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We construct spontaneously vectorized black holes where a real vector field is coupled to the Gauss-
Bonnet invariant. We employ three coupling functions for the vector field, and determine the respective 
domains of existence of the vectorized black holes. These domains of existence are bounded by the 
marginally stable Schwarzschild black holes and the critical vectorized black holes. We also address the 
effects of a mass term. For a given black hole mass the horizon radius is smaller for the vectorized black 
holes than for the Schwarzschild black holes. Since the vector field vanishes at the horizon, there is no 
contribution from the Gauss-Bonnet term to the entropy of the vectorized black holes.
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1. Introduction

Black holes in General Relativity (GR) satisfy uniqueness the-
orems [1]. The Schwarzschild and Kerr black holes represent the 
static, respectively stationary rotating, black hole solutions of the 
Einstein equations in vacuum. When a real scalar field is admit-
ted, the Schwarzschild and Kerr black holes remain the only black 
hole solutions: Schwarzschild and Kerr black holes in GR carry no 
real scalar hair (see e.g., [2]). Inclusion of a massless vector field, 
however, leads to the Reissner-Nordström and Kerr-Newman black 
holes of Einstein-Maxwell theory, for which again uniqueness the-
orems hold [1].

When going beyond GR black holes may carry real scalar fields. 
For instance, GR may be amended by higher curvature terms, that 
are coupled to a scalar field. A particular higher curvature term is 
the Gauss-Bonnet (GB) invariant, whose presence is well-motivated 
from quantum gravity considerations [3–5]. Moreover, the resulting 
Einstein-scalar-Gauss-Bonnet (EsGB) theories possess second order 
field equations and thus avoid Ostrogradski instability and ghosts 
[6–8].

The coupling of the scalar field to the GB invariant represents 
a non-minimal coupling, where the coupling function can be cho-
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sen freely. A string theory motivated dilatonic coupling function 
leads to black holes, which are always scalarized [9–21] (see also 
[22,23]). In this case, the scalar field equation always has a non-
vanishing source term, since the derivative of the coupling func-
tion with respect to the scalar field is always finite. Therefore the 
Schwarzschild and Kerr black holes are no longer solutions of the 
coupled set of EsGB equations.

However, the coupling function can also be chosen to allow 
for the Schwarzschild and Kerr black holes to be solutions of 
the coupled set of EsGB equations. In this case the derivative of 
the coupling function with respect to the scalar field should van-
ish for some value of the scalar field, such that the scalar field 
can be chosen to have this constant value throughout. While the 
Schwarzschild and Kerr black holes remain solutions of the EsGB 
equations, they do not remain the only solutions, since sponta-
neously scalarized black hole solutions arise as well [24–45] (see 
also [46–50]).

In this case, Schwarzschild and Kerr black holes remain solu-
tions of the EsGB equations independent of the value of the GB 
coupling constant. However, they lose their stability when scalar-
ization sets in. In particular, the GB invariant leads to a tachyonic 
instability, since it features in the scalar field equation like an 
effective mass. At a certain threshold value of the GB coupling 
constant, the GR black holes then develop a zero mode, where a 
branch of scalarized EsGB black holes emerges. The first zero mode 
gives rise to the fundamental branch of scalarized black holes, 
while the next zero modes give rise to radially and angularly ex-
cited scalarized black holes. Depending on the coupling function, 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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the fundamental scalarized mode may be (at least in part) stable 
or unstable [24–45].

Spontaneous scalarization of Reissner-Nordström (RN) and 
Kerr-Newman black holes can be achieved in GR, when the scalar 
field is non-minimally coupled to the Maxwell invariant with an 
appropriate coupling function [51–63]. Here the finite value of the 
Maxwell invariant of a charged black hole provides the effective 
mass term necessary for the tachyonic instability of the GR black 
holes. However, for particular choices of coupling functions, also 
scalarized black hole can arise and coexist with the GR black holes 
without a tachyonic instability of the GR black holes ever occurring 
[58,64–66].

However, besides spontaneous scalarization of black holes also 
spontaneous vectorization of black holes may occur, as argued vig-
orously by Ramazanoğlu [67–70] (see also [71]). In this case a vec-
tor field has to be coupled to an invariant with a suitable coupling 
function. The black holes of GR then remain solutions of the gener-
alized set of field equations, but succumb to a tachyonic instability 
induced by the contribution from the invariant in the vector field 
equation acting as an effective mass. Recently such spontaneously 
vectorized black hole solutions have been obtained in GR, where 
an additional vector field has been non-minimally coupled to the 
Maxwell invariant with an appropriate coupling function [72].

Here we construct and investigate spontaneously vectorized 
black hole solutions of Einstein-vector-Gauss-Bonnet (EvGB) theo-
ries. We employ several coupling functions, which all satisfy the 
criteria for spontaneous vectorization: they are functions of the 
vector field squared, Aμ Aμ , where for a vanishing vector field the 
coupling functions vanish, allowing the Schwarzschild black hole 
solutions to remain solutions of the EvGB equations. Since the GB 
term enters the vector field equations like an effective mass term, 
a tachyonic instability of the GR black holes results, giving rise to 
branches of vectorized black holes.

We have organized the paper as follows: Section 2 describes 
the theoretical setting with the action, the equations of motion, 
and the boundary conditions, and we define the physical proper-
ties. Section 3 contains our physical results, together with a brief 
description of the numerics. Here we discuss the solutions, the do-
main of existence and the physical properties of the black holes. 
We give our conclusions in section 4.

2. Theoretical setting

2.1. Action and equations of motion

We consider the effective action for EvGB theories

S = 1

16π

∫ [
R − Fμν F μν − V (Aμ Aμ) + F (Aμ Aμ)R2

GB

]

×√−gd4x , (1)

where R is the curvature scalar, and Fμν denotes the field strength 
tensor of the real vector field Aμ with potential V (Aμ Aμ). The 
vector field is coupled with some coupling function F (Aμ Aμ) to 
the Gauss-Bonnet term

R2
GB = Rμνρσ Rμνρσ − 4Rμν Rμν + R2 . (2)

For the coupling function F (Aμ Aμ) we make the following choices

F (Aμ Aμ) =

⎧⎪⎪⎨
⎪⎪⎩

λ
(

1 − e−β Aμ Aμ
)

(i)

λ
(

eβ Aμ Aμ − 1
)

(ii)

λAμ Aμ (iii)

(3)

with coupling constants λ and β . When the vector field vanishes, 
Aμ = 0, all three coupling functions reduce to zero. The potential 
V (Aμ Aμ)
2

V (Aμ Aμ) = 2m2
A Aμ Aμ − 2α

(
Aμ Aμ

)2 (4)

has a mass term with vector field mass mA and a self-interaction 
with coupling constant α. We here mostly focus on α = 0. While 
the Gauss-Bonnet invariant R2

GB itself is topological in four dimen-
sions, its coupling to the vector field Aμ by means of the coupling 
function F (Aμ Aμ) leads to significant contributions to the equa-
tions of motion.

The coupled set of field equations follows from the variational 
principle. Variation of the action (1) with respect to the vector field 
and the metric yields the Proca equation and the Einstein equa-
tions

∇μF μν = 1

2

dV (Aμ Aμ)

d(Aμ Aμ)
Aν − 1

2

dF (Aμ Aμ)

d(Aμ Aμ)
R2

GB Aν , (5)

Gμν = 1

2
T (eff)
μν , (6)

where Gμν is the Einstein tensor and T (eff)
μν denotes the effective 

stress-energy tensor

T (eff)
μν = T (A)

μν − 2T (G B)
μν , (7)

which consists of a contribution from the vector field

T (A)
μν =4F λ

μ Fνλ

+ 2
dV (Aλ Aλ)

d(Aλ Aλ)
Aμ Aν − gμν

(
Fρλ F ρλ + V (Aλ Aλ)

)
, (8)

and a contribution from the GB term R2
GB

T (G B)
μν =1

2

(
gρμgλν + gλμgρν

)
ηκλαβ R̃ργ

αβ∇γ ∇κ F (Aμ Aμ)

+ R2
GB

dF (Aσ Aσ )

d(Aσ Aσ )
Aμ Aν , (9)

where R̃ργ
αβ = ηργστ Rσταβ and ηργστ = εργ στ /

√−g . Note that 
the last term results from the dependence of the coupling function 
on the metric.

To obtain static, spherically symmetric black holes we employ 
isotropic coordinates for the line element

ds2 = −F0dt2 + e f1
[
dr2 + r2

(
dθ2 + sin2 θdϕ2

)]
, (10)

and we assume for the vector field the form

Aμdxμ = Atdt . (11)

All three functions, the two metric functions F0 and f1 and the 
vector field function At , depend only on the radial coordinate r.

When we insert the above ansatz (10)-(11) for the metric and 
the vector field into the set of EvGB equations we obtain five cou-
pled, nonlinear ordinary differential equations (ODEs). However, 
these are not independent, two of the Einstein equations are equiv-
alent due to spherical symmetry, and one ODE can be treated as a 
constraint. This leaves us with three second order ODEs. We note 
that the choice of Schwarzschild-like coordinates results in second 
order ODEs with very lengthy expressions [24], whereas the choice 
of isotropic coordinates leads to Einstein and vector field equations 
which are linear in the second derivatives.

Inspection of the field equations reveals an invariance under the 
scaling transformation

r → χr , t → χt , F → χ2 F , V → V /χ2 , χ > 0 . (12)
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2.2. Black hole properties

We are looking for vectorized black holes with a regular hori-
zon. Inspecting the equations of motion for the functions, and 
performing an expansion at the horizon leads to

F0(r) = F02

(
r − rH

rH

)2

+ O

(
r − rH

rH

)3

, (13)

f1(r) = f1(rH) + O

(
r − rH

rH

)
, (14)

At(r) = At2

(
r − rH

rH

)2

+ O

(
r − rH

rH

)3

, (15)

with constants F02, f1(rH), and At2. Thus at the horizon the met-
ric function F0 vanishes, while f1 is finite. Interestingly, also the 
vector field function At vanishes at the horizon, but At(r = rH) =
At2/F02 is finite.

To address the physical properties of the vectorized black holes 
at the horizon we note that the metric of a spatial cross-section of 
the horizon is

d�2
H = hijdxidx j = r2

He f1(rH)
(

dθ2 + sin2 θdϕ2
)

. (16)

The horizon area of the black holes is then given by

AH = 4πr2
He f1(rH). (17)

In GR the entropy is simply a quarter of the horizon area [73], 
but this may no longer be the case in the presence of a GB term. 
In the case of scalarized black holes the entropy of black holes 
acquires an additional contribution due to the coupling to the GB 
term [74–79]. For vectorized black holes an analogous additional 
term arises, and the entropy can be expressed as the following 
integral over the horizon

S = 1

4

∫
�H

d2x
√

h
[

1 + 2F (Aμ Aμ)R̃
]
, (18)

where h is the determinant of the induced metric on the horizon, 
Eq. (16), and R̃ is the horizon curvature. Since, however, the vector 
field function At vanishes at the horizon, also the chosen coupling 
functions (i)-(iii) vanish at the horizon. Therefore we obtain no 
contribution from the GB term to the entropy, and the entropy 
remains equal to a quarter of the horizon area,

S = AH

4
. (19)

The Killing vector field χ = ∂t determines the surface gravity κ
[73], where κ2 = − 1

2 (∇aχb)(∇aχb)|rH , yielding the Hawking tem-
perature TH = κ/(2π)

TH = 1

2πrH

√
F02e− f1(rH)/2. (20)

We require the black hole solutions to be asymptotically flat. 
From the expansion at radial infinity

gtt = −1 + 2M

r
+ . . . , (21)

grr = 1 + 2M

r
+ . . . , (22)

At = Q̃

r
e−mAr + . . . , (23)

with constants M and Q̃ , we determine the asymptotic boundary 
conditions for the functions
3

F0(∞) = 1, f1(∞) = 0, At(∞) = 0 . (24)

The constant M in the expansion corresponds to the total mass of 
the black hole solutions. This value agrees with the Komar mass, 
when the Komar integral is evaluated at spatial infinity. When the 
Komar integral is evaluated at the horizon, the horizon mass MH
is obtained. For Schwarzschild black holes the horizon mass MH
is identical to the total mass M . For vectorized black holes this is 
no longer the case, since the total mass M receives a contribution 
from the bulk.

We define a vector charge Q by the integral expression

Q = 1

4π

∫ √−g F rt
∣∣
r→∞dθdϕ = Q H + 1

4π

∫
r>rH

√−g jtd3x (25)

with the time component of the current density jν = ∇μ F μν , and 
the horizon charge Q H

Q H = 1

4π

∫ √−g F rt
∣∣
r=rH

dθdϕ . (26)

In the case of a massless vector field the vector charge Q coincides 
with the constant Q̃ , Eq. (23), whereas in the case of a massive 
vector field the charge vanishes at radial infinity, Q = 0. The hori-
zon charge Q H, on the other hand, remains finite for massless and 
massive vector fields.

3. Results

3.1. Numerics

In order to solve the set of coupled Einstein and vector field 
equations numerically we introduce the radial coordinate

x = 1 − rH

r
, (27)

to compactify the domain of integration, 0 ≤ x ≤ 1.
The expansions close to the horizon, Eqs. (13) and (15) suggest 

a factorization of the double-zeros of the functions F0 and At ,

F0(x) = x2 f0(x) , At(x) = x2b(x) . (28)

Expansion of the Einstein and vector field equations close to x = 0
then yields the boundary conditions at the horizon (x = 0)

f ′
0(0) − f0(0) = 0 , f ′

1(0) = 2 , b′
0(0) − b(0) = 0 , (29)

whereas the boundary conditions in the asymptotic region (x = 1) 
are obtained from Eqs. (24),

f0(1) = 1 , f1(1) = 0 , b(1) = 0 . (30)

We then employ the professional solver COLSYS [80]. COL-
SYS uses a collocation method to solve systems of boundary-
value ODEs with the help of a damped Newton method of quasi-
linearization and an adaptive mesh selection procedure. Starting 
from an initial guess, the iteration process then proceeds with suc-
cessively refined grids until a specified accuracy of the functions is 
reached. The prescribed tolerances are typically of the order 10−5, 
but the numerical error estimates are even smaller. When calcu-
lating the solutions we fix the isotropic horizon coordinate rH = 1, 
and thus break the scale invariance, Eqs. (12).

3.2. Solutions

We exhibit some typical vectorized black hole solutions in 
Fig. 1. The figures show the metric functions F0 and f1 together 
with the vector field function At versus the compactified radial 
coordinate x, Eq. (27), for the coupling functions (i) and (ii) and 
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Fig. 1. Examples of vectorized black hole solutions: metric functions F0, f1, and vector field function At vs compactified radial coordinate x for (a) coupling function (i) 
and parameters λ = 30, β = 1, mA = 0, α = 0; (b) coupling function (ii) and parameters λ = 30, β = 1, mA = 0, α = 0; (c) coupling function (i) and parameters λ = 30, 
β = 1, mA = 0.1826, α = 0; (d) coupling function (i) and parameters λ = 40, β = 1, mA = 0.158, α = 0 (solid) and α = 10 (dashed). Note the Schwarzschild metric functions 
(thin-dotted) for comparison.
selected values of the coupling constants and the potential pa-
rameters. The vector field function exhibits a pronounced maxi-
mum at several times the horizon radius. This maximum decreases 
in size and shifts to smaller radii as the vector field mass and 
self-interaction are increased. In all cases, the metric functions 
of the vectorized black holes deviate only somewhat from the 
Schwarzschild metric functions, with the deviation decreasing as 
the vector field mass and self-interaction are increased.

We illustrate the components T t(eff)
t , T r(eff)

r , and T θ(eff)
θ of the 

effective stress-energy tensor versus the compactified radial coor-
dinate x in Fig. 2 for the same set of solutions. We note, that at 
the horizon

T t(eff)
t (rH) = T r(eff)

r (rH) = 4
b2

H

ρ2
H f 2

0H

(2lH − 1) , (31)

T θ(eff)
θ (rH) = −T t

t (rH)
f0H + 8lHb2

H

f0H
, (32)

where we have introduced the circumferential horizon radius ρH =
e f1,H/2rH, and f0H = f0(rH), bH = b(rH), and lH = βλ/ρ2

H for (i) and 
(ii), while lH = λ/ρ2

H for (iii). Since −T t(eff)
t can be interpreted as 

an effective energy density, Eq. (31) shows that near the horizon 
the effective energy density is negative. Somewhat away from the 
horizon the effective energy density then turns positive, only to 
become negative again when the vector field function approaches 
its maximum. Although the effective energy density exhibits this 
oscillating behaviour, the contribution to the mass from the region 
outside the horizon is in all cases positive.
4

3.2.1. Domain of existence: massless case
We now address the domain of existence of the vectorized 

black holes for vanishing potential V . The domain of existence is 
illustrated in Fig. 3 for all three coupling functions, where we have 
set the second coupling constant β to β = 1 for the cases (i) and 
(ii). We show in Fig. 3(a) the vector charge Q 2/λ versus the black 
hole mass M2/λ, where we have scaled with the coupling con-
stant λ. For comparison we show in Fig. 3(b) the vector charge 
Q /M versus the coupling constant λ/M2, where we have scaled 
with the black hole mass M .

We note, that independent of the coupling function, the 
branches of vectorized black holes emerge from the Schwarzschild 
solution at M2/λ = 0.2136, where the tachyonic instability of the 
Schwarzschild solution sets in, manifesting in a zero mode of the 
Schwarzschild solution. The branches then extend to smaller val-
ues of M2/λ. Here the effect of the coupling function becomes 
important, and we note, that the vector charge Q /M is largest 
for the coupling function (i), and smallest for the coupling func-
tion (ii). The branches finally end at critical solutions, when M2/λ

tends to zero. At these critical solutions a curvature singularity is 
encountered at the horizon.

To analyze the critical behaviour we consider the Ricci scalar 
and the GB invariant at the horizon, RH and R2

GB H, respectively, 
and scale these with the square of the circumferential horizon ra-
dius ρH, to obtain scale-invariant expressions. Analytic expressions 
for these scaled curvature invariants at the horizon are then given 
by

ρ2
H RH = 64b4

H

f 2
lH (2lH − 1) ,
0H
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Fig. 2. Examples of vectorized black hole solutions: effective stress-energy tensor components T t(eff)
t , T r(eff)

r , and T θ(eff)
θ vs compactified radial coordinate x for (a) coupling 

function (i) and parameters λ = 30, β = 1, mA = 0, α = 0; (b) coupling function (ii) and parameters λ = 30, β = 1, mA = 0, α = 0; (c) coupling function (i) and parameters 
λ = 30, β = 1, mA = 0.1826, α = 0; (d) coupling function (i) and parameters λ = 40, β = 1, mA = 0.158, α = 0 (solid) and α = 10 (dashed).

Fig. 3. Domain of existence for all three coupling functions (V = 0): (a) vector charge Q 2/λ vs black hole mass M2/λ; (b) vector charge Q /M vs coupling constant λ/M2.
ρ4
H R2

GB H = 4

f 2
0H

{
16b4

H (2lH − 1) (6lH − 1)

+3
[

8 (2lH − 1)b2
H + f0H

]
f0H

}
, (33)

in the notation of Eqs. (31)-(32). Note that these expressions are 
independent of the potential V (Aμ Aμ).

We demonstrate the critical behaviour in Fig. 4 for the cou-
pling function (i), where we show the scaled Ricci scalar ρ2

H RH

and the scaled GB invariant ρ2
H R2

GB H at the horizon as functions 
of the scaled coupling parameter lH = βλ/ρ2

H. We observe that 
these scaled curvature invariants increase exponentially with lH
and reach very large values already for moderate values of lH.

As in the case of scalarization, there are also excited vectorized 
black hole solutions. Here we only note that independent of the 
coupling function the branches of vectorized black holes with a 
5

single node arise at M2/λ = 0.00598. This is to be compared to 
the onset of the fundamental branches of vectorized solutions at 
M2/λ = 0.2136. We expect a countable number of higher excited 
solutions, arising at successively smaller values of M2/λ.

We now turn to the horizon properties and define the reduced 
horizon area aH and the reduced temperature tH

aH = AH

16π
, tH = 4π TH. (34)

We exhibit in Fig. 5(a) the reduced horizon area aH/M2 and 
in Fig. 5(b) the reduced temperature tH M for all three coupling 
functions and vanishing potential V versus the coupling constant 
λ/M2. For all three coupling functions the area of the vectorized 
black holes is smaller than for the Schwarzschild black holes, and 
the area is smallest for the coupling function (i) and largest for 
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Fig. 4. Curvature invariants at the horizon: scale-invariant curvature invariants ρ2
H RH

(solid) and ρ4
H R2

GB H (dashed) vs the dimensionless coupling parameter lH for cou-
pling function (i) and several values of the vector field mass mA.

(ii). Analogously the temperature of the vectorized black holes is 
smaller than for the Schwarzschild black holes.

As discussed above, the entropy of these vectorized black holes 
is simply given by a quarter of their horizon area, since the GB 
term does not contribute, being multiplied by a coupling function 
which vanishes at the horizon. Thus we have to conclude from 
Fig. 5(a) that the Schwarzschild solutions are entropically favored 
over the vectorized solutions. The reason, that the horizon area and 
thus the entropy is smaller for the vectorized solutions then stems 
from the fact that their total mass contains a contribution from 
the bulk outside the horizon. Therefore, for a given total mass, the 
horizon radius for a vectorized black hole is smaller than for a 
Schwarzschild back hole, which is a vacuum solution.

3.2.2. Domain of existence: influence of vector field mass mA
We next consider the effects of a finite mass mA of the vec-

tor field. The presence of an ordinary finite mass term in the 
vector field equation (5) clearly affects the effective mass respon-
sible for the tachyonic instability of the Schwarzschild black holes, 
which now consists of two contributions: the ordinary mass and 
the curvature-induced mass. Consequently, the value of the cou-
pling constant λ, where the Schwarzschild solution develops a zero 
mode, changes with the vector field mass mA . Denoting this cou-
pling constant by λex, we thus obtain the existence line for the 
vectorized black hole solutions mA(λex).

We exhibit the existence line in Fig. 6. We show the vector 
field mass mA/M versus the coupling constant λex/M2 in Fig. 6(a). 
The figure shows, that the onset of the tachyonic instability of the 
Schwarzschild black hole is shifted to larger values of λ, when the 
vector field mass is increased. This is to be expected, since the fi-
nite vector field mass increases the effective mass in the vector 
field equation, which must then be compensated by a larger con-
tribution from the curvature-induced contribution to the effective 
mass, and this latter contribution is proportional to λ. When con-
sidering the vector field mass λ1/2

ex mA versus the coupling constant 
λex/M2, as shown in Fig. 6(b), we obtain basically a linear relation, 
also demonstrated in the figure by the linear fit.

The existence line depends only on the effective mass in the 
vector field equation (5) and thus the terms linear in the vector 
field. Higher powers of the vector field do not matter for the onset 
of the tachyonic instability. Therefore all three coupling functions 
possess the same existence line. Similarly, adding self-interaction 
terms to the potential V will also not affect the existence line. The 
effect of higher powers in the coupling function or in the potential 
does of course influence the domain of existence of the vectorized 
black hole solutions.

We exhibit in Fig. 7 the domain of existence of the vectorized 
black hole solutions for the coupling functions (i), (ii) and (iii) with 
6

potential V = 2m2
A Aμ Aμ , to illustrate the dependence on the vec-

tor field mass mA . Since the charge Q vanishes for solutions with 
non-zero vector field mass, we employ the horizon charge Q H, 
Eq. (26). Fig. 7(a) shows the horizon charge Q 2

H/λ versus the black 
hole mass M2/λ, and Fig. 7(b) the horizon charge Q H/M versus 
the coupling constant λ/M2. Analogously to the case of vanish-
ing vector field mass, the vectorized black hole solutions develop 
a curvature singularity at the horizon when M2/λ tends to zero. 
As noted above, the scaled curvature invariants at the horizon, 
Eqs. (33), are independent of the potential V (Aμ Aμ). The depen-
dence of the scaled curvature invariants on the vector field mass 
mA is seen in Fig. 4.

We illustrate the dependence of the horizon properties on the 
vector field mass mA in Fig. 8 for the coupling functions (i), (ii) 
and (iii) with potential V = 2m2

A Aμ Aμ . The reduced horizon area 
aH/M2 is shown in Fig. 8(a) and the reduced temperature tH M in 
Fig. 8(b). We note that also in the presence of a finite vector field 
mass mA the horizon area of the vectorized black holes is smaller 
than for the Schwarzschild black holes, and the area is smallest for 
the coupling function (i) and largest for (ii). But the area aH/M2

decreases less rapidly with increasing λ/M2, when the vector field 
mass increases. The temperature exhibits a similar dependence on 
the vector field mass.

Since the entropy of these vectorized black holes is simply 
given by a quarter of their horizon area, independent of the poten-
tial V , we conclude from Fig. 8(a) that as in the massless case the 
Schwarzschild black holes are entropically favored over the vector-
ized black holes, independent of the employed coupling function.

4. Conclusions

Here we have performed a first exploratory study of curvature-
induced spontaneously vectorized black holes. These novel black 
holes arise when a vector field is coupled to the GB term by em-
ploying a coupling function that is quadratic in the vector field. The 
GB term then induces a tachyonic instability of the Schwarzschild 
black holes, which start to grow vector hair.

We have allowed for three different types of coupling func-
tions in order to see their basic influence. However, unlike the case 
of curvature-induced spontaneously scalarized black holes, we did 
not observe distinctly different physical properties of the vector-
ized black holes for these coupling functions. In particular, for all 
coupling functions the branches of vectorized black holes extend 
from their bifurcation point to smaller values of the scaled cou-
pling constant M2/λ.

The bifurcation point does not depend on the coupling func-
tion. However it does depend on the mass of the vector field. 
With increasing mass the bifurcation point shifts to larger values of 
the coupling constant, while it is not affected by vector field self-
interactions. Radially excited spontaneously vectorized black holes 
also exist. Their bifurcation points are at smaller values of M2/λ

than the bifurcation point of the fundamental branch of vectorized 
black holes.

We have shown that independent of the coupling function and 
the vector field potential V , all fundamental branches extend to 
M2/λ → 0, where the vectorized black holes develop a curvature 
singularity at the horizon. The scaled Ricci scalar and the scaled 
GB invariant exhibit an exponential dependence on the scaled cou-
pling parameter, which results in a divergence in the limit.

We have also addressed some thermodynamic properties of 
the vectorized black holes. In particular, we have calculated the 
horizon temperature, the horizon area and the entropy. Along the 
branches of vectorized black holes the scaled temperature and the 
scaled entropy decrease monotonically with increasing coupling 
constant from the Schwarzschild values at the bifurcation. Thus for 
a given mass, the vectorized black holes have smaller area than 
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Fig. 5. Horizon properties for all three coupling functions (V = 0): (a) reduced horizon area aH/M2 vs coupling constant λ/M2; (b) reduced temperature tH M vs coupling 
constant λ/M2.

Fig. 6. Existence line: (a) vector field mass mA/M vs coupling constant λex/M2; (b) vector field mass λ1/2
ex mA vs coupling constant λex/M2 (solid) together with a linear fit 

(dotted).

Fig. 7. Domain of existence for coupling functions (i), (ii) and (iii) (V = 2m2
A Aμ Aμ) for several values of λm2

A : (a) vector charge Q 2
H/λ vs black hole mass M2/λ; (b) vector 

charge Q H/M vs coupling constant λ/M2.

Fig. 8. Horizon properties for coupling functions (i), (ii) and (iii) (V = 2m2
A Aμ Aμ) for several values of λm2

A : (a) reduced horizon area aH/M2 vs coupling constant λ/M2; (b) 
reduced temperature tH M vs coupling constant λ/M2.
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the Schwarzschild black holes. Since the GB term of the vectorized 
black holes does not contribute to their entropy, this entails that 
Schwarzschild black holes are entropically preferred.

There are various interesting directions to continue these in-
vestigations. These include foremost a mode analysis of the static 
spherically symmetric vectorized black holes and a generalization 
to the rotating case. But also a further analysis of the physical 
properties is called for, ranging from a study of their geodesics and 
lightrings to their accretion discs.
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