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Abstract
Coffee beverage quality is highly correlated with the degree of fruit ripeness. In this sense, 
monitoring fruit ripeness is of utmost importance for harvest planning and, especially for 
obtaining high-quality beverages. Currently, this process is carried out through manual 
counts of unripe fruits, which is laborious and limited to a few plants within the field. This 
study aimed at evaluating the potential of a low-cost multispectral camera for coffee ripe-
ness monitoring in the Zona da Mata region of Minas Gerais State, Brazil. For that, five 
fields of Arabica coffee with distinct characteristics were evaluated. During the coffee ripe-
ness period, four flights were carried using a Phantom 4 Pro quadcopter equipped with a 
Mapir Survey 3W camera for imagery acquisition. After that, nine vegetation indices (VIs) 
were obtained. For the same dates, the percentage of unripe fruits was obtained using an 
irregular grid in all fields. The data was split into two ripeness classes: suitable for har-
vest (R) with < 30% of unripe fruits; and not suitable for harvest (U), with > 30% of unripe 
fruits. Then, a principal component analysis was used to infer the importance of the VIs to 
discriminate plants with unripe fruits from those with ripe fruits. The first two principal 
components explained > 75% of the variance in the datasets from all coffee fields. The VIs 
were able to discriminate the ripeness classes (U and R) in most fields; however, their per-
formance was directly influenced by the crop yield and canopy volume.

Keywords  Unmanned aerial vehicle · Remote sensing · Modified camera · Fruit ripeness · 
Coffea arabica L.

Introduction

Currently, the concern of coffee producers is not only limited to crop productivity, but also 
to factors that add value to the final product that need to be taken into account within the 
crop production system (Volsi et al., 2019). Coffee is one of the few agricultural products 
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whose prices are based on qualitative parameters in Brazil, and its value is significantly 
increased with quality improvement (Guimarães et  al., 2019; Paseto & Patino, 2019; 
Simões et al., 2008).

The quality of coffee beans is affected by several factors, such as altitude, plant nutri-
tion, period of exposure of the crop to solar radiation and presence or absence of diseases, 
and most importantly, by the fruit ripeness degree at harvest (Fagan et al., 2011; Pimenta 
et al., 2018; Simões et al., 2008; Varão et al., 2019). Harvesting the crop at inappropriate 
times affects the sensory quality of the beverages, as well as the bean color uniformity 
after post-harvest processing. Coffee fruits harvested when still green will produce defec-
tive beans with dark shades after being processed, which depreciates the bean quality and 
makes the beverage bitter (Aparecido et al., 2018). Based on this, due to the importance of 
the fruit ripeness degree at harvest for the production of higher quality coffees, it is indis-
pensable to monitor the fruits on the plant and thus determine the optimal harvest time.

Currently, coffee ripeness monitoring is carried out through manual counts of unripe 
and ripe fruits. This method is laborious, time-consuming, and limited to a few plants 
within the field, which are not fully representative. An alternative to this method would 
be the use of remote sensing (RS), which enables non-destructive sampling over the entire 
area of interest. Remote sensing has been increasingly used for monitoring various crops. 
For the coffee crop, a few studies have been conducted for disease monitoring (Marin et al., 
2019) biophysical parameters estimation (Ramirez & Zullo Júnior, 2010), and also for 
yield estimation (Nogueira et  al., 2018). This demonstrates the applicability of this tool 
for coffee crop monitoring. However, there are some limitations to this type of analysis, 
which includes the fact that public domain images obtained by orbital platforms have low 
temporal and spatial resolution, that may compromise monitoring procedures that require 
fast decision-making.

With the advent of unmanned aerial vehicle (UAVs), the limitations in the acquisition 
of spectral information at a suitable temporal resolution, and to the cost of high spatial 
resolution imagery have been overcome (Zhang & Kovacs, 2012). UAVs have been widely 
used in studies related to crop monitoring, due to their relatively low cost of acquisition, 
compared to other platforms, and ability to obtain images with a high spatial resolution 
(~ 0.01 m) (Lelong et al., 2008). In addition, the technological advances related to the sen-
sors, which are carried on board these aircraft, have enabled the acquisition of images with 
high spectral resolution.

Multispectral images obtained by UAVs have been used for forage species identification 
(Lu & He, 2017) estimation of soybean physiological maturity and yield (Yu et al., 2016) 
nitrogen monitoring and fertilization (Corti et al., 2019; Parreiras et al., 2020) and biophys-
ical parameters estimation (Santos et al., 2020). For fruit ripeness monitoring, UAVs have 
been used in a few crops, such as tomato (Senthilnath et al., 2016), apple (Valente et al., 
2019), and coffee (Furfaro et al., 2007; Herwitz et al., 2004; Johnson et al., 2004). How-
ever, even though there are studies that have attempted to monitor the coffee ripeness using 
UAV images, none of these studies considered the spatial variability of the fruit ripeness 
within a coffee field, but rather focused on mean differences between fields.

Currently, several multispectral sensors are commercially available. However, these sen-
sors are still costly (~ US$ 5000), which makes them inaccessible to small farmers. An 
alternative to this problem is the use of modified sensors, which can cost ten times less 
than typical multispectral sensors for agriculture, and are characterized as low-cost sen-
sors (Putra & Soni, 2017). These devices are RGB (red, green, and blue) cameras that are 
modified to register radiation in the near-infrared band (NIR) (Coburn et al., 2018; Corti 
et  al., 2019). This is possible because these sensors are mostly equipped with CMOS 
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(complementary metal–oxide–semiconductor) and CCD (charge-coupled device) sensors 
that are sensitive to the NIR band, and therefore, can be used to obtain information in this 
range of the electromagnetic spectrum (Nijland et al., 2014).

Despite the apparent potential for using modified RGB cameras to acquire multispectral 
images, only a few studies have discussed the uncertainties of using these sensors. The 
acquisition of multispectral images using cameras with a single sensor is a major challenge 
since CMOS and CCD sensors do not have the same quantum efficiency for the different 
wavelengths registered by the device (Lulé et al., 2000). Another issue is that the band-pass 
nano-filter networks used in these sensors are not able to filter 100% of the unwanted radia-
tion (Lebourgeois et al., 2008).

In summary, there is a lack of low-cost systems that can be used to provide faster and 
more timely measurements of fruit ripeness in coffee for defining the optimal harvest 
time, which would enable a coffee with superior quality. UAVs are platforms that have the 
potential of monitoring coffee areas, providing faster and reliable information for defining 
the ideal harvest time. Therefore, this study aimed at evaluating the potential of a UAV-
mounted low-cost multispectral camera for coffee ripeness monitoring in the Zona da Mata 
region of Minas Gerais State, Brazil.

Materials and methods

Study area

The experiment was carried out at the Jatobá farm, municipality of Paula Cândido, in the 
Zona da Mata region of Minas Gerais State, Brazil (Fig. 1). The data collection was per-
formed during the fruit ripeness stage on four dates in April (29th) and May (7, 13, and 
27th) 2019.

Fig. 1   Study area located in the municipality of Paula Cândido, Minas Gerais State, Brazil
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For this study, five fields of Arabica coffee with distinct characteristics were used 
(Table 1). With the exception of the canopy volume, the remaining data for the charac-
terization of the coffee fields were obtained from the farmer. The canopy volume was 
calculated using the methodology proposed by Favarin et al. (2002), in which the height 
and the lower diameter of 25 plants per field were used as input.

UAV platform used to acquire images

The study was conducted using a Phantom 4 Pro quadcopter (DJI Innovations, Shenz-
hen, China). The flights were planed using the DroneDeploy software (Infatics Inc., San 
Francisco, California, USA), in which the UAV was set to operate at a speed of 7 m s−1 
during image acquisition and at an altitude of 60 m above ground level, taking as a ref-
erence the highest point of altitude in the study area. The flight plan ensured 70% front 
overlap and 75% side overlap between the images. Lastly, all flights were carried out 
between 11:00 and 13:00 h local time under clear sky conditions and on the same days 
as the manual crop sampling.

All images were obtained using a modified camera, the MAPIR Survey 3W (Peau 
Productions Inc., San Diego, California, USA). This camera is equipped with a CMOS 
Sony Exmor R IMX117 sensor, capable of recording images with 12 MP resolution, 
24-bit pixel depth in JPEG (Joint Photographic Experts Group) format and 36-bit in 
the RAW format (format in which the image data are minimally processed). The sensor 
was originally designed to register the RGB bands. Then, the manufacturer modified it 
by replacing the filter that prevents the passage of the NIR band, for another that could 
register only the R–G–NIR (Red, Green, and NIR) bands.

The camera settings were defined on previous field tests and were kept the same for 
all flights. The condition for choosing these settings was that there were no saturated 
pixels in any bands of the camera. Thus, the following settings were defined: the shutter 
aperture speed was fixed at 1/500 s; the ISO sensitivity was set to 100; a 2.8 f-stop; and 
a focus set up on infinity. The images were acquired in 36-bit RAW format (12 bits per 
band), which was chosen due to the absence of any type of processing and compression 
in the images obtained by the sensor.

Table 1   Characteristics of the coffee fields evaluated in the municipality of Paula Cândido, Minas Gerais 
State, Brazil

t ton
a Average crop yield in the 2018–2019 season

Field Area (ha) Cultivar Fruit color Canopy volume (m3) Density
(Plants ha−1)

Yielda

(t ha−1)

1 0.54 Red Catuai Red 2.91 ± 0.19 4000 1.20
2 2.1 Red Catuai Red 1.87 ± 0.14 4000 0.48
3 1.01 MG H 4191 Yellow 0.62 ± 0.04 8000 3.75
4 0.77 Red Burbon Red 0.70 ± 0.06 13 333 2.49
5 0.65 Icatu Red 1.77 ± 0.10 2222 2.22
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Assessment of image quality

In order to evaluate the radiometric quality of the Survey 3W bands, an experiment using 
monochromatic light-emitting diodes (LEDs) was conducted in laboratory (Fig.  2). For 
this, five monochromatic lights were used in the wavelengths of blue, green, yellow, red 
and NIR. A luxmeter was used to determine the light intensity of each LED, and a portable 
spectroradiometer ASD Handheld 2 (Analytical Spectral Devices, Inc., Boulder, Colorado, 
USA) was used to determine their emitting range. The characteristics of the LEDs are pre-
sented in Table 2.

The LEDs were used to illuminate a spectralon plate that reflected 99% of the incident 
radiation. Then, five images of this plate were obtained under each of the evaluated illumi-
nations. The camera settings for this experiment were the same as those defined to obtain 
the field images. After image acquisition, the average value of the digital numbers (DNs) in 
each band under the different illuminations was calculated.

Another test to evaluate the radiometric quality of the images obtained by the Survey 
3W was the analysis of the signal-to-noise ratio (SNR). For this, the ratio between the 
mean and standard deviation of a homogeneous surface contained in the scene was used to 
estimate the SNR (Eq. 1) (Hruska et al., 2012; Lu & He, 2017).

where SNR, signal-to-noise ratio expressed in decibels; Dpm, mean digital number on the 
homogeneous surface; and Np, standard deviation of the digital numbers on the homogene-
ous surface.

(1)SNR = 20log10

(

Dpm

Np

)

Fig. 2   Structure mounted to study the radiometric quality of the Survey 3W bands

Table 2   Characterization of 
the LEDs used to study the 
radiometric quality of the Survey 
3W bands

LED Band (nm) Power (W) Light intensity (lx)

Blue 450–490 3 3200
Green 530–590 3 15 000
Yellow 600–635 3 5500
Red 645–685 3 7200
NIR 830–885 3 16 700
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In total, six homogeneous surfaces were used: the roof of a building (2.00 × 1.80 m), 
a region of exposed soil (2.00 × 2.00 m), a region in a lake (2.00 × 2.00 m), a black target 
(0.50 × 0.50 m), a white target (0.50 × 0.50 m), and a red target (0.50 × 0.50 m). All targets 
were present in the study area.

Image mosaicking and orthorectification

A total of four orthomosaics with a spatial resolution of approximately 0.03 m were gener-
ated using 90 images collected for each flight. For this, the OpenDroneMap (ODM), ver-
sion 0.4.1 (“GitHub-OpenDroneMap/ODM”, n.d.) was used through its web interface, the 
WebODM application (“GitHub-OpenDroneMap/WebODM”, n.d.). The WebODM con-
sists of a set of tools designed to process and analyze UAV imagery.

The orthomosaic creation consisted of five steps: (1) extraction of image metadata, 
which contained information about the sensor and its geographic location; (2) image align-
ment, in which the position of each image was calculated, and this position was used for 
precise orientation of individual photos and the generation of a 3D point cloud; (3) densi-
fication of the 3D point cloud; (4) digital surface model (DSM) creation; and (5) lastly, the 
orthomosaic creation using the DSM.

After this, the orthomosaics were geometrically corrected using the software QGIS, ver-
sion 2.18 (QGIS Development Team, 2016) and the information of the six ground control 
points (GCPs) coordinates. These GCPs were added in the study area on each flight and, 
georeferenced using a Trimble ProXT GNSS (Global Navigation Satellite System) topo-
graphic receiver (Trimble Inc., United States).

Radiometric correction of images

The coffee ripeness monitoring is a temporal study; consequently, in order to monitor the 
temporal changes of fruit ripeness throughout the UAV flights, the relative radiometric nor-
malization between the images obtained on different dates was necessary. This correction 
was performed using the linear Eqs. (2) and (3) proposed by Hall et al. (1991) and adapted 
by Yu et al. (2016) for UAV imagery processing.

where BlackT1,k and BlackT2,k, are the DNs of the reference dark objects in the k band of 
images recorded at times T1 and T2; WhiteT1,k and WhiteT2,k, are the DNs of the reference 
light objects in the k band of images recorded at times T1 and T2; and ak, is the slope or 
gain, and bk is interception or displacement, defined with the resolution of the system of 
linear equations.

The reference DNs were obtained from targets made of plywood and painted with white 
(light target) and matte black paint (dark target). These targets were placed in the study 
area in all flights. The images obtained on April 29 were used as the reference (T1), and the 
images on the other dates were normalized based on the reference.

After correcting all orthomosaics, their DNs were converted into reflectance values 
using the vicarious calibration (Del Pozo et al., 2014; Rosas et al., 2020) and four reflec-
tance targets made of plywood and painted with matte paint in four shades of gray. These 

(2)BlackT1,k = akBlackT2,k + bk

(3)WhiteT1,k = akWhiteT2,k + bk



306	 Precision Agriculture (2022) 23:300–318

1 3

targets had dimensions of 0.50 × 0.50 m and were also kept in the study area on all flight 
dates. Linear regression models were fitted for each band from all flight dates using the 
average DN values of each target and their laboratory reflectance (Fig. 3). The reflectance 
of the calibration targets was determined in the laboratory using the ASD HandHeld 2 
spectroradiometer, which operates in the wavelength range from 325 to 1075 nm, with an 
accuracy of ± 1 nm.

Extraction of the spectral variables

The spectral variables consisted of nine vegetation indices (VIs), obtained using the QGIS 
software. The following VIs were calculated: Coffee Ripeness Index (CRI), Green Normal-
ized Difference Vegetation Index (GNDVI), Modified Chlorophyll Absorption in Reflec-
tance Index 1 (MCARI1), Modified Triangular Vegetation Index 1 (MTVI1), Normalized 
Difference Vegetation Index (NDVI), Normalized Green–Red Difference Index (NGRDI), 

Fig. 3   Linear regression models fitted for the radiometric correction of the three bands of the Survey 3W 
camera A on the first, B second, C third and D fourth flight
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Ratio Vegetation Index (RVI), Normalized Ratio Vegetation Index (NRVI), and Simple 
Ratio (SR) (see Table 3 for formulae and references).

The criteria for selecting the VIs were that the existing bands obtained by the Survey 
3W camera could be used for their calculations. The CRI was included because it was cre-
ated specifically for monitoring coffee ripeness (Nogueira Martins et al., 2021). In addi-
tion, all VIs have been shown to be well correlated with either the plant pigments (e.g., 
chlorophyll, anthocyanins) or with the plant nutritional status. After calculating the VIs, 
polygonal masks covering the plant canopy were manually created on each sampling point, 
and the average values of the indices were obtained.

Coffee fruit ripeness monitoring

For field sampling, an irregular grid with 20 sampling points per hectare was defined on 
each measurement date (Fig. 4). For field 2, only 10 points per hectare were collected due 
to its lower fruit load. Each sampling point consisted of three plants located side by side 
in the same row. Four plagiotropic branches, one in each plant quadrant, were randomly 
chosen in the middle third of each plant. The unripe fruits and the total number of fruits 
on the branches were counted. From the results obtained in the manual counts, the aver-
age percentage of unripe fruits was calculated for each sampling point. Then, the sampled 
plants were divided into two classes of ripening: suitable for harvest (R), in which the per-
centage of unripe fruits < 30%, and not suitable for harvest (G), with a percentage of unripe 
fruits ≥ 30%. These plants were georeferenced to obtain the subsequent spectral variables.

Statistical analysis

First, the percentage of unripe fruits and the VIs were submitted to a Pearson’s correlation 
analysis to investigate the existence of a linear association between these variables. Sec-
ond, an analysis of variance (ANOVA) was carried out to verify whether the VIs could be 
used to discriminate plants suitable for harvest (R) from those not-suitable for harvest (G). 
Lastly, a principal component analysis (PCA) was performed on each field to identify the 
VIs with the greatest importance for coffee ripeness monitoring. The PCA was also used to 

Table 3   Vegetation indices used for the coffee fruit ripeness monitoring

NIR near infrared, R red, G green, RTarget average reflectance value of the red target in the red band

Index Equation References

CRI
(

R∕Rtarget

)

100 Nogueira Martins et al. (2021)
GNDVI NIR−G

NIR+G
Gitelson et al. (1996)

MCARI1 1.2[2.5(NIR − R) − 1.3(NIR − G)] Haboudane et al. (2004)
MTVI1 1.2[1.2(NIR − G) − 2.5(R − G)] Haboudane et al. (2004)
NDVI NIR−R

NIR+R
Rouse et al. (1973)

NGRDI G−R

G+R
Tucker (1979)

RVI R

NIR
Jordan (1969)

NRVI RVI−1

RVI+1
Baret and Guyot (1991)

SR NIR

R
Jordan (1969)
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verify the possibility of grouping plants with unripe fruits from those with ripe fruits. All 
statistical analyses were carried out using the R software (R Core Team, 2019).

Results

Laboratory experiment for image quality assessment

Laboratory pre-tests showed that there was an overlap between the spectral bands of the 
camera used (Fig.  5). Band 1 (red) was sensitive to all illuminations tested, except for 
green. Furthermore, the most critical point was observed for the NIR LED that showed an 
average DN value of 1862.82, which corresponded to 86.6% of the average DN recorded 
in the NIR band under the same circumstance. On the other hand, band 2 (green) showed 
the least overlapping with the other bands, presenting only a slight sensitivity to the blue, 
yellow and NIR LEDs. Band 3 (NIR) was also sensitive to the blue, yellow and red LEDs, 
especially the red one, in which the average DN value was 377.86, which represented 
24.58% of the average DN value in the red band. In summary, the red band presented the 
highest sensitivity to wavelengths outside the expected range.

Fig. 4   Spatial distribution of the sampling points used for field measurements of the coffee ripeness
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The high sensitivity of the red band to the NIR band becomes a source of error in meas-
urements of radiation emitted by surfaces in field experiments, especially in studies related 
to vegetation, in which the NIR reflectance is much higher than in the red band. The fact 
that the red band also recorded radiation from the NIR band led its DN values to be higher 
than those presented by the green band in situations where the opposite was expected, such 
as in coffee plants, which present high vegetative vigor (Fig. 6).

The signal-to-noise ratio analysis showed that all three bands presented an SNR above 
20 dB for all surfaces (Table 4). In general, the NIR band showed the lowest SNR, with the 
absolute lowest SNR value observed in the NIR band with the white target, demonstrating 
that this channel was noisier than the others. Conversely, the highest SNR was obtained in 
the red band (28.85 dB) with the red target.

Field monitoring of coffee ripeness

Results of the linear correlations between the VIs and the percentage of unripe fruits are 
presented in Table  5. There were changes in the crop’s spectral response as the coffee 
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Fig. 5   Sensitivity of the MAPIR Survey 3W bands to five different monochromatic lights

Fig. 6   Spectral response of coffee plants with high vegetative vigor. A boxplot of average values of the digi-
tal numbers obtained in nine coffee plants in the red (1), green (2) and NIR (3) bands: B average spectral 
signature of nine coffee plants obtained with the spectroradiometer in the field (Color figure online)
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ripeness progressed in the five fields studied. For field 1, the vegetation indices GNDVI, 
NDVI, and NRVI showed a positive correlation, while the RVI showed a negative correla-
tion. Differently, in field 2, only the CRI showed a significant correlation with the percent-
age of unripe fruits. Overall, fields 3 and 5 presented higher spectral alterations during the 
fruit ripeness stage. In Field 3, all VIs were correlated with the percentage of unripe fruits, 
and for field 5 only the NGRDI showed no significant correlation. Lastly, for field 4, only 
the CRI, MCARI1, MTVI1, and NRVI presented significant correlations.

In order to assess the potential of the VIs to discriminate the fruit ripeness classes (U 
and R), an ANOVA was performed. The results are presented in Table 6. For field 1, none 
of the VIs presented significant differences (p < 0.05) among the ripeness classes. In field 
2, only the CRI was capable of discriminating the ripeness classes. Conversely, for field 
3, all VIs were capable of discriminating plants suitable for harvest from those not suit-
able for harvest. The VIs CRI, MCARI1, and MTVI1 were the most sensitive to the spec-
tral changes caused by the fruit ripeness since they presented significant differences in the 
majority of the fields.

In addition, the fields in which the VIs showed significant differences among the ripe-
ness classes were also the ones with the highest yield, especially fields 3 and 4, whose 

Table 4   Signal-to-noise ratio 
of the Survey 3W bands on six 
homogeneous surfaces (HS) 
expressed in decibels (dB)

HS1, roof; HS2, region of exposed soil; HS3, region in a lake; HS4, 
black target; HS5, white target; HS6, red target

Band HS1 HS2 HS3 HS4 HS5 HS6

Red 26.3 27.2 24.5 21.9 21.7 28.9
Green 26.6 28.3 26.9 25.2 23.4 28.2
NIR 27.2 27.1 23.6 23.4 20.5 25.8

Table 5   Pearson’s linear correlation analysis between the percentage of unripe fruits and the vegetation 
indices

*Significant at 5% probability level (p < 0.05)

CRI GNDVI MCARI1 MTVI1 NDVI NGRDI NRVI RVI SR

Field 1
 Unripe fruits 

(%)
− 0.295 0.445* 0.165 0.116 0.441* − 0.310 0.459* − 0.460* 0.305

Field 2
 Unripe fruits 

(%)
− 0.340* 0.134 0.113 0.120 0.179 − 0.045 0.098 − 0.166 0.195

Field 3
 Unripe fruits 

(%)
− 0.725* 0.601* 0.603* 0.601* 0.612* − 0.385* 0.521* − 0.600* 0.628*

Field 4
 Unripe fruits 

(%)
− 0.543* − 0.140 0.381* 0.374* 0.211 0.204 0.258* − 0.219 0.190

Field 5
 Unripe fruits 

(%)
− 0.389* 0.256* 0.461* 0.459* 0.305* − 0.053 0.261* − 0.291* 0.322*
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average yield values were 3.75 and 2.49 t ha−1. These fields were also those with the high-
est plant density and lowest canopy volume. On the other hand, fields 1 and 2, in which the 
VIs had practically no significant differences among the ripeness classes presented the low-
est yields (1.20 and 0.48 t ha−1), and also the highest canopy volumes (Table 1).

Results of the PCA showed that the first two components were able to explain more 
than 70% of the variance in the dataset from all coffee fields. Figure 6 presents the biplots 
between PC1 and PC2 for the five fields and also the vectors representing the VIs. In gen-
eral, there was a common pattern in the importance of the variables for all fields in these 
two PCs. For PC1, the most important VIs were GNDVI, NDVI, RVI, and SR, while, in 
PC2 the MTVI1, MCARI1, and NGRDI were the most representative, except for fields 3 
and 4, where only the first two VIs showed greater contributions.

The PCA biplots reinforce the difficulty of discriminating plants with ripe fruits from 
those with unripe fruits in fields 1 and 2 (Fig. 7A and B). Differently, for fields 3, 4 and 
5 (Fig. 7C–E), it was possible to observe a pattern of grouping into two groups, in which 
the yellow triangles represent plants with unripe fruits, while the blue dots represent those 
with ripe fruits. Specifically, for fields 3 and 4, the discrimination between the two groups 
was observed more clearly.

Discussion

The existence of an overlapping response between spectral bands is common in modified 
cameras (Coburn et al., 2018; Corti et al., 2019; Logie & Coburn, 2018). The use of filters 
that prevent the NIR passage in RGB cameras before the Bayer matrix nano-filter networks, 
is aimed at preventing pollution in the visible bands. The need for a NIR filter to acquire 
information in the visible region is due to two factors: (1) the silicon diode constituting the 
CMOs is sensitive to the NIR band; and (2) the band-pass filters used in the Bayer matrix 
are not always able to filter 100% of the NIR (Lebourgeois et al., 2008). For the Survey 
3W, the NIR blocking filter was removed by the manufacturer so that the NIR band could 
be recorded instead of the blue band; however, this modification affected the red band, 
which showed sensitivity to the NIR wavelength.

In addition, another fact that should be considered when intending to use a single sen-
sor for the acquisition of multispectral images is the sensitivity of the CMOs, which is not 
the same for all wavelengths (Lulé et al., 2000). In modified cameras, such as the one used 
in the present study, the same shutter aperture and ISO settings were kept for all bands as 
the same sensor was used to obtain the different bands. Studies conducted by Lebourgeois 
et al. (2008) overcame this limitation by using an RGB camera without modification and 
another modified to obtain the NIR, and thus obtain multispectral images.

In this sense, knowing the sensitivity of the CMOs used permits the exposure time and 
the ISO of the sensor to be adjusted to overcome this problem. According to Rabatel et al. 
(2014), these limitations that are related to sensor sensitivity can also be overcome through 
band simulation by orthogonal projection, if the sensor sensitivity curve is known (but this 
is not always an easy information to obtain). Thus, better results are achieved when only 
one sensor is used. However, this method worsens the signal-to-noise ratio of the images 
obtained (Rabatel et al., 2014).

The presence of noise generated by NIR radiation in the red band led to an overestima-
tion of the DNs values from this band, whose DN values were the sum of the red radiation 
and part of the NIR radiation reflected by the surfaces. Results presented by Lu and He 
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Fig. 7   Results of the principal components analysis (PCA) for the vegetation indices from the plants sam-
pled in the coffee fields. Ellipses drawn following t distribution with 95% confidence interval. Field 1 (A), 
Field 2 (B), Field 3 (C), Field 4 (D), Field 5 (E) (Color figure online)
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(2017) resemble the spectral characteristics found in this study, in which the DN values in 
the blue band were higher than those in the green band when images of vegetation were 
obtained using a modified camera. The relationship between the raw digital number of the 
image and the reflectance of the surfaces assumed a linear behavior, as demonstrated in 
previous studies (Iqbal et al., 2018; Wang & Myint, 2015). Therefore, low raw DNs should 
be expected on surfaces with low reflectance; if this does not occur, high errors will be 
generated in the radiometric calibration of these images.

SNR is an important parameter for the quality assessment of multispectral images. Low 
values of SNR indicate noisy images, with pixel values that do not accurately describe real-
ity. Images with higher noise lead to serious errors when working with quantitative char-
acteristics. The SNR found in the present study was higher than 14 dB, a value that was 
previously considered acceptable for modified sensors (Lu & He, 2017).

The spectral response of the coffee plants varied among the five fields as the fruit ripe-
ness progressed throughout the experiment. The crop yield proved to be an important 
variable when the intent was to monitor the coffee ripeness. The fields with the highest 
yield were the ones whose spectral characteristics were most influenced. The last stage 
of fruit formation requires large amounts of nutrients, which tend to be translocated from 
the leaves to the fruits (Laviola et al., 2009). Furthermore, plants with higher yield tend to 
translocate higher amounts of nutrients than those with a lower yield, and this may even 
cause deficiency of nutrients with accentuated mobility in plant tissues, such as macronu-
trients (Amaral et al., 2001; Laviola et al., 2009). The physiological translocations of nutri-
ents from the leaves to the fruits can alter the spectral signature of the plant, which makes 
it possible to infer the fruit ripeness degree.

On the other hand, the interaction between crop yield and canopy volume can also be an 
important parameter for crop monitoring studies. Fields 3 and 4, besides showing higher 
yield, also presented lower canopy volumes. This combination resulted in greater amounts 
of coffee fruits exposed in the plant canopy when the UAV flights were carried out. During 
the ripeness stage, the fruit color changes from green to red or yellow, and this new color 
is expected to cause noticeable changes in the plant spectra. Thus, the higher crop yield 
will result in a greater spectral change. An opposite effect was observed in field 2, which 
presented the lowest yield. This resulted in the absence of significant correlation, and a 
lack of differences among the ripeness classes for the majority of the VIs. This lower fruit 
load was caused by the biennial yield effect, in which the crop presents high and low yield 
values in alternated years (Bernardes et al., 2012).

The VIs CRI, MCARI1, and MTVI1 showed the greatest sensitivity to detect the spec-
tral changes of fruit ripeness as they were capable of discriminating plants with unripe and 
ripe fruits in the majority of the coffee fields (Table 6). In Fig. 8, there is a representation 
of the CRI, MCARI1, and MTVI1 for the two ripeness classes. In this example, the differ-
ences among classes can be detected at the pixel level.

As in the results presented by Nogueira Martins et  al. (2021), the CRI showed great 
potential to monitor the coffee ripeness as the highest correlations with the percentage of 
unripe fruits were obtained using this VI in most fields. The CRI quantifies the proportion 
of red on the coffee canopy. Besides this, as the fruit ripening progresses, the proportion 
of red increases, and the CRI is able to detect this increase (Nogueira Martins et al., 2021).

On the other hand, the MCARI1 and MTVI1 are sensitive to chlorophyll variations in 
plant tissues as reported in previous studies (Huang et al., 2015; Sonobe & Wang, 2017; 
Vincini et  al., 2007). Based on this, the changes presented by these VIs during the fruit 
ripeness stage might be related to the reduction in leaf nitrogen content at this phenologi-
cal stage, in which the synthesis of antioxidant compounds in the fruits leads to higher 
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nitrogen demand as demonstrated by Reis et al. (2015). Moreover, the temporal change of 
fruit color caused by the reduction of chlorophyll and accumulation of anthocyanins might 
have influenced the crop spectral response as well (Castro & Marraccini, 2006).

Overall, the results obtained in this study reveals the great potential of using RS in the 
coffee crop for fruit ripeness monitoring. A recommendation for future studies would be 
the use of VIs combined with plant characteristics (e.g., canopy volume and yield), and 
machine learning algorithms to predict the fruit ripeness and develop pre-harvest maps. 
These maps can be used as decision support tools for monitoring and identifying on a tem-
poral scale those plants ready and not ready for harvest throughout the end of the season. 
In addition, future studies should include the acquisition of data from multiple seasons and 
several commercial fields to validate the methodology.

Conclusions

A UAV-based modified multispectral camera was used for coffee ripeness monitoring in 
five fields with distinct characteristics. Laboratory pre-tests showed an overlap between the 
red and NIR bands of the camera, in which reflectance registered in the red band corre-
sponded to 86.6% of the NIR reflectance. Despite that, the camera showed potential for 
temporal monitoring of the coffee crop. Among the vegetation indices (VIs) evaluated, the 
CRI, MCARI1, and MTVI1 presented the highest sensitivity when discriminating plants 
with unripe fruits from those with ripe fruits in most fields. However, the performance of 
these VIs was directly influenced by the crop yield and canopy volume.

Acknowledgements  This study was partially financed by the Coordenação de Aperfeiçoamento de Pessoal 
de Nível Superior (CAPES, Coordination for the Improvement of Higher Education Personnel)—Finance 

Fig. 8   Representation of the CRI, MCARI1, and MTVI1 vegetation indices for plants with unripe (G) and 
ripe (R) coffee fruits



316	 Precision Agriculture (2022) 23:300–318

1 3

Code 001, by the Fundação de Apoio à Pesquisa do Estado de Minas Gerais (FAPEMIG, Research Support 
Foundation of the State of Minas Gerais, Brazil) and by the Conselho Nacional de Desenvolvimento Cientí-
fico e Tecnológico (CNPq, The Brazilian National Council for Scientific and Technological Development).

Author contributions  Funding acquisition, FdAdCP and DMdQ; Investigation, JTFR; Methodology, JTFR; 
Project administration, FdAdCP; Resources, FdAdCP and DMdQ; Supervision, FdAdCP, DMdQ and 
FMdMV; Writing—original draft, JTFR and RNM; Writing—review & editing, JTFR, FdAdCP, DMdQ, 
FMdMV, DSMV and RNM. All authors have read and agreed to the published version of the manuscript.

Declarations 

Conflict of interest  The authors declare that they have no conflict of interest.

References

Amaral, J. A. T., Da Matta, F. M., & Rena, A. B. (2001). Effects of fruiting on the growth of arabica coffee 
trees as related to carbohydrate and nitrogen status and to nitrate reductase activity. Revista Brasileira 
de Fisiologia Vegetal, 13(1), 66–74. https://​doi.​org/​10.​1590/​S0103-​31312​00100​01000​08

Aparecido, L. E. de O., Rolim, G. de S., DeMoraes, J. R. da S. C., Valeriano, T. T. B., & Lense, G. H. E. 
(2018). Maturation periods for Coffea arabica cultivars and their implications for yield and quality in 
Brazil. Journal of the Science of Food and Agriculture, 98(10), 3880–3891. https://​doi.​org/​10.​1002/​
jsfa.​8905

Baret, F., & Guyot, G. (1991). Potentials and limits of vegetation indices for LAI and APAR assessment. 
Remote Sensing of Environment, 35, 161–173.

Bernardes, T., Moreira, M. A., Adami, M., Giarolla, A., & Rudorff, B. F. T. (2012). Monitoring biennial 
bearing effect on coffee yield using MODIS remote sensing imagery. Remote Sensing, 4(9), 2492–
2509. https://​doi.​org/​10.​3390/​rs409​2492

De Castro, R. D., & Marraccini, P. (2006). Cytology, biochemistry and molecular changes during coffee 
fruit development. Brazilian Journal of Plant Physiology, 18(1), 175–199.

Coburn, C. A., Smith, A. M., Logie, G. S., & Kennedy, P. (2018). Radiometric and spectral comparison of 
inexpensive camera systems used for remote sensing. International Journal of Remote Sensing, 39(15–
16), 4869–4890. https://​doi.​org/​10.​1080/​01431​161.​2018.​14660​85

Corti, M., Cavalli, D., Cabassi, G., Vigoni, A., Degano, L., & Marino Gallina, P. (2019). Application of a 
low-cost camera on a UAV to estimate maize nitrogen-related variables. Precision Agriculture, 20(4), 
675–696. https://​doi.​org/​10.​1007/​s11119-​018-​9609-y

Del Pozo, S., Rodríguez-Gonzálvez, P., Hernández-López, D., & Felipe-García, B. (2014). Vicarious radio-
metric calibration of a multispectral camera on board an unmanned aerial system. Remote Sensing, 
6(3), 1918–1937. https://​doi.​org/​10.​3390/​rs603​1918

Fagan, E. B., de Souza, C. H. E., Pereira, N. M. B., & Machado, V. J. (2011). Effect of time on coffee bean 
(Coffea sp.) growth in cup quality. Bioscience Journal, 27(5), 729–738.

Favarin, J. L., Dourado Neto, D., García y García, A., Villa Nova, N. A., & Favarin, M. da G. G. V. (2002). 
Equações para a estimativa do índice de área foliar do cafeeiro. Pesquisa Agropecuária Brasileira, 
37(6), 769–773. https://​doi.​org/​10.​1590/​S0100-​204X2​00200​06000​05

Furfaro, R., Ganapol, B. D., Johnson, L. F., & Herwitz, S. R. (2007). Neural network algorithm for coffee 
ripeness evaluation using airborne images. Applied Engineering in Agriculture, 23(3), 379–387.

Gitelson, A. A., Kaufman, Y. J., & Merzlyak, M. N. (1996). Use of a green channel in remote sensing of 
global vegetation from EOS-MODIS. Remote Sensing of Environment, 58(3), 289–298. https://​doi.​org/​
10.​1016/​S0034-​4257(96)​00072-7

GitHub-OpenDroneMap/ODM. (n.d.). https://​github.​com/​OpenD​roneM​ap/​ODM/. Accessed 15 May 2019.
GitHub-OpenDroneMap/WebODM. (n.d.). https://​github.​com/​OpenD​roneM​ap/​WebODM. Accessed 18 

August 2019.
Guimarães, E. R., Leme, P. H. M. V., De Rezende, D. C., Pereira, S. P., & Dos Santos, A. C. (2019). The 

brand new Brazilian specialty coffee market. Journal of Food Products Marketing, 25(1), 49–71. 
https://​doi.​org/​10.​1080/​10454​446.​2018.​14787​57

Haboudane, D., Miller, J. R., Pattey, E., Zarco-Tejada, P. J., & Strachan, I. B. (2004). Hyperspectral 
vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and 



317Precision Agriculture (2022) 23:300–318	

1 3

validation in the context of precision agriculture. Remote Sensing of Environment, 90(3), 337–352. 
https://​doi.​org/​10.​1016/j.​rse.​2003.​12.​013

Hall, F. G., Strebel, D. E., Nickeson, J. E., & Goetz, S. J. (1991). Radiometric rectification: Toward a 
common radiometric response among multidate, multisensor images. Remote Sensing of Environ-
ment, 35, 11–27.

Herwitz, S. R., Johnson, L. F., Dunagan, S. E., Higgins, R. G., Sullivan, D. V., Zheng, J., et al. (2004). 
Imaging from an unmanned aerial vehicle: Agricultural surveillance and decision support. Comput-
ers and Electronics in Agriculture, 44(1), 49–61. https://​doi.​org/​10.​1016/j.​compag.​2004.​02.​006

Hruska, R., Mitchell, J., Anderson, M., & Glenn, N. F. (2012). Radiometric and geometric analysis of 
hyperspectral imagery acquired from an unmanned aerial vehicle. Remote Sensing, 4(9), 2736–
2752. https://​doi.​org/​10.​3390/​rs409​2736

Huang, S., Miao, Y., Zhao, G., Yuan, F., Ma, X., Tan, C., Yu, W., Gnyp, M. L., Lenz-Wiedemann, V. 
I. S., Rascher, U., & Bareth, G. (2015). Satellite remote sensing-based in-season diagnosis of rice 
nitrogen status in Northeast China. Remote Sensing, 7(8), 10646–10667. https://​doi.​org/​10.​3390/​
rs708​10646

Iqbal, F., Lucieer, A., & Barry, K. (2018). Simplified radiometric calibration for UAS-mounted mul-
tispectral sensor. European Journal of Remote Sensing, 51(1), 301–313. https://​doi.​org/​10.​1080/​
22797​254.​2018.​14322​93

Johnson, L. F., Herwitz, S. R., Lobitz, B. M., & Dunagan, S. E. (2004). Feasibility of monitoring cof-
fee field ripeness with airborne multispectral imagery. Applied Engineering in Agriculture, 20(6), 
845–849.

Jordan, C. F. (1969). Derivation of leaf-area index from quality of light on the forest floor. Wiley on 
Behalf of the Ecological Society of America Stable, 50(4), 663–666.

Laviola, B. G., Martinez, H. E. P., de Souza, R. B., Salomão, L. C. C., & Cruz, C. D. (2009). Macronu-
trient accumulation in coffee fruits at Brazilian zona da mata conditions. Journal of Plant Nutri-
tion, 32(6), 980–995. https://​doi.​org/​10.​1080/​01904​16090​28721​64

Lebourgeois, V., Bégué, A., Labbé, S., Mallavan, B., Prévot, L., & Roux, B. (2008). Can commercial 
digital cameras be used as multispectral sensors? A crop monitoring test. Sensors, 8(11), 7300–
7322. https://​doi.​org/​10.​3390/​s8117​300

Lelong, C. C. D., Burger, P., Jubelin, G., Roux, B., Labbé, S., & Baret, F. (2008). Assessment of 
unmanned aerial vehicles imagery for quantitative monitoring of wheat crop in small plots. Sen-
sors, 8(5), 3557–3585. https://​doi.​org/​10.​3390/​s8053​557

Logie, G. S. J., & Coburn, C. A. (2018). An investigation of the spectral and radiometric characteristics 
of low-cost digital cameras for use in UAV remote sensing. International Journal of Remote Sens-
ing, 39(15–16), 4891–4909. https://​doi.​org/​10.​1080/​01431​161.​2018.​14882​97

Lu, B., & He, Y. (2017). Species classification using Unmanned Aerial Vehicle (UAV)-acquired high 
spatial resolution imagery in a heterogeneous grassland. ISPRS Journal of Photogrammetry and 
Remote Sensing, 128, 73–85. https://​doi.​org/​10.​1016/j.​isprs​jprs.​2017.​03.​011

Lulé, T., Benthien, S., Keller, H., Muütze, F., Rieve, P., Seibel, K., Sommer, M., & Bohm, M. (2000). 
Sensitivity of CMOS based imagers and scaling perspectives. IEEE Transactions on Electron 
Devices, 47(11), 2110–2122. https://​doi.​org/​10.​1109/​16.​877173

Marin, D. B., Alves, M. de C., Pozza, E. A., Belan, L. L., & Freitas, M. L. de O. (2019). Multispectral 
radiometric monitoring of bacterial blight of coffee. Precision Agriculture, 20(5), 959–982. https://​
doi.​org/​10.​1007/​s11119-​018-​09623-9

Nijland, W., Jong, R. D., De Jong, S. M., Wulder, M. A., Bater, C. W., & Coops, N. C. (2014). Agricul-
tural and Forest Meteorology Monitoring plant condition and phenology using infrared sensitive 
consumer grade digital cameras. Agricultural and Forest Meteorology, 184, 98–106. https://​doi.​org/​
10.​1016/j.​agrfo​rmet.​2013.​09.​007

Nogueira Martins, R., Pinto, F. de A. de C., Queiroz, D. M. de, Valente, D. S. M., & Rosas, J. T. F. 
(2021). A novel vegetation index for coffee ripeness monitoring using aerial imagery. Remote Sens-
ing, 13(2), 1–16. https://​doi.​org/​10.​3390/​rs130​20263

Nogueira, S. M. C., Moreira, M. A., & Volpato, M. M. L. (2018). Relationship between coffee crop pro-
ductivity and vegetation indexes derived from oli/landsat-8 sensor data with and without topographic 
correction. Engenharia Agricola. https://​doi.​org/​10.​1590/​1809-​4430-​Eng.​Agric.​v38n3​p387-​394/​2018

Parreiras, T. C., Lense, G. H. E., Moreira, R. S., Santana, D. B., & Mincato, R. L. (2020). Using 
unmanned aerial vehicle and machine learning algorithm to monitor leaf nitrogen in coffee. Coffee 
Science, 15(1), 1–9. https://​doi.​org/​10.​25186/.​v15i.​1736

Paseto, L., & Patino, M. T. O. (2019). Recognition of key drivers to the improvement of competitiveness 
strategies in Brazilian Coffee. International Journal of Advanced Engineering Research and Sci-
ence, 6(7), 188–196. https://​doi.​org/​10.​22161/​ijaers.​6723



318	 Precision Agriculture (2022) 23:300–318

1 3

Pimenta, C. J., Angélico, C. L., & Chalfoun, S. M. (2018). Challengs in coffee quality: Cultural, chemical 
and microbiological aspects. Ciencia e Agrotecnologia, 42(4), 337–349. https://​doi.​org/​10.​1590/​1413-​
70542​01842​40001​18

Putra, B. T. W., & Soni, P. (2017). Evaluating NIR-Red and NIR-Red edge external filters with digital cam-
eras for assessing vegetation indices under different illumination. Infrared Physics and Technology, 81, 
148–156. https://​doi.​org/​10.​1016/j.​infra​red.​2017.​01.​007

QGIS Development Team. (2016). QGIS Geographic Information System. Open Source Geospatial Foun-
dation Project. http://​qgis.​osgeo.​org

R Core Team. (2019). R: A language and environment for statistical computing. Vienna, Austria. http://​
www.r-​proje​ct.​org

Rabatel, G., Gorretta, N., & Labbé, S. (2014). Getting simultaneous red and near-infrared band data from 
a single digital camera for plant monitoring applications: Theoretical and practical study. Biosystems 
Engineering, 117(1), 2–14. https://​doi.​org/​10.​1016/j.​biosy​stems​eng.​2013.​06.​008

Ramirez, G. M., & Zullo Júnior, J. (2010). Estimation of biophysical parameters of coffee fields based on 
high-resolution satellite images. Engenharia Agrícola, 30(3), 468–479.

Reis, A. R., Favarin, J. L., Gratão, P. L., Capaldi, F. R., & Azevedo, R. A. (2015). Antioxidant metabolism 
in coffee (Coffea arabica L.) plants in response to nitrogen supply. Theoretical and Experimental Plant 
Physiology, 27, 203–213. https://​doi.​org/​10.​1007/​s40626-​015-​0045-3

Rosas, J. T. F., de Carvalho Pinto, F. de A., Queiroz, D. M. de, de Melo Villar, F. M., Martins, R. N., 
& Silva, S. de A. (2020). Low-cost system for radiometric calibration of UAV-based multispectral 
imagery. Journal of Spatial Science. https://​doi.​org/​10.​1080/​14498​596.​2020.​18601​46

Rouse, J. W., Haas, R. H., Schell, J. A., Deering, D. W., & Freden, S. C. (1973). Monitoring vegetation 
systems in the Great Plains with ERTS. In Proceedings of 3rd Earth Resources Technology Satellite-1 
Symposium (pp. 309–317). Washington.

Santos, L. M., Ferraz, G. A. e. S., Barbosa, B. D. de S., Diotto, A. V., Maciel, D. T., & Xavier, L. A. G. 
(2020). Biophysical parameters of coffee crop estimated by UAV RGB images. Precision Agriculture, 
21(6), 1227–1241. https://​doi.​org/​10.​1007/​s11119-​020-​09716-4

Senthilnath, J., Dokania, A., Kandukuri, M., Ramesh, K. N., Anand, G., & Omkar, S. N. (2016). Detection 
of tomatoes using spectral-spatial methods in remotely sensed RGB images captured by UAV. Biosys-
tems Engineering, 146, 16–32. https://​doi.​org/​10.​1016/j.​biosy​stems​eng.​2015.​12.​003

Simões, R. D. O., Faroni, L. R. D., & Queiroz, D. M. de. (2008). Qualidade dos grãos de café (Coffea 
arábica l.) Em coco processados por via seca. Revista caatinga, 21(2), 139–146.

Sonobe, R., & Wang, Q. (2017). Hyperspectral indices for quantifying leaf chlorophyll concentrations 
performed differently with different leaf types in deciduous forests. Ecological Informatics, 37, 1–9. 
https://​doi.​org/​10.​1016/j.​ecoinf.​2016.​11.​007

Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote 
Sensing of Environment, 8(2), 127–150. https://​doi.​org/​10.​1016/​0034-​4257(79)​90013-0

Valente, J., Almeida, R., & Kooistra, L. (2019). A comprehensive study of the potential application of flying 
ethylene-sensitive sensors for ripeness detection in apple orchards. Sensors (Switzerland), 19(2), 372. 
https://​doi.​org/​10.​3390/​s1902​0372

Varão, T., Marcondes, D., Pereira, B., Anchieta, J., & Neto, G. (2019). Prediction of black, immature and 
sour defective beans in coffee blends by using Laser-Induced Breakdown Spectroscopy. Food Chemis-
try, 278(November 2018), 223–227. https://​doi.​org/​10.​1016/j.​foodc​hem.​2018.​11.​062

Vincini, M., Frazzi, E., & D’Alessio, P. (2007). Narrow-band vegetation indexes from hyperion and direc-
tional CHRIS/PROBA data for canopy chlorophyll density estimation in maize. In Proceedings of the 
Envisat Symposium (pp. 23–27). Montreux, Switzerland.

Volsi, B., Telles, T. S., Caldarelli, C. E., & Camara, M. R. G. da. (2019). The dynamics of coffee production 
in Brazil. PLoS One, 14(7), e0219742. https://​doi.​org/​10.​1371/​journ​al.​pone.​02197​42

Wang, C., & Myint, S. W. (2015). A simplified empirical line method of radiometric calibration for small 
unmanned aircraft systems-based remote sensing. IEEE Journal of Selected Topics in Applied Earth 
Observations and Remote Sensing, 8(5), 1876–1885. https://​doi.​org/​10.​1109/​JSTARS.​2015.​24227​16

Yu, N., Li, L., Schmitz, N., Tian, L. F., Greenberg, J. A., & Diers, B. W. (2016). Development of methods 
to improve soybean yield estimation and predict plant maturity with an unmanned aerial vehicle based 
platform. Remote Sensing of Environment, 187, 91–101. https://​doi.​org/​10.​1016/j.​rse.​2016.​10.​005

Zhang, C., & Kovacs, J. M. (2012). The application of small unmanned aerial systems for precision agri-
culture: A review. Precision Agriculture, 13(6), 693–712. https://​doi.​org/​10.​1007/​s11119-​012-​9274-5

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.


