotic freedom is not
an universal behaviour within the theory. This conclusion is intrinsically related to the
construction and meaning of an effective theory: the gravitational corrections will renormalize
not the original operator but rather a higher derivative one (because of the dimensional
coupling constant), different processes typically involve different combinations of operators,
and no universality is to be expected [11]. Through the computation of scattering processes, it
was shown that quantum gravitational corrections do not alter the running behavior of the
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electric charge in the massless Scalar Quantum Electrodynamics (QED) [25], but the presence
of a positive cosmological constant in the massless Einstein-A¢* model corroborates earlier
proposal [17].

In this work we investigate the renormalization of the EFT of the massive Scalar elec-
trodynamics coupled to Einstein’s gravity, showing that gravitational corrections do not alter
the running behavior of the electric charge, even in the presence of massive particles. This is
done by the computation of scattering amplitudes between charged particles.

2. Massive scalar QED coupled to Einstein’s gravity

The model is given by the following action:
§= f d4XJTg {%R - igﬂag”ﬂE‘zSF/‘w + g/“/ (au + ieA/L)¢j (81/ - iEAy)d)};
K
A
~wPG0) ~ GG + Lo + Lar + Lar |, M

where j assume values a and b according to the flavor of the pion, xk? = 327G = 327r/M2,
with Mp being the Planck mass and G the Newtonian gravitational constant; e is the electric
charge and A a self-interaction constant. L is the gauge-fixing plus Faddeev-Popov ghost
Lagrangian (for the graviton and the photon), and L7 is the Lagrangian of counterterms
Finally, Lgo is the Lagrangian of higher derivatives terms given by

Lro = N0"(3,8)0.(0, ) + Mo (6,0'¢; — 0", ) (D, 0Py — FutbyBy)

+ % 08,88, 8, + ¢,06,0,6, + 6,8,08,8, + ¢.6,0,06;) + (-, @
where (---) stands for omitted higher-order terms, which are not important to our analysis in
this paper.

We must keep in mind that for renormalized Lagrangian, we have redefined

bo; = Z;)/2¢j =1+ 6¢; and Ag, = Zﬁ/zAM = /1 + 04A,. The relation between bare
and renormalized coupling constants is given by

Lo o (et
D g oz
7 (A + 6)
Ao = 1262\ = 25’ ?3)

where 4 is a mass scale introduced by the dimensional regularization with D = 4 — 2e.
Let us consider small fluctuations around the flat metric, i.e.,

g/w = 77/1,1/ + lihl“” (4)
g;w — nut/ — kh" + HZ huah{i{ + O(H3), (5)
1 1 2 afuv 3
g =1+ Elih — Zﬁa hagPMhy,, + O(K), 6)
where 77#1/ — (+’ S _)’ Paﬁuu — %(naunﬂu + naz/nﬁp _ na'ﬁnuy) and h = 77“"h;w- For

more details, see for instance [26].
Through the harmonic gauge-fixing function, G, = 0"h,,, — %aﬂh, the graviton propa-
gator can be cast as
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Figure 1. Feynman diagrams for the pions self-energy. Dashed, wavy, and continuous
lines represent the scalar, photon, and graviton propagators, respectively.
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Figure 2. Feynman diagrams for the photon self-energy. Dashed, wavy, and continuous
lines represent the scalar, photon, and graviton propagators, respectively.
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The propagators for the other fields are also obtained by the usual Faddeev-Popov
method, resulting in

. -

(T A (p)A” (—p)) = A (p) = —%[nw +a -yl ] @®)

p p

(T 8 (P& (—p)) = N (p) = ﬁéij. ©
The ghost propagators are not useful in the order we are working.The above propagators were
written for generic gauge parameters: §, and &,. Since our interest is in the study of gauge-
independent quantities, from now on, we will restrict to the Feynman gauges, §, = £, = 1,
which simplifies the very long calculations involved. Reproduction of the same results by
calculating with generic parameters £, and {, would be desirable, but we will leave it for
future investigations.

3. Scattering amplitudes and the running of the coupling constants

The self-energy process of the scalar particle, figure 1, is

= (14 6)(p* —m* = &,2) — Ti(p, m, A, &, @), (10)
where ¥, (p, m, A, k, e) is the one-loop correction given by
2 2 .2 3(/\ _ 62)m2
E _ 2 m2 e . R-m + ) 11
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Figure 3. Feynman diagrams for the pion scattering amplitude (z; + ©f — 7 + ©}) at
tree level.
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Figure 4. Topologies to the (xf + 7 — 7 + 7)) scattering amplitude at one-loop
order. After considering the vertices, we have more than 80 Feynman diagrams to this
reaction up to O(x?).

Using the minimal subtraction (MS) renormalization scheme [27, 28], the counterterms
for mass (9,,2) and wave function ({) are given by

. 3(e? — \)m?

m 12
1672 (12)
e? m2k?
e P (13
8mee  16mce
The one-loop correction to the polarization tensor of the photon field, figure 2, is
2
I = — mp? — ptp¥y + H.O ., 14
YRy (n"p= = p'p”) (14)



Class. Quantum Grav. 33 (2016) 095008 L | Bevilaqua et al

2,2
where H.O. :—;ﬁﬁ(n‘“’pz — ptp")p? (see for instance [15]) is a high-order gravitational
correction that only contributes to the renormalization of a high-order operator. From the
above expression, we find the photon wave-function counterterm as

e2

s = Ry (15)
The scattering amplitude 7©i + 7, — 7 + 7 (figures 3 and 4), is given by
M= Miee + Mcr + My
~ s e2(S — U) n m_zS_U " m2K? _ m*K? 4 Mo + M), (16)
T 4 T 2 2T

For convenience, we have set \j = A, = A3 = 0 at tree level. In the above expression, U, T
and S are the Mandelstam variables, My is the expression for the counterterms

2e8,(S — U) 628U 6,0k  m?

Mer =— 8+ =2 + 25,
cr A T 4T 2 2
m26,2k>  m*6,2
- T — 2T/ + (5/\]T—|- 5)\2 S -0 — 4m26)\3, (17)

and M, the one-loop correction. To compute M;; up to order of 2 (one-graviton exchange),
we used a set of Mathematica® packages [29-31] and found
3\ 3e* ets e*U 11e2Sk? e m*k?  Te’m2Sk?
>t T a2 2. 2 2 2
8me  8mee¢ 4nTe 4n-Te 384m=¢ 487= Te 487-Te
5e28%k*  11e*Tk* | 11e*Ur? | 5e*m?Uk?  11e*SUK*  25¢*U%?

Mll =

+ - +
38472Te 19272¢ 38472¢ 247%Te 9672Te 38472Te
e\ m2r2)\ Sk 3m*kZN 3 Tk2N  Ur?) .
— — — — — — + finite terms
8m2e 8¢ 3272e 1672 Te 6472 3272e (18)
We use also equation (12) to write the amplitude (16) as
200 _ 2 2,2 4,2 _
M:_/\+e(S U)+/£_S_U+m/-@ _ m'K _6/\+2666(S U)
T 4 T 2 2T
§28U m? m*§, 2
+ =+ —b2 — ot 6\, T+ 6), (S — U) — 4m?s
2T 2" ar A 2 € ) A
BN +3et —Aeh) S -U) 1S - U) | (2 = I m's?
8m2e 472Te 38472¢ 4872Te
Te? m*k2S 5e2k2(S? — 5U?) 1122 T 5e2m?k2U
4872Te 38472Te 19272¢ 2472Te
) 2,2 2 2
11e’w®SU m*r? A RAAS+U+T) kAT + finite terms. (19)
9672 Te 8m2e 3272 6472

The kinematical identity S + T + U = 4m? can then be used to eliminate U from M in
order to simplify the analysis. Collecting terms with the same kinematical factor, we have
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Imposing finiteness, we find
5 — e enm? o1
© 8mle 1672’
2,2
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Since g = per"m = <1+6o>(+1+5/4)‘/2’ and 8 = =g5 —jga,» We have
ey = eu‘Zgl/ 2. Therefore, the beta function of the electric charge is
de e’
e) = u— = s 25
B = g = 2o (25)

which is simply the usual beta function in absence of gravity, so we can say that quantum
gravitational corrections do not alter the running behavior of the electric charge.

On the other hand, for the renormalization of A\, we find
BN+ 3e* — Xe?) 2kt m? 11Mk%2m?

8m2e 412 32m2e

and we see that we cannot separate the contributions for ¢y and 0y,

This arbitrariness in the definition of the coupling constants is due to the mixing of
operators, typical in EFTs, as discussed in [24]. The separation of the renormalization of A

and A3 would require the study of off-shell processes where these two parameters (or at least
one of them) are involved. For the moment, we will not pursue this analysis.

—(SA - 4m26,\3 +

=0, (26)

4. Final remarks

In summary, we have shown that massive scalar QED coupled to gravity is renormalizable
within the framework of EFT. The appropriate counterterms were set by imposing finiteness
of the scattering amplitude at one-loop order.

Our attention was focused on the gravitational correction to the renormalization of the cou-
pling constants, since previous works have indicated that the presence of a dimensionful parameter

7
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(the cosmological constant in [17]) might render a non-vanishing new term. We found that the
counterterm for the electric charge does receive a gravitational contribution in the presence of a
dimensionful parameter (the mass of the scalars). However, this dependence on x? is exactly
canceled when we compute 3 (e), such that the running of the electric charge is not altered by
gravitational effects, similarly to what was observed in massless QED coupled to gravity [25].

On the other hand, the counterterms for the scalar coupling constants A and A3 will
depend on the gravitational coupling 2 in the case considered (m = 0) and cannot be
separated, a manifestation of what is called mixing of operators (typical of EFTs, as discussed
in [24]). Their separation would requires the study of off-shell processes involving these
coupling constants. For the moment, we will not pursue this analysis.
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