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ARCOS HIPERESTALATICOS

A - INTRODUGAO
1) Generalidades = - Os arcos podem ser classificados em:

1) arcos isostéticos

a) com uma articulagao
b) biarticulados

¢) atirantados

d) engastados

2) arcos hiperestéticos

Os arcos hiperestéticos sao em geral estruturas mais econdmicas quando
comparados com os triarticulados; porém, os esforgos sollcitantes do's arcos hi---
perestéticos sao modificados por recalques de apoio e variagao de temperatura o
Entre os arcos hlperestéticos, o mais econlmico é o engastado: sua construgao é
aconselhével quando nao h4 possibilidade de recalques nos apoios.

Quando sao previstos grandes recalques nos apoios recomendam-se 0s ar-
cos triarticulados e os atirantados.

Em casos intermedifrios, com recalques previstos pequenos, recomendam-
se os biarticulados e os atirantados. Os arcos biarticulados apresentam algumas
das vantagens dos isostétlcos e outras dos hiperestétlcos. assim, recalques nao
muito grandes, na diregao normal & linha das artlculagoes, nao afetam praticamen
te os esforgos sollcltantes, €ste tipo de arco é sensfvel aos recalques na dire-
gao da linha das articulagoes de imposta.

08 arcos atirantados reunem, de fato, as vantagens das estruturas isog
téticas e das hiperestéticas: sao internamente hiperestéticos e externamente i=
sostéticos-.

A escolha entre a construgzo de um arco triartlculado e um atirantado
é quase sempre condicionada pelo fato de se desejar um vao inteiramente livre ’
o que, de infcio, elimina o tirante e consequentemente o arco a.tzrantado°

Os arcos a uma articulagao nao sao utilizados na prética por _reunirem
apenas as desvantagens dos isostdticos e hiperestédticos. Na figura 1 sao apre=-
sentados 08 arcos utilizados na prétlca, e 08 respectivos graus de hiperestatici

AN

triarticulado biarticulado
(isosté4tico) (1 vez hiperestético)
{&ra”{e 5 /\
atirantado engastado
(1 vez hiperestético) (3 vezes hiperestético)
Figura 1 R

r'4

Nas grandes constfugEes, o péso préprio das estruturas em arco & uma
parcela grande da carga que altua sObre os mesmos, e as caracteristicas do solode
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fundagzo geralmente determinam o tipo de arco a ser escolhido; procurando coorde
nar €sses dois fatores aliados, a um esquema mais econ®mico de funcionamento pa-
ra a estrutura, utilizam-se atualmente arcos de funcionamento misto, cuja conge~
trucao passamos a éexplicar.

Constroe-se inicialmente um arco triarticulado, e em seguida retira-se
o escoramento. Dessa forma, resulta que para o péso préprio o arco é triarticu-
lado, e a fundagao & solicitada por grande parte do péso total da estrutura, pro
vocando-se assim grande parte dos recalques sem afetar o arco.

Apés %sse estégio, bloqueiam-se as articulagoes, resultando pars os a-
créscimos de carga um funcionamento hiperestético que poderd provocar, agora, re
calques de apoio sensivelmente menores.

Em resumo, ¢ arco & isostdtico para o péso préprio e hiperestdtico pa-
ra as cargas acidentais.

2) Terminologia dos arcos -

fécéa

rascenca

Lposta “”’é" o }éﬂ éj"“’ s

enconéro s "”/’l és
oy

Figurs 2

{abuleiro super¢or

montante

Figara 2a

pendvral:

 éabuleiro cnferior

Figura 2b
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B - ARCO BIARTICULADO

3) Estrutura isostética fundamental do arco biarticulado - Um arco biarticulado
qualquer, estrutura
uma vez hiperestética, pode ser transformado em uma viga curva, substituindo uma
das suas articulagoes por um apoio articulado mével; aplicando nesse .apoio mével
uma fOrga H paralela & diregao dos deslocamentos do mesmo, que reconduz a arti
culagao & posigao inicial, vem a coincidéncia das duas estruturas (fig. 3).

Figura 3

Chamando M N e @., respectivamente, momento fletor, fOrga normal e
forga cortante na secg'é',o genérica da viga curva (com H = O), e H o valordo em
puxo que anula o deslocamento da articulagao B, teremos na secgao genérica os
esforgos finais M, N e Q a saber:

M=M-Hy N=N - H cos < e Q=@Q) - H senx

Observe-se que os esforgos M, N e Q contém um t&rmo proveniente da viga cur-
va (M, M e@R,) e un térmo fungao de H.

Dois sso0, entEo, 0s problemas a resolver para o clleculo dos esforgos
em arco biarticulado: )

a) determinar os esforgos que o sistema de cargas aplicadas ao arco produz,na vi
ga curva correspondente;

b) determinar a incégnita hiperestitica (H) e os esforgos que ela produz na vi
ga curva.

4) Resolucao da viga curva -

a) Graficamente

_Para a resolugao grifica da viga curva, pode-se adotar o processo que
a seguir se descreve.

Seja a viga da figura 4a submetida 3s fOrgas que af se indicam; com po
10 qualquer O' e raios polares 1', 2', 3' e 4' traga-se o polfgono funicular
da figura 4a; a intersec¢cao. M dos lados extremos & um ponto da linha de agaoda
resultante R. ;

. Por se tratar de viga curva, a reagao Rg terd diregcao normal a mn 4
a reagao Ry deve ser tal que as trés flrgas R, Ry e Rp estejam em equilf--
brio.

Daf se conclui que o ponto N (intersecg‘éo da linha de agEo de Rp com
R) & um ponto da linha de agao de Ry. Conhecidas as diregoes das fOrgas Ry e




; Figura 4

Rp, seus médulos resultam determinados no polfgono das forgas (fig. 4b).

0 polfgono funicular que passa por A e B corresponde ao polfgono
das fOrgas de polo O e raios polares Ry, 2, 3 e Rp & a linha das pressoes
correspondente & carregamento dado.

0 traegado da linha das pressses permite determinar o momento fletor mu
ma secgao qualquer da viga curva; de fato, cada um dos segmentos de reta que for
ma a linha das pressoes desenhada na figura 4a representa a linha de agao da re-
sultante de um determlnado nimero de fOrgas que agem sdbre a viga (por exemplo;o
lado €D & a linha de agao da resultante de Ry e Py). A intensidade dessas

resultantes parciais € obtida diretamente no poligono das fOrgas.

Suponha-ge, por exemplo, que se deseje determinar © momento fletor na
secgao S (flgo 4a); as forgas que atuam & esquerda da secgao S sao Ry e Pi’
a resultante dessas duas férgas tem como linha de agao a reta CD e sua intensi
dade & OQ.

0 momento fletor procurado §, entzo:
Ms=“'.660d’

com sinal negativo porque produz traggo no extradorso.

Para obter as fOrgas normal e cortante numa secqao qualquer da viga cur
va, basta decompor a resultante das forgas aplicadas & esquerda (ou & direita )
da secgao considerada, segundo as dlregoes respectivamente normal e tangencial &
560g80. )

Pelo mesmo processo se obtém os momentos nucleares numa secgao qual--
quer e, portanto, as tensoes extremas nessa secgaoo _

Quando se trata de calcular as tensOes normais méximas produzidas por
carga m6vel, é interessante calcular os momentos nucleares; pois estando o arco
sujeito a flexao composta, nem sempre o carregamento que produz o m4ximo momento
fletor € o mesmo que produz a méxima forga normal.

b) Analiticamente

A resolugao analftica da viga curva nao apresenta dificuldades por se




Convengdo para os
esforcos externos a-
t'ao.ry

Vn>o

Figura 5

Decompoem—se, imc:.almente, tddas as fOrgas normalmente e paralelamen-
te & linha das impostas’ (flg. 5).

Pode-ge escrever entao:

::-“’
uf"

+
M-Ms

&

n
‘v CHEA Z R
VB= z =
= : 4 2
Entao m:VB(Z-x)-é Vn(xn-x)-z
) L
M= (VB -2 Vn) sen X - Z Hn cos &<
x , x
2 A
Q= (Vg = )} V) cosels 3 B sen o<
x - ox

Nos casos em que as cargas, que

atuam sobre 0 arco, sao t0das paralelas , Fa y

e de diregao normal & linha das impostas, l 14 _

o diagrama de momentos fletores para a vi s

74 : 8

&e curva-coincide com o diagrama de momen ¢ %,

tos fletores da viga sObre dois apoios de

mesmo VAOC que O arco e sujeita ao Resmo
carregamento {fig. 6).

5) Determinacao de H - Vimos que no ar-
co biarticulado,

M="N-Hy, N=M -Heos- e Q=@ -~

- H gen X,

Aplicando-se a equagao de Font- ~ Figura 6




violant vem:

”Bz MM NE xQ-Q

SE= Est-c-‘ ESd‘s*" GS ds =0
ARk ) - 9Q
Ma%%:-y ﬁ:,‘a—g:-coso{ Q=_aH=-sen°<

donde

(M- Hy)(=y) g'!;- H cosed)(-cogex) x@ - H sg“)(-senxl
T ES ey Gs R0

A integral f xQ -Q, Ae
3 GS sendo desprezivel face as outras duas, permite escrever
a equagao de Fontviolant na forma

fgm- Ey)(y) o, f (- 8 coneO)(= cos20) 4, _
EJ 7

2
%%@+H]§?®- Eﬁ%—a Hfﬁi—m-o

ES

donde | -i_ f
Fayr

my
EJ B

ds & pequena face a

A integral
ZL cos &€
ES

por se tratar de viga curva. 2
Chamando f %Qg_i ds
V= 3 e vem:
> A
fEJds

MJ

(1+9) J

Quando o médulo de elasticidade nao varia ao longo do arco, a férmula
de H pode ser simplificada:

H=

[
H= d
2
(1+D)f%‘ds
>
Como 4:1:5--303"< s vem
s o
= J cog &t

(1 *D) J.J cosx

devendo-se notar que td0das as integrais que estamos considerando sao definidas e
se extendem a todo o arco, onde x variade O a o

Na maioria dos casos da prética Y pode ser feito igual a zero; obser
ve-se que ¢y representa o efeito da parcela H cos €K, da forga normal, no va-
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lor de H.

Em consequencla ésse efeito serd mais promunciado no caso dos arcos g
to abatidos (rela:;oes flecha/vao pequenas) e mesmo nesses casos atingird quando
muito o valor VP = 0,07.

Chamando j = —I pode-se escrever:

J cos e
T .
(1+|))f jJydx

Observe-se que o denominador da expressao de H independe do carrega-
mento que atua no arco; sdmente o numerador da expressao de H & fungao do car-
regamento.

Considerou-se, até aqui, a convengao cléssica para M, N e Q.

Porém, nos arcos, predomina sempre N de compress‘io; para facilidade
nos cilculos, convencionaremos dagui por diante e a fOrcs normal serd positi-

va _guando de compressao e negativa guando de tracao.

6) Influénecia da temperatura e do recalque de apoio - Como vimos, a expressao de
H foi obtida de

Jg—fyds'rfg'%gzcoso(ds- m’-’Lds=,a—§---o (Fontviolant)

Conclui-se ficilmente que um recalque vertical, nao mm.to grande, nao
mflue no valor de H, pois y, x e cos & nao sofrem variagoes sensiveis na ex
pressao acima.

Porém, se houver deslocamento horizontal relativo, entre as duas arti-
culagoes, a equag:ao de Fontnolant apresentard o segundo membro igual ao desloca
mento do ponto B na diregao e sentido de H.

Se o ponto B se desloca para B', o deslocamento =3B tem senti~
do contrério a0 de H (fig. 7).

Figura 7

Assim a equac;?io de Fontviolant terd segundo membro igual a =- 83

ds fHCOSX -f%?ds=-8

donde fm il
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No caso em que o arco é submetido, além das cargas aplicadas, a um a-
créscimo de tanperaturag.t (uniforme ao longo de todo o seu comprlmento) a vi-
ga curva teria no infcio vao igual:a 2 +64;.. A L e devido ao empuxo H o
vao seria reduzido no fim para 2 . Portanto pode-se imaginar que © apoio B 8o
fra um deslocamento horlzontal igual a Oy By, 2 s de mesma dn.regao e sentido de
H. Aplicando a equac;ao de Fontviolant, obtem-se:

Hy H_cos® & i .
fEst+f ds - Est-O(toAt,ﬂ

ES

Donde
—dea- Ex At A

1“)) chosn(

em que X 4 = coeficiente de dilatagao linear do material do arco

A+t = acréscimo de temperatura.

A expressao geral do empuxo H, de um arco sujeito a deslocamento hori
sontal no apoio, e variagao de temperatura At &

me— ix-ES+E. At L
H= cos &X t

; (1+9) f——‘v—dx

cos ok

7) Arco sujeito a f8rcas paralelas e impostas desniveladas -
H=H cos 3
y' =¥ cos f
donde:
Hy=H'y'

Quando os apoios do
arco biarticuladonso
se situam no mesmo

nivel (fig. 8), é as
vezes mais interes--
sante considerar co-
mo incégnita hipereg
t4tica a projecac ho
Figura 8 rizontal do empuxo.

M:m-H' '=m=Hy ooa’ ﬁ'—"‘-y

N=TM + g o8 §°(=p! R - 808 ("mﬂ_) "
cos 3 cos 3

Aplicando a equagao de Fontviolant vem:

"_YLI

¥y c052 X =
I ds + ds
2
o E S cos (3
Lembrando que J co : -

E S cos rs sé apresenta valor sensivel no caso de arcosmui

s s
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to abatidos, resulta para os casos comuns

B
i 2
J EJ
0 célculo das tensoes normais miximes nos arcos pode ser feito utilizando-se os

momentos nucleares.

As tensoes extremas em uma secgao, sujeita a flexao composta, sao da-

das por i u
i oun % LA YoMl
f's""w"‘wt e (¢ s'wu‘wﬂ
onde M} e MI sao os momentos em
relagao aos pontos nucleares (fig. extradorso
9). o
/ “zo
Ms = Tns - H v, /)\ k¢ ~erntrodorse
= .y / "’
i ‘mi 2y, |
Y

|
0 : t
8) Célculo de H - Atualmenteo c4l :

I
|
{
i
culo analitico . }

- x4
apresenta grande vantagem soObre o
clleulo gréfico devido ao uso das m§ :
quinas de calcular. Fi
igura 9

.a) Processo analitico

Se forem conhecidas as expressoes analfticas de ’m,, J e y,o proble
ma serd de fécil resolugao, pois resolvendo as integrais poderemos calcular fa--
cilmente o valor do empuxo: isso acontece, entretanto, no ante-projeto do arco.

Em seguida altera-se o ante-projeto, modificando-se o eixo do arco e a
lei de varlagao do momento de inércia, procurando-se reduzir os esforgos ao mini
mo possivel.

Geralmente, apés essas modn.ficaqoes, as integrais nao Jpodem ser resol-
vidas anallticamente: recorre-se entzo & integragao aproximada, construindo ta-
belas e substituindo as integrais por somatérias.

Assim:

(-
ijdx 2Mia, i v'=29__°; Ax

i (1+9) I jyax B +VY") ZJ y.0x

A integragao asproximada & feita
dividindo-se o arco em trechos
de A x = const., e tomando-sesas
ordenadas y que correspondem
ao ponto médio de cada um dos
trechos & x (fig. 10).

Asgim, as coordenadas
do ponto 2 do arco serao:

Z .y B8x

x=1,5Ax y=y2

0 cdlculo do empuxose
ré feito admitindo que sejam
constantes, em cada um dos tre-
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Na tabela acima nao fizemos colunas para M, e MJj . No caso de ar-
cos sujeitos exclusivamente a carga permanente, seria mais interessante e maisri
pido fazer colunas para M, e M .j. Porém nos arcos sujeitos a cargas méve:.s
é mais interessante determ:.nar a linha de 1nfluen01a, ou as somatérias que cor--
respondem a0 numerador da expressao de H; por 8ste motivo aparecem na tabela co
lunas de Jy, 3 3y Iy © Z ipe

Vegamos entao como essas colunas permitem determinar o numerador de H
para uma carga mével.

Z'
|}
j'"!jdx:fge—z'-xjdxd- g'zzx'jdx=numeradordeﬂ
o

0
~ " Z | z' R
O momento fletor M), , na seccao ge- ’l P
nérica x ou x' da viga curva, é:
. Ezx! |
z4&x 'm,, = —Q'J— l E l
ot Pz x . !
22 X = —L_l ' 1L 5
Assim ‘l /-m
! z z'
!
jm;) dx=229— jj xdx-t-%&jjx'dx
(¢} 0 0
Na integragao sproximada te
Tremos Figura 11 .
Zp PUNER- ZA zz' z. Zz P
J dx = x jx+ x ,jx'=P.Ax[ jx+ ,Jx']
- et 10 2 B g

=Ax.p [i’-g Jx-o-‘f'zz' jx'

Conhecido o valor de H, o cllculo das tensoes extremas & simples: bag
ta calcular os momentos mucleares, e dividi-los pelos respectivos médulos de re-
sisténcia para obter as tensoes extremas. Assim, pode-se comstruir nova tabela
que fornega os momentos nucleares.

5 - yi ys mi ’m' 8 Mi Ms

Para o tragado da linha de influéncia de H & bastante itil, também,
a seguinte propriedade:

"0 diagrama de momentos fletores de uma viga simplesmente apoiada, de
mesmo vao que 0 _arco biarticulado; e carregada com a carga ficticia J (corres-
pondente & secgao do arco de mesma abscissa que a da viga), & a linha de influén
cia do numerador de H."

De fato, considere-se o arco biarticulade da figura 12 na qual se re--
presentou a viga sObre dois apoios carregada com J (x). O momento fletorna sec
cao n da viga &
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z z!
! = Tl 2 9 ' 4
M ] J‘ jx dx+! f J x' dx 1 1
0 0 R
como queriamos demonstrar. W/ 4
l l VU

b) Processo gréfico 4

0 processo gréfico para
o chlculo do arco biarticulado & [ ‘l
pouco empregado. Com a méquina de
calcular podem~gse obter resultados
tao répidos quanto os obtidos pe-- n
los processos gréficos, e, geral--
mente, mais precisos.

Além das imperfeigoes de
desenho, a que sempre estd sujeita
a solucao grifica, tem-se ainda a Figura 12
necessidade de fazer uma parte do
cdlculo analiticamente, para depois aplicar o processo gréfico.

Vejamos, entao, como se resolveria o arco biarticulado (fig. 11) pelo
processo gréfico. Tendo em vista as mesmas consideragoes feitas no caso do pro-
cesso analftico, o problema se resume em determinar o empuxo H.

Distinguem-se, também, dois casos: aquele em que sé se devem conside-

.rar cargas permsnentes, e o casc das cargas méveis.

1) Carga permanente

Para a determinag'éo, pelo processo gréfico, de:

. cog &

f""l.idx | f Takes
0 W0 rene.,
H= : semdo V= e, Elgma

(1+9)ijdx ; Jysdx

0
obgervamos que - ¢ f m
J'm;jdx=chos°(ydx,

0 0

isto &, a integral do numerador de H & o momento estdtico de
lsgao ao eixo X

J cosof it

A integral 2 ol

. : = i E8 T
J R ‘[Jcosxydx
0 0
y dx

é o momento estético de ao eixo X.

J cos &

Daf se conclui que essas duas integrais podem ser obtidas, ficilmente,
com o tragado de dois poligonos funiculares. -




<1FL

A integral 2
cos X
0]

pode ser obtida, quando necesséria, pelo processo analitico anteriormente dege~-
crito.

Ve jamos como se calculam as duas referidas integrais.

y
(e)
> i i 7AY
= feio e 7%
a) i Z \\
% i g s J : | ¥ I ( I "
1 ! ! A | 277, -
i ! [ l | I
i s
! ‘ f : o2 Q2 ag_as
Bog | Agidg} 1 | Fhx,,
1 | I 1
1 1 | |
]
B AN Yot Hi
1 | i | 1 )
sy HERTE AR eyl oY | 4
: : " | } i @
e g el
il L R N e (
t ! | ! ! b :
e N 1 | !
| : ! |
1 : :
a d ] v
o &
23 @ \
y : o ‘
- o R S S i S (L4 |
ety 18 S J
] ! ! :
f i
b p -
4 Bt
% &3 by
A Lt P
Figura 13

Na figura 13a, dividimos inicialmente o arco em um certo mfmero de par
tes Axi. Para os pontos de divisao calculamos os valores de

WM i REAR AN
J cosel J cos &
com 0s quais tragamos os diagramas (b) e (e¢).

Calculamos, a seguir, para cada um dos trechos de divisg.o, a rea do




diagrama correspondente, isto &,

Ax Ax
RSN 1 | 2l il |
i ey (J cos°<)2 2 : L (J cosd)l

m m ¥ Y

Ax2 sz
s [(J cos )1 * (3 cose )2] 2 (o [(J cos 1 s G cos-c_)z] oI

00 o0
®oce

Agiremos, agora, como se 3sses~valores, assim calculados, fOssem for--
¢as aplicadas nos pontos médios de divisao do arco, agindo paralelamente ao eixo
dos x. 3

Construimos na figura 13d, com disténcia polar qualquer H, o poligono
das fOrgas a; e o respectivo polfgono funicular da figura 13e. De acordo com
a construgao efetuada, o momento estdtico das forgas a; em relagcao =20 eixo dos

b gy 1 4 X .
jnj d-x = Hloml
0
A mesma construgao foi efetuada para as fOrgas b; nas figuras 13f e 13g.
Da figura resulta )
J‘ J y dx - H20m2
0

isto é; os produtos Hy.m; e Hy.my, cujos valores sao lidos nas escalas adota-
das para o desenho, sa0 as integrais do numerador e do denominador de H. Quan-
do se deseja calcular o valor de Y basta determinar a integral

4
&
[ ==
0

e 0 problema estd inteiramente resolvido.
2) Carga mével

0 processo gréfico, para determinar a 1in’ha de influéncia de H con--
siste, em dltima andlise, em tragar-se o disgrama de momentos fletores de uma Vi
ga isostética com carga distribuida Jjs trata-se portanto do tragado de um polf
gono funicular. &

c¢) Determinagao do lugar geo
métrico das intersecgoes
das diregoes das reagoes
de apoio.

Na viga curvada fi
gura 14, a reta BD €& o lu-
gar geométrico das intersec-
. goes das reagoes de apoio ,
ld pois Rp tem como dnica. li-
i nha de agao a reta BD, As-
(l sim, aplicada a carga P, de-
1| term':&na-se o ponto C s_inter
H secgao da linha de agao da

carga P com BD, e unindo
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A a C, determina-se a reta AC que é a linha de agao da reagao Ry.

2) Arco triarticulado

No arco triarti
culado da figura 15, o 1u
gar geométrico das inter-
secgoes & dado pelas re--
tas CD e CE. Assim, a
plicada a carga P, i es-
querda de C, determina--
se o ponto F, intersec--
¢ao da linha de dgao de P
com a reta CD, e unindo
F a A determina-seare
ta AP gque é a linha de
agao da reagao Ry. 4 1i
nha de agao de Rp & a re
ta BECD.

Para a carga a-
plicada & direita de C ,
repete-se o raciocinio, u
sando agora o trecho CE. Figura 15

3) Arco biarticulado
No arco biatrticulado nao conhecemos os pontos de encontro das reag?)'es.

. Por semelhan
¢a de trifingulos pode=-
mos escrever:

tnlersecgdo das reagdes

o
Z

A
H
Parxa P=1,
z!
We=T
que substituida na e~--

quagao anterior forne-
ce:

i)
z

donde

O momento fle
tor, na viga sGbre dois
apoios, de mesmo vao
gque o arco sujeito &
carga P situsda idig Figura 16
téncia z do apoio A, 4
na seccao distante z do apoic A & m: P"Z-z'z— c

=5

Fazendo P=1 vem
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A carga P = 1, situads nessa posiggo, produz no arco o empuxo H.

Podemos afirmar, entao, que

- zn!= z z'
Y%o='E T HE

é a relagao entre o momento fletor, na viga de mesmo vao que 0 arco, na secgaoqg
de se aplica a carga, e 0 empuxo H produzido no arco pelo mesmo carregamento.

Sabemos, portanto; tragar a linha de influéncia para H analitlcamens
te, graficamente, ou ainda utilizando a linha das 1ntersecgoes das reagoes°

As linhas de influéncia para momentos nucleares apresentarao o seguin-

Hs =ms - Hys

te aspecto:

|
i b g rect] oIl x‘y.
L_//f" 7 a’eo/[ygﬂav‘,@m:
Figura 17 i
C-ESTUDO Do PROJETO

No dlmen31onamento de um arco, nas grandes construgoes, 1mpoe—se,em ge
ral, a condlgao de fixar o eixo de tal forma que os momentos fletores sejam ce me
nores poss:{vels°

Nos arcos sujeitos sbdmente a cargas permenentes, a escolha do eixo é i
mediata; eixo coincidente com a linha das pressoes do carregamento dado. Para a
escolha do eixo do arco a ser submetido a cargas permanentes e méveis, varias o-
rientagoes tém sido preconizadas. e

Alguns autores recomendam o seguinte procedimento.

a) Determinar a linha das pressoes que corresponde ao pdso préprio e ao carrega-
mento de apenas uma das metades do arco, com a carga mével uniformemente dis-
tribuida,

b) Determinar a linha das pressoes que corresponde ao péso préprio e ac carrege~-
mento da outra metade do arco com a carga mével uniformemente distribuida.

c) Adotar para eixo do arco a curva média das obtidas de acOrdo com os itens an-
teriores. '

A maior parte dos autores modernos, tendo em vista as diversas obje --
goes que se levantam a €sses critérios para a escolha do eixo do arco e admitindo -
mesmo que, dos vérlos critérios, o acima citado seja o mais defensavel, Trecomen=-
dam, por uma questao de facilidade dos célculos, a segulnte orientagao:




a)
b)

c)

d)

1=

Adotar, inicialmente, uma lei simples para a variagao da altura ou do momento
de inércia, das secgoes transversais. -

Adotar, na fase de ante-projeto, uma parébola por exemplo do segundo ou quar-
to grau,para eixo do arco.

Com essas hiplteses, fazer um cdlculo ripido de algumas secgoes; para isso po
dem ser utilizadas as diversas tabelas jé calculadas e que se encontram nas pu
blicagoes referentes ao assunto.

Com ésses elementos pode-se fixar, com maior exatidao, as secgoes transver--

sais da estrutura e, portanto, a lei de variagao de seu péso préprio; final--
mente

Adotar para eixo do arco a linha de pressoes correspondente ao péso préprio ,
ou a0 péso préprio acrescido de uma certa parcela da carga mével transformada
em carregamento uniforme.-

Depois disso, um chlculo de verificag};o, com o tragado das linhas de in

fluéncia, poderi sugerir algumas modificagaes, em geral pequenas, quer nas dimen
soes das secgoes tramsversais, quer no eixo do arco.

vi

Convém observar ainda, um procedimento na colocagao dos pendurais, de=-
do a Nielsen que permite diminuir as ordenadas das linhas de infludncia (fig.

18), pois qualquer carga que atue sObre o tabuleiro serd aplicada ao arco em trés

po

na

ntos no méximo, e em dois pontos no mfnimo.

AN, AN

Figura 18

D- EXERCICIOS

19) Determinar, para o arco parabblico da figura 19, o momento fletor
secgao genérica para a carga uniformemente distribuida £ , e a linha de in-=-

fluénecia de H.

Equagao do eixo do arco:

- x

y=4fx /ez (parébola)
Variagao de J J= 1 .c. J cos°(=‘1—
¢ cose c
y —"‘-x'—'a > =
I = T cosex &Y V=0

X t-x
ng___ﬁz__)_
[msw S35 ]2 o4

= : = 2 2 BiNE
[ria i—f—‘i[xz(e-x)*-dx

24

H




J:

w1 8=

No arco triarticulado,

~ és. -
o empuxo H & dado por: \,é\”/;"l{é\éﬁwggﬁ_&c_jﬂi’f/"ﬁ

g Me I P R Y e e )
3 / DS
e como EZ_Z_
mc= 8
vem 2
H:géLf 9 E.

que coincide com o obtido bara o /
arco biarticulado em questao.

Isto se explica facil-
mente se considerarmos que a li-
nha das pressoes para a carga u-
niformemente distribuida é para-
bélica, e como o eixo do arcotam
bém é parabblico, resultard mo--
mento fletor nulo para qualquer
seeg?a'o; portanto, a retirada da
articulagao central do arco tri-
articulado nao modificou em nada
03 seus esforgos.

Com efeito:

M\:M-Hy,'%:ﬁzz'—xl, T

2 5 x%'éf%%'
H__.&L .__4fn£(2_-£). x Y %L '
= PR | g2 T/

2 deogroma ol &
A R Y BTy -

TN

é = .

AN
Linha de influéncia de H : Figura 19
f‘"Ljdx or
H= =y—°-; fyjdx=D°r='l%f2.,z.c.
fvaa p
m.dx_Nor=£_g_xx,12;xx'
H __f_gxx,22+xx' Y Tl xx,22-4-xx'
inf1 = 3 R TR ey
2
¢ o
¥y = ﬁ— = 82f L (hipérbole clibica)
' 5 (f° +x x')

2%) Determinar os esforgos no fecho do arco parabblico com f = 4m,
=16m e J=1/c cose » sujeito ao carregamento indicado na figura 20.




G-

vt o VI IT IV T 1]
: I %%

Pa 104

) _th2j dx__ §°T

J.yjdx -g"fz.e.c

15

Figura 20

Célculo do N°T ge H para a carga F atuando isoladamente (figura 21).

C F J ) 25
. Fof-A.ﬂ o e A— Foz

|
}f
|
|

7 : "@‘Z x'éé M=-ax

1 1
Figura 21
' ! b 2
N°r=j’m'.jdx= M. jax+ Cjodxt =
0 0 o
9/2 17/2 1/2
=J[ A.x.jdx-/ ijdx-l-/-Ax'jdx'
0 0 Y
v
N°r=-nyjdx
0
Célculo de H para a carga F: {/2
»
. -FE[ o F
HBF" /3 = Tewallo 553 o)
f yJax 2f y §ax
0 0

Célculo numérico dos empuxos:

a) carga uniforme g

" =g_25=.2_.x__2_L6=16t
g 8 f 8 x4
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b) carga P=10t

2
x=4m x'=12nm HP=P.,-8'5?xx'g—ﬁ—x—'

—2
Al 6 _+ 4 .12
B, =2l | AT SRS o e
16
c) carga F=5t

Com os valores obtidos para os empuxos podemos organizar a seguinte ta
bela (unidades, t e m). \

Efeito de
Esforgo g=2 t/m P=10t F=5t ~ Total
B, 16 t 5,57 & 2,5 24,07 ¢
Hy 16 G - 2,5 13,07 t
v, 16 7,50 3,25 24,75 t
Vg 16 2,50 - 1,25 17,25 ¢
M 0 2,5%8~5,5Tx4=-2,28 tm  1,25x8-2,5x4=0 =~ 2,28 tm
Q, 0 -2,5¢% L2 - 1,25 %
N 16 5,57 dir. - 2,5 19,07 t

esq. + 2,5 24,07 ¢

E - ARCO ATIRANTADO

O arco atirantado é uma estrutura externamente isostitica e internamen
te hiperestitica; é de grau de hiperestaticidade um, e resulta de uma viga curva
na qual se introduz um tirante (fig. 22)_.

b

| ‘ Figura 22

Se considerargos como incégnita hiperestética a fOrga H que aparece
no tirante pela aplicagao dos esforgos externos, podemos escrever, de maneira a=-
néloga a0 caso do arco biarticulado:
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M:m-Hy
arco N=MN+ Hcosex tirante N = H

Q=Q«-Hsen°<

Para o cdlculo d¢ H podemos, na maioria dos casos da prética, despreg
zar o efeito das forgas cortantes, e considerar na expressao da forga normal, a-
penas o segundo termo, isto é:

N = H cos X
Asgim, para o arco
oM "IN
CERE e e >H= cos X
e para o tirante “oN _ !
qH— .

Aplicando a equagao de Fontviolant vem:

MmM-5y H cos® H W
= (= y) ds + j —_ cosD<ds+‘ g +lds=0

; % t
arco arco tirante

onde Et e Sg sa0 respectivamente o médulo de elasticidade e a érea da secc;;o
transversal do tirante.

X m‘tds+H —ﬁds+H °°52°(ds+ﬂ b gs=0
EJ EJ : s

ES E S
g tt
arco arco arco tirante
2 2 e
Y cos~ o ([ y
H[IEst-bJ. ES ds+EtSJ-fEst
A M.y
Est
H=
f__:ﬁ cog” e
B CEE T e
t ¢
Fazendo
Jesix
cos ds
AYEPRRRRL, A g P sl S gl
Jd 7 J cose¢ f‘YZ_
BT
e por ser E em geral constante ao longo do arco, vem finalmente:
2
M5 ax
Hie ey
(1+9) Jydx-rf—'ée-
o t t

F = ARCO ENGASTADO
1) Estrutura isostética fundamental

Considere-se 0 arco engastado da fig. 23 submetido a um sistema qual-
quer de esforgos atuando no plano em que estd contido o seu eixo.




Lo,

A eliminagao de um dos engastamentos, com a decorrente supressao  de
tres vinculos, transforma a estratura hiperestitica em viga curva em balango. Tra
ta~se, portanto, de uma estrutura trés vezes hiperestética.

Para determinar as
trés incégnitas hiperestéti-
cas; considere-se como estru
tura isostdtica fundamental,
a viga em balango ABG da fi
gura 25b. Tal viga é a que
resulta do arco engastado
quando se suprime o engasta-
mento B e se liga a essa
extremidade uma barra quale-"
quer; de rigidez infinita ,
GB. A razao Ppela qual se eg
colhe normalmente essa estru
tura isostdtica como funda--
mental serd apresentada a se

guir.

Com origem em G ,
considere-se dois eixos quaig Figura 23
quer; Gx e Gy, normais en-
tre si (pela hipétese feita, de GB ser qualquer, o ponto G & um ponto quale-
quer do plano da estrutura). Considere-se entao, como incégnitas hiperesté4ticas
do arco engastado, os esforgos Hy, Vo e M, aplicados em G (fig. 23b). Seus
valores deverao ser tais que tornem mfnimo o trabalho armazenado na estrutura; co
mo & barra GB tem por hipétese rigidez infinita, nao armazéna trabalho (EJ=e0)
€08 valores de Hy, Vo e M, que tornam mfnimo o trabalho armazenado em ABG
880 08 mesmos que tornam minimo o trabalho armazensdo no arco AB,

Os esforgos solicitantes no arco sao:
M=mf%-%y-%x
~ K="+ Ho cos X - Vo sen & (compressgo +)
Q =G-=- Ho sen& « Vo cos o
Para o célculo das incégnitas hiperestiticas podemos desprezar o efei-
to das fOrgas cortantes e considerar N = H, cos,
Assim
M=m+MO—HOy-V°x
N=H cose
o

PN M 2N L 2H
) ’ o
e I e T e

teremos portanto os seguintes valores para

Al oM _ ¥ i 4
2K CER 2V
N dor N : ?N_o
oM = TR el 2V =

Aplicando a equagao de Fontviolant, isto €&,
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ven (E = const.):

1) J("YL-&»'MO-HOy-VOx).l%S'=O

o B cos& (cosex)
2) (m+Mo-H°y-Vox)(e-y)—3'+ T S ds = 0
3) J\(m-rMo-Hoy-Vox)(-x)gf:O

Desenvolvendo as integrais, vem:

ds ds ds _ ds
HOJ‘J-HOJ‘}'J-VOJXJ_-jmJ

ds 2 ds .“goszx ds ds

-Mo Jy':]-_'-rHo [fy I g S ds]-rvo xy 7= ‘['“IYT

ds . s 2ds _ ds
-Mofo+H°nyJ+V°fx J-f'h’[-xJ

O ponto G da figura 23 é arbitréirio, bem como os eixos Gx e Gy.

Para facilitar os célculos, visando diminuir o némero de integrais a
calcular, podemos tomar o ponto G de tal modo que

e orientar Gx e Gy de modo a obter

fxy%§'=00

xg_g_ e ds
J J
a¥

(p'éso eléstico) relativos aos eixos Ox e Gy,

Lembrando que f

ds
J

J
é o momento centrifugo, segue-se que, na escolha feita, G & o centro de gravi-
dade ¢ Gx e Gy os eixos centrais de inércia, dos pésos eldsticos.

Assim _fm % f'"l oY ' \

sao momentos estiticos de
e

a—
4

M°=j%”; = - de

\ fmyé.;: fm.ydx

; IYZ%+JQQ§§'§dS=(l+°)\[¥2d¥
2 J‘m"%s"‘f'm.xdl(
N FR




e

Conhecidos @sses valores, basta transportar o sistema de esforgos My
H, e V, para o ponto B, para obter os esforgos solicitantes no engastamento
do arco.

Assim, (xg e yg as coordenadas do ponto B):

B=1

s L B yg - VB *p

As tr@s condigoes

de)’=o jyda'zo e J'xydx=0
permitem, entao, determinar o ponto G e a diregao dos eixos Gx, e Gy normal
a Gx.

Quando o arco é simétrico, o eixo Gy coincide com o eixo de simetria
da estrutura e é necessério determinar, apenas, uma coordenada do ponto G, vis-
to que &sse ponto est4 situado sdbre o eixo de simetria.,

Observe-se, também, que o momento fletor numa secgao qualquer do arco

és
M =:77L+ Mb = HB y - V; X .
Mas '_
o I
i Mo e ot & Vo %5 Ay Mb S f B, vg f vo X3
Portanto
M= ?71+ Mﬁ + Hb yg * Vb Xp = H.o y - Vo >3
isto &,
- M o A
=N -E (y- )

onde

N' =M+ LA (gB -x), nao depende de y .

Daf se conclui que M’ & o momento fletor na seccao de abscissa x' =
= xp - x de uma viga engastada nas duas extremidades, de mesmo vao que o do ar-
co engastado, com momento de inércia variével de acOrdo com a mesma lei de varig
¢ao de J cos X=f (x), do arco considerado, e com carregamento anflogo a0 doar
co. %

2) Infludncia da temperatura e do recalque de apoio

A qplicagao da equagao de Fontviolant com segundo membro nulo (equagses
1, 2 e 3), no caso anterior foi correta, pois sendo B engastamento perfeito e
GB barra de rigidez infinita, os deslocamentos de G, angulares e lineares se--
gundo as diregoes Gx e Gy, serao todos mulos.

Suponha~-ge, porém, que o arco engastado tenha sofrido recalgues no a=-
poic B (angular e linares) e seja também submetido ao acréscimo de temperatura
B

Chamando de X o coeficiente de dilatagao do material do arco, ¢ a--
créscimo de temperatura &t produz em B (e portanto também em G), os desloca
mentos lineares (fig. 24) i

ul =quto 2

Vl = -x‘Ats fi
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Quanto aos recalques
de apoio pode-se considerar a
possibilidade de uma rotagao do
apoio B e de recalques hori-
zontais e verticais; cuja re-=-
sultante poderéd ser decomposta
segundo as direcoes de Gx e
Gy.

w@‘

%\,;’@ 8

i/

De acOrdo com o que
se indica na figura 2¢, o des-

locamento angular © do apoio TRl B I e e T
B se transmite integralmente
ao ponto G mas produz, ainda, (convengzo de sinais - deslocamentos posi=~
deslocamento linear nesse pon- tivos quando contrérios aos esforgos Hy,
to. Vo e Mo)

Os deslocamentos do s Jr‘_d

ponto G, devidos a @, segun-

do as diregoes Gx e Gy , sao: S

ug=_G-M— =_'sen[5 \r;V =
£ el N,

. | Figura 25 Fignra 26
T = = Y =
GG ro.O xo ro cos fs z, :c'o sen (3
donde:
ugzroesen[s=z°0
vg = - roO cosfé =-x° (4]

Pode-se admitir, ainda, a p0331b111dade de um deslocamento do apoio B,
paralelamente a Gx, e de um recalque na d.lreg:ao Gy, respectivamente A, e o,
que se transmitem integralmente ao ponto G.

1

Vejamos os efeitos, isoladamente, para os trés casos apresentados, dos
movimentos do ponto G.

Estudaremos &sses efeitos, considerando a estrutura sem carregamento ex

terno.
.Lembraremos que as equa93es 1, 2 e 3, no caso de recalques de apoio, ex
primem .
oM T T et % ST o
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onde 0, u e Vv sao os deslocamentos (angulares e lineares) do ponto G na di
regao e sentido do respectivo esforgo. -

Essas. equagoes, Jé referidas ao centro de gravidade dos presos eléstices

e acdrdo com a convengao da figura 24, se escrevem:
E 'gng.—.noj d7-+j’nz ¥ =-9P&
E?H fmde+H(1+D)fy d¥ =-uE
!
f’mxd)’»fvjx a¥ =~ v E 4

Como estamos admitindo o arco descarregado, m: 0.

Assim, finalmente, obtem-se:
aalqz = o Idx - - ‘fE
E'_aan—g=ﬂo (1+9)fy2 ¥ == uE

E'a—§=vofx2dX=-vE . ‘
[v] g 1

osigdo tedcial

Figura 27
. .. 26
En G P =0 o 'am°=° donde M =0
Em G u= - X4 L (H0 desloca G para G'; u tem o mesmo sentido
de H: figura 27)
G- 3

E (1 +D)fy2 a¥ =X Ayl g H = t EE

g ; (l +D)fy ay
Em G v = o{.At, £ (Vo desloca G para G'; v tem sentido contré-

rio a0 de V,: figura 27) |

-X.A ' E |
v Ixz a¥ =X At ' E ., ¥ = J

o o fxzdx .




b) rotagao no apoio B

Figura 28
Bn 6 ¥P=o0 , (sentido contrério ao de ¥ ; figura 26)
Uy =2 O (sentido contrério ao de H figura 28)
Vg ==X, 0 : (mesmo sentido de v flgura 28)
donde '
Mfdx:-E@ 2 M = Eo
o ° f 4y

Ez@
0

H(1+§)fy2dx=-z 6 E A H ==
PG g ° e [Pax

2 Exoé
V/x ad =x°.G.E i vV =

o O_j'xzdx

c) Recalques nas diregoes Gx e Gy

Figura 29
N f“—“'f
N
'\
/aé.‘n;:ao fma[ ;;.N _J?"
En ¢ ¥P=o0
u=A4u (sentido contririo ao de H,: figura 29)
v=A4Qy (sentido contrério ao de Vo: figura 29)
donde
- M j a¥ =0 M =0
0 o
E.Dy

B (1 0)f2dX=-A-E E =-
9 i H ¥ A (1+D)fy2db’

E.A
v sz-dx = - AV'E e.o v = e __E———v-_’

N v fxz.d’o'

d) férmlas’ finais, levando em conta. 0 carregamento, variagao de tempe
ratura, rotagao no spoio B e recalques nas dire-
goes Gx e Gy..




«28=

iz} Ima)’ +E@

H de

f‘m.y.dx +E [Agl .5 o .Ag]
H = :
: (1 +\))jy2 dx
f'm.x-dx - B [°(~A1§of° -x 0 tA v]
VilN= -

] fo a¥

3) Processo Gréfico

Como vimos, as expressoes de My, Hy, e V, sao:

: - Jmay i Jm.z oy b [m.x.a¥
i jdx o-(1+)7)fy2dx i sz'dx

0 processo gréfico consiste, em ¥ltima anilise, na resolugao aproxima-
da das integrais das expressoes de My, Hy e V,.

a) Determinagao do centro de gravidade dos pesos elésticos

Para determinar G, dividamos o arco em v4rios trechos Asgs, no centro
de gravidade dos quais aplicaremos a fOr¢a (péso eldstico a menos da constante E)

AY - As Ay
T J T J coseX
Essa divisao do arco pode ser feita de tal forma que Ax seja constan
te, ou de tal forma que AY seja constante para qualquer trecho © s conside-
rado (processo de Schnhofer apresentado quando se tratou da determinag'é'.o grafi-
ca da linha eléstica). Qualquer que seja o processo que se adote, os resulta--
dos finais serao tanto mais precisos, quanto maior fér o mimero de subdivisoes
consideradas.

Para determinar Y, supomos que as fargas AY sejam aplicadas hori-
zontalmente; tragamos o polfgono das forgas (fig. 30a) e o poligono funicularcor
respondente (fig. 30b). A interseccao dos lados extremos do funicular determina
o ponto € e consequentemente Yoo

Repetindo a construcgao (figs. 30¢c e 30d) para os pesos elésticos apli-
cados verticalmente, obteriamos, no caso geral, a pOSig'é.'o do ponto G (interse_c_
¢ao das duas linhas de ax;'é'o das resultantes dos pesos elisticos aplicados hori--
zontal e verticalmente).

No caso do arco simétrico é suficiente, para determinar o ponto G , o
tragado do funicular da figura 30b. Nesse caso os eixos Gx e Gy, resultam i
medistamente determinados, pois um eixo de simetria & sempre um eixo central de
inérecia; se 0 arco nao fdsse simétrico, depois de determinadp o ponto G, seria
necessério determinar as diregoes dos eixos centrais, de inéreia dos pesos elds-
ticos para definir os eixos Gx e Gy.

b) Determihagao das incégnitas hiperestéticas

Nas expressces de Hoy Vo e M, M ¢ o momento fletor produzido nu-
ma secgao qualquer da viga em balango, pelo sistema de cargas que age sbbre o ar
co: calculemos para cada trecho & s’ do arco, o valor correspondente de 'm.AX.,
A somatbria dos M. AY é o numerador de M,; o momento estético das fércas m.a¥







Nor de Vo

o Figura 31
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em relagao ao eixo Gy & o numerador de Voo

As construgoes grificas que permitem obter esses valores estao indica-
das também na figura 30. O poligono das forgas (e) e o poligono funicular cor--
respondente (f) permitem obter:

f‘m.x.d'b’ 2 doHd

0 poligono das forcas (g) e o polfgono funicular correspondente (h) per
mitem obter:

f’nz.y.dzr = e.H
Do polfgono das fOrgas (e) podemos tirars

m’?azf’m.-da’

Obtidos os numeradores de H,, V, e M, podemos obter, pelo mesmo fo.
cesso, as integrais:

fJ-Y fyz.ab’ =fy(y_dx) | e fxz.aa' =fx(x.da’)

bastando notar, para o cdlculo das ltimas integrais, que elas nada mais sao do
que os momentos estiticos das "flrgas" y.d¥ e x.d¥ ; respectivamente, em re-
lagao aos eixos Gx e Gy,

¢) Linhas de infludneia de My, Hy e V,

No caso de cargas externas verticais, para determinar as linhas de in-

fluéneia de M, e V,, deve-se considerar a carga concentrada P =1 e sua
. ~ o o -~ ) !

distancia a a0 eixo @Qy. Para as secgoes de abscissa x> a, o momento fletor

M na viga curva isostética & nulo, e nas secgoes de abscissa x &S e 6000 000
mM=-1(a-x).

Os numeradores de My By Vo serao:

g
N ge M ajm.d)':m/al(a-x)dX: (amx)dX=Z (a-x).A%
x=a
) =3
N7 e B f'm-y.d\' =-j1 (a - x).y.a% = -j(a-x).y. a¥=- Z (a-x)(y.A0)
x=a

N ge Y J"m_.x.dx =-fl (a-x) x.4¥ =~ (a - x)x.d¥ = -Z (a- x)(x-a¥)

Na figura 31 se indica o cdlculo gr&fico das linhas de influéncia dos
numeradores de My, Hy e Vo, com auxflio dos polfgonos funiculares dos " pesos
eldsticos” AY, y. AX e x.A¥ respectivamente. 2

J4 que conhecemos o processo gréfico para a determinagao dos denomina-
dores de Mg, Hy e Vo, e por serem os denominadores, independentes das cargas,
o célculo das linhas de influéncia de My, B, e V, fica reduzido i detemina-
gao das linhas de influéncia de seus respectivos numeradores.

1) Linha de influeéncia de M, - O poiigor_m das forgas 1 (figura 31) dos pesos e

l4sticos AY, com distincia polar h= J.A¥
se utiliza para o tragado do funicular 1, com o primeiro lado da esquerda hori--
zontal .

Para a abscissa a da carga P = 1 se obtem:
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_‘2/2
a Z m.a¥= > (a- x).A¥ = b.h=1b.Z AY

a

Portanto
-ZMAY b F AY
M = = =b

0 2 A¥ Za¥
e conclui-se que o funicular 1 é a linha de influéncia de M,y sendo suas ordena
das b, medidas na escala do desenho do arco. :
2) Linha de infludncia do numerador de H, - Com auxflio do polfgono de "fér--
gas" 2 (figura 31), dos pesos ...

(y.Ax), que serd fechado porque f y.dl' =0 traga:seg partindo de 4, o polfgo
no funicular 2, onde o primeiro e "o dltimo" lado sao horizontais.

0 momento estético dos pesos eldsticos ”y-AX" situados & esquerda da
carga, em relagao & secgao de abscissa g, & igual i ordenada b, do poligonofu
nicular multiplicada, pela distZncia polar hya O numerador de H, é portanto

x=-/2

fm. y.d¥ = - > (a- x)(st-AY) TR

X=8

sendo ainda positivo pois os primeiros "pésos eldsticos" da esquerda sao negati-
vos (y < 0).

3) Linha de influéncia do numerador de Vo, - O polfgono de forgas 3 (figura 1)

: dos pesos (x .A¥), que também seré
fechado por ser f x.d¥ = 0, se utiliza para o tragado do funicular 3 com o pri
meiro lado horigontal.

Aqui também foram tomados 0s pesos negativos orientados para cima e os
positivos para baixo.

O numerador de V, é portanto

x== /2
f‘n}x ¥ - > (a = x)(x.A%) = b3 L

X=a
sendo bz a ordenada do funicular 3 na vertical da linha de ag?io de P=1,

Todas as ordenadas s'é'o, aqui também, positivas por serem negativos os
primeiros pesos eldsticos (x.AY) a partir da esquerda.

4) Linha de influlncia de momentos nucleares - Sendo X © Yg as coordenadas
de um ponto nuclear qualquer, o
momento em relagso a ésse ponto para uma carga concentrada P = 1 situada & dig
tdncia a do eixo y serd: ‘
Ms=-l(a-xs)+Mo-Voxs-Hoys o
onde os valores de My, Vo, e H, sao tirados das linhas de infludncia apresen=-
tadas na figura 31.

Para os pontos nucleares situados & direita da carga P = 1, isto & ,
Xg > a8, 0 térmo - 1 (a "¢xs) nao existe, e a expressao de M, fica reduzida a

M =M -V x «=H y
S (+] o 8 [+ g -1

5) Linha de intersecgao das reagoes - Para o caso dos arcos engastados podemos

obter as reagoes Ry e Rp graficamente
com auxilio das curvas 1, 2 e 3 da figura 32; a vertical da carga P corta
a curva 3 no ponto C. Pelo ponto C, tragamos tangentes 3s curvas 1 e 2, tan--




Figura 32

genten essas que tem a diregao de Ry, e Rp respectivamente.

v Essas curvas 1, 2 e 3 apresentam o incgnveniente de serem de difficilde
terminagao; além disso, ocasionam certa imprecisao no tragado das tangentes.

6) Linha de influéncia de momentos fletores = O procedimento para o seu célculo
é em tudo semelhante ao dos momen

tos nucleares.

A tnica diferenca € que os momentos nucleares sao tomados em relagao
aos pontos nucleares, a0 passo que 0s momentos fletores sac tomados em relagao ao
centro de gravidade da secgao,

‘G - TUBOS DE PAREDE FINA

0 célculo estético de qualquer estrutura compreende trés partes distin
tas, a saber:
a) determinagao dos esforgos externos
b) determinagao dos esforgos solicitantes
c) determinag'éo dos esforgos resistentes.

a) Os esforgos externos ativos, que podem atuar nos tubos colocados em
valas, 8a0:
pressaoc de terra
pressao interna do fldido
sobrecarga na press'é'.o da terra proveniente de veiculos, ete.

. Os esforgos externos reativos tém sua distribuigao de pressoes dependen
te do tipo de bergo onde assenta o tubo, e também das caracteristicas elédsticas
do mesmo.

Distinguem-se ‘dois tipos de bergo:

1) rigido (figura 33a)
2) flexfvel (figura 33b).

) Existe ainda outro tipo de apoio, usado em ensaios de laboratério, que
é o apoio em cutelo (figura 33c).
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P
P
ber¢o rigido base Hlexivel apoco eri cuvlelo
@) 7 jlfé) 7 @
Figura 33

E de se notar, também, que o tipo de vala onde se coloca o tubo influe
na carga ativa que atua sObre o mesmo, devido. & compactagao do terrenoc.

Assim, na figura 34a, a compactagao do terreno na valaalivia o tubo de
uma parcela do peso de terra da vala, parcela essa devida ao atrito entre terra
da vala e terra do macigo.

Na figura 34b, o efeito da compactagao & contrérioc ao anterior, aumen-
tando a carga sObre o tubo.

atrilo ciéuyﬂzlq7/t7rel

Figura 34
b) Conhecidos os esforgos externos (ativos e reativos), calculam-se os
esforgos solicitantes com suxflio das férmulas de arco engastado.

Se cortarmos o tubo em um ponto qualquer, engastando uma extremidade
e ligando a outra, por meio de uma barra rigida, ao centro dos pesos eldsticos ,
éste coincidird com o centro do circulo desde que o tubo tenha espessura constan
te (fig. 35a).

Apliquemos em O, M, N, e Q,: no caso de carregamento simétrico,
Qe = 0 (fig. 35b). Estudaremos sdmente o caso de carregamento simétrico.

Assim, os esforgos numa secgao qualquer definida pelo &ngulo ©, serao:
M='YYL+MO—N°rcose
N=T1+N°cose




Q =Q;+ No sen ©
onde M, , M e G s20, respecti-

vemente, momento fletor, firga nor
mal e fOrga cortante produzidos,na
secgao genérica da viga engastada

em A', pelas cargas externas.

Aplicando a equagg.o de
Fontviolant, e desprezando os efei
tos de N e Q, obtemos:

MAr °
f E J. d-e — 0 ° o
f ﬁ e Qc’o
MMd =0 ) ;
simebria § 1] 4)
onde
‘oM _ ! “OM 3
S = e /aNo--rcos
Assim, devido & simetria : Figura 35
vem:

m T T T
f(ma-MO-NorcosG)oldQ: j'ﬂLdO-o-M de-Nr cosOdG=0
0 (6] (0]

: 2 ~
f('m,-o-n-N T cos*@) r cos © d8 = j’nzrcosgdg Mrfcos@d@-&

0 0 0

w
+Nor2 fc0829d0=0
' 0
Portanto rr g T
L /dG-Nor/COSGdQ=- M s
0 0 0
™ ™ "
2
MofcostO-Norfcos 0 d0 == m.cosedo
-0 0 0

1) ™
Como n 2 T
d9=7r, cos @ do =0 e cos Od9='2' vem finalmen=-
0 0

te: g

=
& /’Y"Ldo _7_?2__ '"L.cosOdG
0




H - EXERCICIOS

1) Calcular o mgmento fletor, a fOrca normal e a fOrga cortante em um
tubo submetido 3 compressao dismetral (fig. 36). Tal & o caso do chamado “ensaio

dos trés cutelos".

Neste caso

2 £ ks
=% [ -5 rsepo,cos e,de= 0
0

donde

Er Er
M=~ > sen © + v =

Figura 36

L)

1l sen
w2

1952
| N=MN+ XN cosO:gsenG
o 2
Q=+ N sen Q=-2'cosg
o 2 74

Q diagrama de momentos fleto-
res no tubo apresenta o aspecto do dia-
grama da figura 37. "y

2) Calcular o momento fletor
em um tubo de parede fina, sujeito a0
péso préprio (figura 38).

Sendo g o péso do tubo por
unidade de comprimento (segundo &8 cir--
cunferéncia), vems Figura 37

e e A
m = j -grd® (r sen.Q-rsen‘f)?-ngJ’ (sen 6 -~ sen?®) a P
0 : (0]

sen @ + cos‘?

m:-grz =-gr2(esen9+cosg-l)

0

4
f—-gr2 (Gsene-%-coseal) de=0_
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z
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18
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Figura 39

N "'g—f-grz(Osén0+coso-l)cosed9=
g .

2

: L
= - '&# j- (6.sen ©.,c08 © + cos® © - cos e) de
0

° et R
i M No" 2

donde

M:-—gr2(Gsen9+coso-l)+£§£1_:cose

Wim o (1-9 sen-Q-gg;Lo‘)

0 diagrama de momentos fletores apresenta o aspecto do diagrama da fi-
gura 39.

No caso em que o tubo é apoiado sGbre um befgo, 0 procedimento mais in
dicado para o céleculo dos diagramss § o, da superposicao de dois casos indicados
na figura 40. ]

. Figurs 40
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