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Let X : R2\D, — R? be a differentiable (but not necessarily C!) vector
field, where ¢ > 0 and D, = {z ER?: 2| < o-}. If for some € > 0 and for
all p € R\ Dy, no eigenvalue of DpX belongs to (—¢,0]U {z € C: R(z) > 0},
then the following holds true
(a) For all p € R?\ Dy, there is a unique positive semi-trajectory of X starting
at p;

(b) Z(X), the index of X at infinity, is a well defined number of the extended
real line [—o0, 00);

(c) There exists a constant vector v € R? such that if Z(X) is less than zero
(resp. greater or equal to zero), then the point at infinity oo of the Riemann
sphere R? U {co} is a repellor (resp. an attractor) of the vector field X -+ v.

1. INTRODUCTION

The pioneer work of C. Olech [19, 20] showed the existence of a strong connection
between the global asymptotic stability of a vector field X : R? — R? and the injectivity of
X (considered as a map). This connection was strengthened and broadened in subsequent
works (see for instance [5, 8-17]). This paper proceeds with this study. We extend to the
differentiable case the work, already dealt with in [14], for the C* case.

There has been a great interest in the local study of vector fields around their singulari-
ties. A sample of this study is the work done by C. Chicone, F. Dumortier, J. Sotomayor,
R. Roussarie, F. Takens. See for instance [3, 6, 7, 22, 24]. To understand the global be-
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2 C. GUTIERREZ, B. PIRES AND R. RABANAL

havior of a planar vector field it is absolutely necessary to understand its behavior around
infinity. In this respect, we will see below that infinity can be considered as a singularity
of a vector field X : R? — R2,

Before stating the main result, we will give some definitions. Throughout this work,
we assume that R? is embedded in the Riemann Sphere R? U {oco} and that “infinity”
refers to the point at infinity co of R% U {oo} This applies also to subspaces of R? U {co}
of the form R\D,, where ¢ > 0 and D, = {z€R?:|z[| < o}. Given a continuous

vector field X : R?\D, — R? of the plane, we may extend it to the vector field X :
(R*\D,) U {co},0) — (R?,0) of the Riemann Sphere which takes oo to 0. Notice that
we allow X to be discontinuous at co. Henceforth, we will identify X with its extension
X.

Let X : R®\D, — R? be a continuous vector field. We say that a positive (resp. a
negatlve) semi-trajectory 7. (resp. ¥, ) of X goes to infinity (resp. comes from infinity)
if w(v,f) = oo (resp. a(y;) = o0). Let {I',}5° be a sequence of topological circles. We say
that the sequence {I',}]" tends to infinity if for every neighborhood V of oo, there exists
N € N such that n > N implies that T, C V.

DEFINITION 1.1.1.  We say that oo is an attractor (resp. a repellor) of a continuous
vector field X if

(i)There exists a sequence of C1 circles tranversal to X tending to infinity;
(ii)For some R > o, all positive (resp. negative) semi~trajectories of X starting at
p € R®\Dy go to infinity (resp. come from infinity).

A few comments are due in order to capture the essential features of Definition 1.1.1.
Firstly we shall remark that in the C' case, Definition 1.1.1 is equivalent to saying that
the vector field X induced by X on the Rlemann sphere is locally topologically equivalent
in a neighborhood of the infinity either to p — —p or to p — p at the origin, see [1]. In the
differentiable or continuous case this definition is unsatisfactory because is not possible to
speak here of topological equivalence. Note that saying that oo is an attractor or repellor of
X is stronger than saying that outside a disk Dg all trajectories go to infinity. This prevents
infinity from being an attractor or repellor of the constant vector field which presents elliptic
sectors at infinity, see Figure la. Furthermore, the condition (i) of Definition 1.1.1 cannot
be weakened. Indeed, there exist vector fields which, in spite of admitting a transversal
circle I' and satisfying (ii) of Definition 1.1.1, does not admit any family of transversal
circles tending to infinity, see Figure 1b.

Let A be a Lebesgue measurable subset of R™, and let f : A — R be a measurable
function. We define as usual

fH(z) = max{f(z),0}, f~(z)=max{-f(z),0}.

Accordingly, we say that f: A — R is Lebesgue integrable if

min{/Aﬁd,\,/Af-d,\} < o0,
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(a)

FIG. 1. Two vector fields which do not have the point at infinity as an attractor

AfdA:Af+dA—Af‘dA,

which is a well defined value of the extended real line [—oo, c0].

Given a differentiable vector field X : U C R? — R2, we let Spec (X) denote the set of
eigenvalues of the derivative D, X of X at p when p ranges over the whole set U. As usual,
R(z) stands for the real part of the complex number z and Trace (DX) : U — R stands for
the function which at each p € U takes the value Trace (D,X).

Now let

in which case we define

2U)={X:U— R? : X is differentiable and Trace (DX) is Lebesgue integrable on U}-

We define the index of X € 2(R*\D,) at infinity to be the number of the extended real
line [—o0, 00] defined by

I(X) = Trace (DX) dx A dy,
R2
where X € 2(R?) is any globally differentiable extension of X|g2\p,, for some s > o,
whose divergent is Lebesgue integrable on R2. We will show (see Corollary 2.2.12) that
Z(X) is well-defined. We are now ready to state our main theorem

THEOREM A. Let X : R?\D, — R? be a differentiable (but not necessarily C) vector
field. If for some € > 0, Spec(X) is disjoint from (—e¢,0] U {z € C: R(z) > 0}, then

a) For all p € R?\D,, there is a unique positive semi-trajectory of X starting at p;

b) Z(X), the index of X at infinity, is a well defined number of the extended real line
[_Oo) OO);

¢) There exists a constant vector v € R? such that if Z(X) is less than zero (resp. greater
or equal to zero), then the point at infinity co of the Riemann sphere R?U{oc} is a repellor
(resp. an attractor) of the vector field X + v.
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2. DIFFERENTIABLE VECTOR FIELDS

Let X : U C R? — R? be a continuous vector field defined on an open set U C R?. We
say that a C! curve Yp : I — U is a solution of the vector field X passing through p if
Yp(0) = p and 7y, (t) = X (y,(t)), for all t € I, where I C R is an interval containing zero.
By Peano’s Existence Theorem, through each p € U, there exists a solution Yo:J(1p) = U
defined on some open maximal interval J (7p) which depends on both the solution vp and
on the starting point p. For the sake of simplicity, we identify the solution v, with its
range which we refer to as a trajectory of X passing through p defined on J(7vp). Likewise,
v (resp. 7, ) will denote the positive (resp. negative) semi-trajectory of X contained
in 7, and starting at p. Accordingly, v, = Yo L fy;f. Given a positive (resp. negative)
semi-trajectory v, (resp. v, ), we denote by w(vy) (resp. a(v,)) its w-limit set (resp.
a-limit set).

We say that p € U is a singularity (resp. a regular point) of X if X(p) = 0 (resp.
X(p) #0). A trajectory + is said to be periodic if it is defined on R and there exits + > 0
such that y(¢t+7) = 7(t) for all t € R. We recall that trajectories of continuous vector fields
may cross themselves or each other. If a trajectory cross itself then it naturally contains a
periodic trajectory defined on R. If U is simply connected then it follows by index theory
that every periodic trajectory of X has to surround a singularity.

Given a vector field X = (f,g), let X* = (=g, f) be the orthogonal vector field to X.
The same notation as that for intervals of R will be used for oriented arcs of trajectory
[P, 4], [p,q),... (resp. [p,q]*,[p, q)*,...) of X (resp. X*), connecting the points p and q. The
orientation of theses arcs is that induced by X (resp. X™).

DEFINITION 2.2.1 (Compact Rectangle). A compact rectangle R = R(p1,p2;q1,92) C
U of a continuous vector field X : U C R? — R? is the compact region the boundary of
which is made up of two arcs of trajectory [py, pa), [q1,G2] of X and two arcs of trajectory
[P1, @1]*, [p2, q2)* of X*. Notice that we assume that the flow induced by X goes into R by
[p1,q1]" and leaves R by [p2, go]*.

For any arc of trajectory [p, q]* of X*, let
Upa) =] [ 1x7)d,
[p.al*

where ds denotes the arc length element. Given an arc of trajectory [p,q] (resp. [p,q]*),
we denote by £([p, q]) (resp. ¢([p,q]*)) the arc length of it. Next formula is a corollary of
Green’s Formula as presented in [21].

LEMMA 2.2.2.  Let R = R(p1,p2;q1,92) C U be a compact rectangle of X € 2(U).
Then

L([pz,qz]*)—L([pl,ql]*)=/RTrace(DX)dxAdy.
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Next result says that a vector field X € 2(U) whose divergent is strictly negative on U
generates a positive semiflow.

THEOREM 2.2.3.  Let X € 2(U) be a vector field without singularities such that
Trace(DX) < 0 on U. Then for each p € V, there is a unique positive semi-trajectory
of X passing through p.

Proof: Assume, by contradiction, that there are two positive semi-trajectories
'y;,o; C U starting at p. So we may take a triangle (i.e. a degenerate rectangle)
R = R(p,q1;p,q2) C U with [p,q1] C 7, and [p,q2] C 5. By Lema 2.2.2,

0 < L([q1,q2]") = / Trace(DX) dx A dy < 0,
R

which is a contradiction.

LEMMA 2.2.4.  Let X € 9(U) be a vector field such that Trace(DX) < 0 on U. Assume
that U is free of singularities and periodic trajectories and that K C U is a compact set.
Then there is no positive (resp. negative) semi-trajectory of X contained in K.

Proof: In the case of a positive semi-trajectory the proof follows easily from Theorem
2.2.3 and the Poincaré-Bendixson Theorem for semiflows (see [4]). In the case of a negative
semi-trajectory, we will give an explicit proof based on the negativeness of the divergent
of X. So we assume that v~ is a negative semi-trajectory of X contained in a compact set
K CU. Let p € a(y~) and let £ be a compact orthogonal section to X passing through p.
We know that no negative semi-trajectory can intersect itself, otherwise it would contain
a periodic trajectory. So v~ intersects ¥ monotonically and infinitely many times. Let
{pn}‘l)o denote the corresponding sequence of intersection points, where p, — p as n — oo.
Then, from Lema 2.2.2:

L([pj-1,p;]") — L([pj, pj+1]") <0, Vje N,
where N* = N\ {0}. Hence,
L([po, p1]*) — L([pn, Pn+1]*) = ZL([Pj—lan]*) — L([pj,pj+1]*) <0, Vn € N*
j=1

That is,
0 < L([po, p1]*) < L([PnsPn+1]*), Vn e N~

But this is an absurd since L([pn,pn+1]*) — 0 asn — oco. So a(y™) = 0. As K is a
compact and v~ C K, a(y~) cannot be empty. This contradiction finishes the proof
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DEFINITION 2.2.5.  We denote by 9, the set of the differentiable wvector fields
X : R\D, — R? such that Spec(X) is disjoint from (—€,0] U {z € C : R(z) > 0} for
some € > 0.

Firstly we derive some useful properties of the vector fields in the class .. Next result
shows that if X € Z, then X|g.\5, € 2(R*\D,) for all s > 0.

LEMMA 2.2.6. Let X € 9, be_a differentiable vector field. Then for all s > o we
have that Trace (DX) < 0 on R*\D, and so Trace (DX)|ga\p, : R?\Ds — R is Lebesgue
integrable.

Proof: By the constraints on Spec(X), for each p € Rz_\ﬁg, all the eigenvalues of
DpX have negative real parts so that Trace (DX) < 0 on R?\D, C R?\D,,. The Lebesgue
integrability of Trace (DX)|R2\5S : R?\Dg — R follows from the definiton. 0

In the proof of next Theorem we make use of the following result due to Gutierrez and
Rabanal [13].

THEOREM 2.2.7. Let X : R2\D, — R? be a differentiable vector field. If for some e > 0,
Spec(X) N (—e, +00) = 0, then there exists sq > o such that leg\—D—so can be extended to a

globally injective local homeomorphism X :R?2 = R2.

REMARK 2.2.8.  An immediate consequence of Theorem 2.2.7 is that if X € D, then
outside a big disk D O D, the vector field X has no singularity. In addition, by Lemma
2.2.6, the divergent of X is negative on R>\D, so that by Lema 2.2.2, X admits at most
one periodic trajectory contained in R*\D,. So we may take R big enough so that R®\Dg
is a region free of singularities and periodic trajectories. Put differently, X has neither
singularities nor periodic trajectories at infinity. As 9D, is invariant by translation (i.e
X +v € I, whenever X € 9, and v € R?), we have that if X € D5 and v € R2, then
X +v € Dy and so has neither singularities nor periodic trajectories at infinity.

THEOREM 2.2.9.  Let X € 9, be a differentiable vector field. Then for some sy > o,
there exist v € R?, ¢ > 0 and a globally injective local homeomorphism Y : R? — R? such
that

1.Y(0) =0;
Q'YIIRQ\I_)-HO = X'RQ\EM + 'U).
SIY (@)l > ¢ for any p € RN\ Dy ;
4.Trace (DY)|g2y5. : R*\Ds, — R_ is Lebesque integrable;
R2\D,, ( !
(5)Y|uz2\5$0 preserves orientation; B
(6)Y" has neither singularities nor periodic trajectories in R*\Dy, ;
(7)}/‘1*.22\5,0 generates a positive semiflow.
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Proof: By the assumptions on Spec(X), we have that Spec(X) N (—¢,+00) = B. So by
Theorem 2.2.7 there exist so > o and a global injective local homeomorphism X :R? - R?
which extends X[W\BHO. Setv=~X(0) andY = X +v to get the desired map Y. (1) and
(2) follow at once. (3) follows from (1) together with the global injectivity and openness
of the map Y. (4) follows from (2), from the invariance of 9, by translation, and from
Lemma 2.2.6. To prove (5), observe that Det (D,Y) = Det (D, X) > 0 for all p € R\ Dy, .
(6) follows from the Remark 2.2.8 under the assumption that sq is large enough. Finally,
(7) follows from (4), (6) and the Theorem 2.2.3.

In the forthcoming sections, we will exploit Theorem 2.2.9 as fully as possible. We
now turn ourselves to a measure theory problem. In order that Z(X) be well defined, we
have to show that there exists some differentiable global extension of X lr2\5,» for some
r > o, whose divergent is Lebesgue integrable on R?2. This is the purpose of next theorem.
Notice that the continuous extension X : R? — R? provided by Theorem 2.2.7 may be not
differentiable on Dy, .

THEOREM 2.2.10. Let X € P(R*\D,). Then, for some r > o, XIW\Br admits a
differentiable global extension K& 2(R?) whose divergent is Lebesque integrable on R2.

Proof: Let r; > o and A : R> — [0, 1] be a smooth bump function such that \(z) =0
for ||z]| <y and A(z) =1 for ||z]] > r1 +1. Given € > 0, let X; : R> — R? be a C* map
such that || X1(z) — X(2)|| < e for all 71 < ||z|| < r; + 1. Define X : R? — R? to be the
differentiable map satisfying

X(2) = M2)X(2) + (1 = M2)) X1(2),

where as usual we define A\(2)X(z) =0 for z € I

Let A = D;,, B = Dy, 41\D;, and C = R?\D,, ;. We have that R> = AUBUC.
Furthermore,

X|a = Xi|a, (1)
X|g = ApX|s + (1 - A|g)X1s, (2)
Xlc = X|c. (3)

Since X € 2(R?\D,), we have that
min / Tracet (DX) dx A dy, / Trace™ (DX)dx Ady < co.
R2\D, R2\D,

Without loss of generality, we may assume that

/ Trace™ (DX) dx A dy < co. (4)
R2\D,
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From the smoothness of X; and (1), we get that [, ’I‘race+(Di) dx Ady < co. On the
other side, from (3) and (4), [, Trace™(DX)dx A dy < Jra\i5, Trace™ (DX) dx Ady < oo.

The proof will be finished if we show that [, T‘race+(D}~() dx Ady < co. By differentiating
equation (2) we reach for z € B,

Trace(D,X) = A(z)Trace(D,X) + (1 — \(z))Trace(D,X;) + (5)
+A2(2)(f(2) = fu(2)) + Ay (2)(9(2) — 91(2)), (6)

where X = (f,g) and X; = (f1,¢1). Since || X; — X|| < € on B, we have that fi(z) — f(2)
and g(z) — g1(z) are bounded in B. The function A and its partial derivatives are also
bounded. Moreover, Trace(D,X) is a smooth function on the compact B. Finally, from (4)
it follows that [ Trace™ (DX) dxAdy < oco. By (5) we get that [, Tracet (DX) dxAdy < oo.
Hence, by the above and by using that R? = AUBUC, it follows that - 'I‘race+(D)~() dxA
dy < oo so that TTace(D)z) is Lebesgue integrable. To finish the proof take r = r; + 1 and
use (3).

We will need the following Lemma

LEMMA 2.2.11. Let X € 2(R2\D,) and X1, X, € D(R?) be differentiable global exten-
sions of X|ga\5, for some r > o, that is, X;(z) = X(2), for all z with ||z|| > r and for
1=1,2. Then

Trace(D)A(l) dx Ady = Trace(D}ACQ) dx A dy.
R2 R2

Proof: Thanks to Green’s Formula as presented in [21], the proof of the Proposition
2.1 of [1] (which is the C! version of Lemma 2.2.11) also works in this case.qj

COROLLARY 2.2.12.  Let X € 9, be a differentiable vector field. Then the index I(X)
of X at infinity is a well defined number of the extended real line [—co, o).

Proof: It follows from Lemma 2.2.6 and Theorem 2.2.10 that, for some r > o, X|R2\5,.

admits a differentiable global extension X € 2(R?) whose divergent is Lebesgue integrable
on R%. From Lemma 2.2.11, Z(X) does not depend on the extension so that it is well
defined. Since at infinity Trace(DX) is negative, we have that Z(X) < co. 0

3. TRANSVERSAL SECTIONS TO CONTINUOUS VECTOR FIELDS

When constructing transversal sections to smooth vector fields we can take advantage of
many tools such as the continuous dependence of the flow with respect to initial conditions
and the Flow Box Theorem. In the continuous case, the picture turns out to be different
because the local uniqueness of solutions fails. Meanwhile, as the following result shows,
we still have some kind of continuous dependence with respect to initial conditions.
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We first introduce some notation. Let F': V C R™ — R™ be a continuous vector field. If
Yp is a trajectory of F' passing through p € V, then J(v,) denote its maximal interval of
existence. We denote by J(p) the subset of the real line

J(p) = ﬂ%{J('yp) : Yp is a trajectory of F' passing through p},

which, by Peano’s Existence Theorem, is an interval containing p (see [23, Corollary 4]).

LEmMA 3.3.1.  Let F': V C R™ — R"™ be a continuous vector field defined on an open
set V. Let po € V and assume that J(po) D [0,7]. Then for each € > 0, there exist § > 0,
such that if |p — po|| < 0 then

(1)J(p) 2 [0,7];
(ii)For each trajectory ~, of F passing through p, there exists some trajectory Voo Of F'
passing through po such that ||vp(t) — vp, (t)|| < € for all t € [0, 7].

Proof: We refer the reader to [23, Theorem 4] (see also [2]).

In next Theorem we assume that the positive semi-trajectories of X are unique and so
that X generates a positive semiflow.

THEOREM 3.3.2. Let X : U C R? — R? be a continuous vector field with unique
positive semi-trajectories, defined on an open set U free of singularities; v be a positive
semi—trajectory of X with mazimal interval of existence J(v) D [0,7], z1 = 7(0) and
zy = y(7); and let ¥y be a local transversal section to X passing through zy. Then, in
each connected component of %o\ {22}, there exist a point Zy arbitrarily close to zy, and
a C' segment A transversal to X, starting at z1, ending at Z», and close to the subarc of
trajectory [z1,z2) C v of X.

Proof: Since J(v) is open, we may choose 7 > 7 in J(v). Let X : U C R? — R2? be
a vector field transversal to X. We wish to find a transversal segment to X that, for
some A > 0, is a trajectory of the perturbed vector field X, : U C R? — R? defined
by X\ = X + AX. For so we expand the phase space to include the parameter \ by
considering the extended vector field F : U x [0,1] — R3? defined by F(z,\) = (Xx(2),0).
Let w1 : RZx R — R? and ma : R2 x R — R be the canonical projections. It is plain that if
V(=) 18 a trajectory of F passing through (z,\) € U x [0, 1], then w07z ) is a trajectory of
X passing through z and (ma07yz x))(t) = A. In particular, as Xo = X generates a positive
semiflow, all positive semi~trajectories of F' passing through (z,0) € U x [0, 1] are unique.
So the only positive semi-trajectory of F passing through (z1,0) is (., 0)(t) = (¥(t),0).
Hence J(z1,0) = J(y) D [0,7]. It follows from Lemma 8.8.1 that given € > 0, there
exists § > 0 such that if ||(21,A) — (21,0)|| < & then all trajectory ~(., ny of F passing
through (21, ) satisfies J(v(z,,x)) D [0,7] and ||vez,,0) () — (7(2),0)]| <€, Vt € [0,7]. For
each (z1,\) € U x [0,1], choose some trajectory <z, »)y of F starting at (z1,\) and set
YA = 1OV (z,n)- S0 YA 1S a trajectory of Xy starting at z1. By the above, if X is small
enough, then J(vx) D [0,7] and sup,epo 7 l7a(t) — ¥(¥)|| < €. Hence, since vy cross %y
transversally at zo = v(7), we have that there exists o € [0, 7] such that yx(72) € La. Set
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pl p2

FIG. 2. Pseudo Hyperbolic Sector

Za(A) = Ya(12) and let A(N) = [21,22(\)] C a be the subarc of trajectory of vx conecting
z1 to Zp(N\). It is easy to see that if X\ > 0 is small enough then zo = Z(\) and the
segment A = A()N) has all the properties required. To get a point Zo in the other connected
component of X2\ {22}, replace X by ~X and proceed in the same way.n

4. PSEUDO HYPERBOLIC SECTOR AT INFINITY

DEFINITION 4.4.1. Let X € 9, and S = S(p1,p2;q1,q2,{0s}) C R*\D, be the un-
bounded region whose boundary 0S is made up of two unbounded semi-trajectories [q1,00)
and (00, q2] of X, a compact arc of trajectory [p1,p2] of X, two arcs of trajectory [p1, q1)*,
[p2,q2)* of X*, and a set at most countable (which may be empty) of pairwise disjoint tra-
jectories g1,09, - ,0n, - that start and end at co (see Figure 2). We call such a region
a pseudo hyperbolic sector of X if the following conditions are satisfied

(1)For each z € [p1,q1)*, there exists an arc of trajectory [z,m(2)] C S of X starting at
z € [p1,q1)* and ending at 7(z) € [p2, ¢2]*;

(2) U [2,7(2)] = S.

z€[p1,q1)
In this way, the map 7 : [p1,q1)* — [p2,qa)* is nothing but the Forward Poincaré Map

induced by the positive semiflow associated to X |25, (see Lema 2.2.6 and Theorem 2.2.3).
Let us call the unbounded part of 9S the set

818 = [g1,00) U (00, q2] U | J o C BS

=1

Hereafter all efforts we make are towards proving the main theorem of this section, stated
below. In what follows, the vector field Y and the positive constant sg are as in Theorem
2.2.9.

THEOREM 4.4.2.  There is no pseudo hyperbolic sector of Y contained in R*\Dy, for
any 8 2 Sp.
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Before proving Theorem 4.4.2, we give some preparatory Lemmas.

LEMMA 4.4.3.  Let s > sq and let [p1,q1]* € R®*\D, be a fized arc of trajectory of ¥,
Then, there exists K > 0 such that for any compact rectangle R = R(p1, p;,T1, r) C R2\D,
of Y satisfying [p1,rm1]* C [p1,q1]* we have that £([p,7]*) < K. See Figure 3.

Proof: From Lemma 2.2.2 it follows that for any rectangle R(p;,p;,r1,7) C R?\ D,
L([p,r]*) — L([p1,m1]*) = / Trace (DY) dx A dy < 0.
R

Setting d = sup {||Y'(2)| : z € [p1,¢1]*} and using (3) of Theorem 2.2.9 yields

el([p, ") < | /[ I lds| = 2(l,71%) < (i, ma]") = | /[ ¥ llds| < delp,m]").

p1,71]*

Therefore, setting K = ¢4([p1, ¢1]*), we obtain

c

p.1") < Stllprml") < S, i) = K.

LEMMA 4.4.4. Let S = S(p1,p2;q1,q2,{0i}) be a pseudo hyperbolic sector of Y contained
in R?\D, for some s > sq. Then for each q € 045, there exists p € [p1,p2] and arc of
trajectory [p,q]* C S of Y* departing from p and ending at q.

Il 122
ql’, 1 192
r1'\/9\,‘
A A A
’l I |‘
1 P \
pl p2
FIG. 3.

Proof: Let ¢ € 945 and 7 : [p1,q1)* — [p2,¢2)* be the Forward Poincaré Map induced by
the positive semiflow generated by Y|R:\5w. Let {z,}° — ¢1 be a sequence in [p1, q1]*.
Set wy, = 7(2n) € [p2,q2)*. Then w, — g2 as n — oo and the arc of trajectory [zn,wy] of Y
accumulates in 0, 5. Let v, be any negative semi-trajectory of Y* starting at q. Hence, for
some n € N, v, goes into the compact rectangle R(p1, p2, zn,wn). Now, by Lemma 2.2.4,
V5 meets [p1, p2] U[p1, 2" U [p2, wn]* and so v, meets A = [p1, p2] U [p1, q1]* U[p2, ¢2]*. By
a patching-arcs procedure, as described right below, we can find an arc of trajectory [p, ¢]*
of Y* as requested in this lemma. In fact, if ;" meets A, for the first time, at p € [p1, 2],
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then the sub arc [p, q] of v, satisfies the conditions requested in this lemma; if v, meets
A, for the first time, at r € [p1,q1]* (resp. at r € [p2,qa]*), the arc [p,q] made up by the
union of the sub arc [p1,7]* of [p1,q1]* (resp. [pz,7]* of [p2, g2)*) with the sub arc [r, q]* of
7, satisfies the conditions requested in this lemma.

LEMMA 4.4.5. Let s > so and let S = S(p1,p2;q1,q2,{0:}) C R?*\D; be a pseudo
hyperbolic sector of Y. Then there exists constant K > 0 such that any arc of trajectory
v = [p,q]* C S of Y* connecting a point p € [p1,ps] with a point ¢ € 0S satisfies

(v < K.

Proof: As v* = [p,q]* ends at ¢ € 95, so either v* ends at [p1,q1]* U [p2,qo]*, or it
ends at 04+ 5. By a patching-arcs procedure, as described in the proof of Lemma 4.4.4, we

oo
may assume that ¢ € 9,.5. Let {TYL)} — ¢1 be a sequence in [p1, ¢1]*. Denote by v, the
1

positive semi-trajectory of Y| R2\D, Starting at rgn), whose uniqueness follows from item

(7) of Theorem 2.2.9. Set (™ = v, N~*. See Figure 4. As 7, accumulates in 8,5 as n
tends to infinity, we have that v* = limsup [p, 7(™]*. Then, from Lemma 4.4.3, there exists
constant K > 0, not depending on v*, such that £(y*) = limp—. ¢([p,7™]*) < K g

cl g}
/ s \\
ql

rl(n)\

___>v’

_>__
_-->—-_

IR W
pl p2
FIG. 4.

LEMMA 4.4.6. Let s > sg and let S = S(p1,p2;q1,q2, {o:}) C R?\Dy be a pseudo
hyperbolic sector of Y. Then there exists constant K > 0 such that d(q, [p1,p2]) < K, for
all q e 0.,.5

Proof: Let ¢ € 0;S. From Lemmas 4.4.4 and 4.4.5, there exist constant X > 0 not
depending on ¢, and arc of trajectory [p,q]* C S of Y* with p € [p1,p»] and ¢([p,q]*) < K.
So d(q, [p1,p2]) < K, for all g € 9,5

Proof: (of Theorem 4.4.2). Assume, for contradiction, that Y admits a pseudo hyperbolic
sector S = S(p1,p2;q1,q2, {o:}) contained in R?\ Dy for some s > sg. By Lemma 4.4.6,
there exists constant K > 0 such that d(q, [p1,ps]) < K, for all ¢ € 8,.5. In particular, as
[p1, p2] is compact, we have that 9,5 is a bounded set. This is an absurd. 0
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5. TRANSVERSAL CIRCLES AROUND INFINITY

This section is devoted to the construction of a C? circle, contained in R? \Es, transversal
to the differentiable vector field Y, for s arbitrarily large. Let ¥ = %, denote the class
of the piecewise C! circles contained in R?\D,. A circle C' € € is said to be internally
(resp. externally) tangent to a differentiable vector field X : R®\D, — R? at p € C if
for each trajectory v passing through p, there exists e > 0 such that v(t) € D(C) (resp.
v(t) € R®\D(C)) for all 0 < [t| < €, where D(C) (resp. D(C)) denotes the open (resp.
compact) disk bounded by C. If this is the case, we say that C' has an internal (resp.
external) tangency with X at p. A circle C € % is said to be in general position with the
differentiable vector field X : R?\D, — R? if there exists a subset F' of C' at most finite
such that: (i) X is transversal to C'in C\F; (ii) C is internally or externally tangent to X
at each point of F; (iii) Any trajectory of X meets C tangentially at most at one point.
We denote the class of circles in R?\ D, in general position with X by GP(X,s). In what
follows, Y is the vector field of Theorem 2.2.9.

LEMMA 5.5.1. For each s > sq, GP(Y,s) # 0.

Proof. Let C = {p e R?:||p|| =s+1} and let 0 < ¢ < 0.1. By (4) of Theorem 2.2.9,
p H—)}:(%’ﬁ is a continuous map defined on R?*\D, C R?\D,,. So there exists a cover

{Bi}}, of C by open balls contained in R? \ D so small that

(a) if p, g belong to the same ball B; then H ”)};(5)“ ”}): Z;” 1 < e.

Let m > 0 be a natural number so large that 8—(%12 is a Lebesgue number for the

cover above. For all j € {0,1,2, ...,m} let p; = (s + 1)<cos277;1,sin2—;i) € C. In

this way, for all ] € {0,1,2,---,m —1}, ||pj+1 — pjl| < 2"(:”“) < 8(s+1) For every
5 el -1}, select q] G R? so that A; = {pj,pj+1,4;} consists of the ver-

tices of an equxlateral triangle; certainly, the diameter of A; is less than the Lebesgue
number %sm—ﬂz and so A; C R2\D,, for all j. If the arc [pj,pj+1]lc C C is transver-
sal to Y, define I'; = [p;,pj+1]c; otherwise, define I'; as the union of the linear seg-
ments [p;,q;] and [g;,p;4+1]. Take m large enough, say m > 16, so that the angu-
lar variation of the unit tangent vector to C' within [p;,pjt1]c is less than § for all
j€{0,1,2,---,m — 1}. From this and from (a) it follows that I'; \ A; is transversal to Y.
The circle I' = U;”:_Olfj is transversal to Y except possibly at a finite subset of U}";OlAj.
As Y[Re 5, has neither singularities nor closed orbits, by the Poincaré-Bendixson Theorem
for semlﬂows (see [4]) no positive semi-trajectory of Y|g.\ 75, is recurrent. It is not difficult

to conclude from this that I' may be approximated by a piecewise C?! circle of GP(Y,s). |

REMARK 5.5.2. Let s > sg and let C € GP(Y,s) be a piecewise C* circle in general
position with Y. Assume that C' has an internal tangency with Y at the point q. Then
looking at the trajectories of Y around q we see that there must exist closed subintervals
[p,qlc € C and [g,7]c C C, with [p,qlc N [q,7]c = {q} and an orientation reversing,



14 C. GUTIERREZ, B. PIRES AND R. RABANAL

continuous, surjective map T : [p,qlc — [q,7]c induced by the positive semiflow associated
to Yga\p,, with the following properties

P.1For each z € (p,q), there ezists an arc of trajectory [z,T(z)] C R2\D(C) of Y that
meets C' transversally and precisely at {z,T(z)}.

P.2The family {[z,T(2)] : z € (p,q)} depends continuosly on z and tends to the one point
set {q} as z — q.

LEMMA 5.5.3. Let s > sq and C € GP(Y, s) be a piecewise C* circle in general position
with Y. Assume that C' has an internal tangency with Y at the point q. If [p,qlc C C is
mazimal with respect to property P.1 of Remark 5.5.2 then

(i) The positive semi-trajectory 'y;' starting at p contains an arc of trajectory [p,r] of Y
that meets C precisely at {p,r};

(it)C is transversal to [p,r] at one of its endpoints and has an external tangency at the
other endpoint;

(ii)Let T = [p,r]c Ulp,r]. Ifr (resp. p) is the external tangency then D(T') is contained
in R2\D(C) and the points of Y \[p, r] nearby r (resp. p) do not belong to D(T').

Proof: (i) Firstly we show that v NC 2 {p}. Assume the contrary, that is, that v NeC =
{p}. So either v} C D(C) or v;5 € R*\D(C). By Property P.1 it is not difficult to see that
v € R®\D(C). By (6) of Theorem 2.2.9 there are neither periodic orbits nor singularities
in R*\D(C) C R*\Ds,. So, by Lemma 2.2.4, w(y;}) = co. Now let r € C be the unique
point satisfying [g,7) = T'((p,q]) and let v, be any negative semi-trajectory of Y starting
at 7. Let us show that a (v, ) = co. Assume, by contradiction, that there exists some circle
Ci with € C D(C1) and v, € D(Cy). Once more, by Lemma 2.2.4, as D(C1)\D(C) is a
compact region free of singularities and periodic orbits, and as all tangencies of C' with Y’
are either external or internal (C' is in generic position), we have that v has to cross C
transversally at some point r; # r. Take now z, — p, 2, € (p,q]. From the assumption of
maximality of [p, q]c, the sequence of arcs of trajectory {[z,,T(2,)]} of Y accumulates in
the positive arc of trajectory [r1,7] of Y. So for n big enough [z, T(2n)]NC 2 {20, T(2n)},
which contradicts P.1. Therefore, a(v;) = co. It is not difficult to see that 7; and 7,~
form the boundary of a pseudo hyperbolic sector, even in the case when p = r. This
contradiction with Theorem 4.4.2 proves (i). Item (ii) follows from the maximality of
[0, q]c. The proof of item (iii) is the same as that of Lemma 2 in (14]. g

LEMMA 5.5.4.  Let s > s9 and C € GP(Y, s) be a piecewise C* ~circle in general position
withY'. Assume that C has an internal tangency with Y at the point q. Take all the notation
of Lemma 5.5.3. Then there exists T € C arbitrarily close to r such that the subinterval
[p,7]c of C contains the subinterval [p,r]c C C, and the following holds
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(i)We can deform the circle C into a new circle C1 € GP(Y,s) in such a way that the
deformation fires C\(p,7)c and takes [p,7]c C C to an interval [p,7]c, C C; transversal
toY, and so free of tangencies with Y, which is close to the arc of trajectory [p,r] of Y,
see Figure 5;

(i1) The number of internal tangencies of Cy with Y is strictly smaller than that of C.

Proof: (i) Let 'y;," be the positive semi-trajectory of Y|m2\53 starting at p and let o
be a local transversal section to Y passing through z, € Y+ \ [p, 7], where [p,r] is the
(unique) arc of trajectory of Y|1R2\E which starts at p and ends at r. By Theorem 3.3.2,
we may choose some vector field Yy : R?\D, — R?, transversal to Y|R2\53, and some arc
of trajectory A of Y\ which departs from p, ends at Z € Ty \ {22} and is close to the
arc of trajectory [p, z2] C 'y;' of Ylﬂz?\ﬁ_.,- Furthermore, by adjusting Yy, we may take Z,
arbitrarily close to zo and in any of the two connected components of Tz \ {22}. So by
taking Zo in the appropriate connected component of Lo, we have that the corresponding
arc of trajectory A = [p, 23] of Y intersects C' at some point 7 close to r and in such a
way that [p,r]c C [p,7)c. The subarc of trajectory [p,7] C A of Yy has all the properties
required. By replacing [p,7]c in C by [p,7] C A we get the circle Cy; (ii) We just observe
that in the gluing points p and 7 of C\(p,7)c with [p,7] C A the vector field Y is still
transversal to Cy. So the deformation replace the interval [p,r]c by the segment [p,7] C A,
which eliminates at least two tangencies of C' with Y leaving the other ones unchanged. 0

FIG. 5. Transversal section to a positive semiflow

THEOREM 5.5.5. For each s > sg, there exist a C' circle transversal to Y contained in
R2\D,.

Proof: Take a circle C' € GP(Y,s). As C has finitely many internal tangencies with Y, by
applying Lemma 5.5.4 finitely many times, we can get a circle C' € GP(Y, s) with finitely
many tangencies, all external. Let deg(Y|z) denote the Brower degree of the map Y|5.
By Theorem 2.2.9, the map Y5 is injective and preserves orientation; this implies that

deg(Y|z) = 1. On the other hand, as C € GP(Y, s), we have that

deg] el 2—ne(Y,C2)+ni(Y,C)’ )
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where n,(Y, C) (resp. n;(Y,C)) is the number of external (resp. internal) tangencies of C
with Y (see [18, Theorems 9.1 and 9.2, p. 166-174]).

As n; (Y, C’) = 0, formula (7) implies that n.(Y, C’) = n;(Y,C) = 0. Observing that G
is a piecewise C! circle transversal to Y, we can deform it into a C"! circle C; € GP(Y, s)
transversal to Y.

6. ASYMPTOTIC STABILITY AT INFINITY

In this Section we prove the main Theorem. In what follows, X € 9, is a differentiable
vector field and Y : R? — R? is the vector field associated with X through Theorem 2.2.9.
The constant vector v is as in Theorem 2.2.9.

LEMMA 6.6.1. The point co is an attractor or repellor of Y.

Proof: By Theorem 5.5.5, there exists a nested family {I', C R*\D,, : n € N} of C1
circles transversal to Y tending to infinity. Let A4, = D(T',,)\D(T'n_1) denote the corre-
sponding sequence of annulus. By item (6) of Theorem 2.2.9, there are neither singularities
nor periodic trajectories in A, so that by Lemma 2.2.4 no trajectory of ¥ has accumulation
points in A,, for all n € N. This implies that the trajectories of Y that meet I'; have to
cross all circles I'y,. It is plain that under these conditions oo is either an attractor or a
repellor of Y.

THEOREM 6.6.2.  The point at infinity of R?U{oco} is an attractor or repellor of X +v.
More specifically, if T(X) is less than O (resp. greater or equal to 0), then oo is a repellor
(resp. an atractor) of the vector field X + v.

Proof: That co is an attractor or repellor of X + v follows directly from the previous
Lemma by recalling that ¥ and X + v agree around infinity. To finish the proof notice
that Z(X) = Z(X +v) = Z(Y). Now we proceed as in [15]. Assume that co is a repellor
of X 4 v. Take a C* circle C C R?\D; transversal to Y such that Y|¢ points inwards the
disk D(C) bounded by C. By Green’s Formula fD(C) Trace (DY) < 0. On the other hand,

by (4) of Theorem 2.2.9, fRQ\D Trace (DY) < 0. So

X)) = L(Y )= o Trace (DY) dx A dy =
= / Trace (DY) dx A dy + / Trace (DY) dx A dy < 0.
D R2\D(C)

Hence, if Z(X) > 0 then oo is a attractor of X +v. The proof of the other case is similar.
O
Now we proof our main Theorem

THEOREM A. Let X : R®\D, — R? be a differentiable (but not necessarily C!) vector
field. If for some € > 0, Spec(X) is disjoint from (—¢,0] U {z € C: R(z) > 0}, then



[_

or

DIFFERENTIABLE VECTOR FIELDS 17

a) For all p € R2\D,, there is a unique positive semi-trajectory of X starting at p;

b) Z(X), the index of X at infinity, is a well defined number of the extended real line
o0, OO);

c) There exists a constant vector v € R? such that if Z(X) is less than 0 (resp. greater
equal to 0), then the point at infinity of the Riemann sphere R? U {0} is a repellor

(resp. an attractor) of the vector field X + v.

Proof: We have that X € 9, so that by Lemma 2.2.6, X € 2(R?\D,)). The proof of (a)

is

finished applying Theorem 2.2.3. The proof of b) and c) follow from Corollary 2.2.12

and Theorem 6.6.2, respectively.
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Resumo

Seja X : R*\D, — IR? um campo vetorial diferencidvel (mas nio necessariamente C'),
onde ¢ >0e D, = {z € R? : ||2|| < ¢}. Se para algum € > 0 e para todo p € R*\D,,
nenhum autovalor de D, X pertence a (—¢,0]U {z € C : R(z) > 0}, entdo as seguintes
afirmagdes sdo verdadeiras

(a) Para todo p € IR?*\D,, ha uma tnica semi-trajetéria positiva de X iniciando-se em
p;

(b) Z(X), o indice de X no infinito, ¢ um nimero bem definido da reta real estendida
[—OO, OO);

(c) H& um tnico vetor constante v € IR? tal que se Z(X) é menor que zero (resp. maior
ou igual a zero), entdo o ponto no infinito co da esfera de Riemann IR?U{co} é um repulsor
(resp. um atrator) do campo vetorial X + v.
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