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Abstract 

The aim of this paper is to explain why Statistical Physics can help understanding 
two related linguistic questions. The first question is how to model first language 
acquisition by a child. The second question is how language cha.nge proceeds in 
time. 

Our approach is based on a Gibbsian model for the interface between syntax and 
prosody. We also present a simulated annealing model of langua.ge acquisition, which 
extends the Triggering Learning Algorithm recently introduced in the linguistic 
littera.ture. 
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1 Introduction 

The aim of this paper is to explain why Statistical Physics can help under­

standing two related linguistic questions. The first question is how to model 

first language acquisition by a child. The second question is how language 

change proceeds in time. 

We shall show that the Thermodynamical Formalism provides a suitable fram&­

work, in which the notions of prosodic pattern &nd syntax can be put together. 

They will both appear in the definition of the probability measure governing 

the choice of the sample of positive evidence offered to a child during the pro­

cess of acquisition of his mother tongue. We propose to define this probability 
measure M a Gibbs state in which the prosody is decribed by the potenti&l and 
the syntax is described by algebraic restricitons on the set of possible config­
urations. Roughly speaking, given a discursive context, the syntax says which 
sentences a.re available and prosody says what is the probability to choose a 
sentence among all the available ones. 

With this model it is possible to formulate precisely the structure recognition 
procedure which is behind language acquisition. Our model accounts for the 
robustness oflanguage acquisition even in the presence of a restricted sample of 
sentences provided as positive evidence. It also accounts for language change. 

Depending on the prosodic pattern, the identification procedure may lead the 
learning child to chose a grammar which differs from the parental one. 

This paper is organized as followa. In section 2, the linguistic theoretical fram&­

work is briefly sketched. In section 3, we present a Gibbsian model for the in­
terface between syntax and prosody. In section 4, we di8CU88 the relationship 
between structure recognition and language change. As an application, we di11-
cuss a concrete case of language change, the one which leads from Classical 
to Modem European Portuguese. Finally, in section 5, a simulated annealing 
model of language acquisition is introduced, as an extension of the Triggering 

Learning Algorithm recently introduced in the linguistic litterature. 

* Expanded version of a. talk presented by A.G. a.t StatPhys20. Work supported 
by FAPESP ( Projeto Tema.tico Rhvthmic pattema, parameter setting and language 
change, gra.nt 98/3382-0) 
1 Work partially supported CNPq (grant 301301/79) and FINEP (Nucleo de Ex­
celencia •Critical phenomena in pn,bal>ilitg and ,tocha,tu: proce,se11" 
~ Work partially supported by CNPq (grant 301086/85) 
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2 Linguistic framework 

The view of language that has developed in modern linguistics is that there 
is a genetic inherited linguistic capacity which makes children able to learn a 
language. This linguistic capacity is characterized by a finite set of constraints, 
what Chomsky calls the Universal Grammar. Any particular solution of these 
constraints is called a grammar and defines in a precise way a natural language. 
Moreover, each grammar can be defined in terms of a finite (and not large) 
number of parameters each of which takes one of a small number of values. 

As a consequence of this, first language acquisition is a process in which these 
parameters are set in a particular way. To do this the learning child assigns 
syntactic structures to the ordered strings of words he is exposed to as positive 
evidence from the parental language. The values of the parameters are iden­
tified when a structure is assigned to each one of the strings of words present 
in a sample rich enough. 

To make guesses about the structures of the sentences of the sample the 
child takes advantage of the hints which are provided by the parental prosody 
( cf.[20,21] ). Informally speaking, the prosody of a language is its characteristic 
music, which contains, among other things, its typical stress and intonational 
patterns. 

It is important to emphasize that most psycholinguists agree that first lan­
guage acquisiton is an unsupervised learning process, in the sense that only 
positive evidence is taken into account by the child (c.f. [191). 

Language change takes place when a generation of learning children assign 
structures which are different from the ones assigned by their parents to some 
of the sentences in the sample. It has been argued that some of these changes 
may have been induced by a change of the prosodic patterns of the language. 
Our model provides a clear picture of this effect. 

The point of view we adopt here is based on the Principles and Parameters 
approach to grammar which has been developed by Chomsky and collabora­
tors in the last three decades. For an up-to-date presentation of this approach 
we refer the reader to [9]. 

The present paper is part of a research project at the interface between lin­
guistics and statistical-physics. More details about this project can be found 
at the URL http://vvv.ime.usp.brrtycho. 
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3 A Gibbsian model for the interface between syntax and prosody 

The model describes the way a speaker chooses a sentence in a given discursive 
context. This choice is made among all the sentences made available by his 
grammar. The basic idea is that this choice is driven by euphonic consider­
ations. In other terms, the better the prosodic contour of a sentence fits the 
prosodic pattern of the language, the more likely this sentence is the one to 
be chosen. 

A Gibbs state expresses this in a natural way. On one hand, each specific gram­
mar defines a set of possible configurations of the system. On the other hand, 
prosody is described by the thermodynamical potential, which tells which con­
figurations are more likely to occur, among the possible ones. 

In a realistic linguistic situation, the description of the set of all possible 
configurations usually demands a detailed discussion of the values assumed 
by the relevant linguistic parameters. In order to simplify our presentation, 
we shall discuss here a simplified model, using what in Chomsky's hierarchy 
is called regular grammars (d.(7,81). This is a particular case of the model 
introduced in (10], to which we refer the reader for a more general presentation 
of our results, with rigorous mathematical proofs. 

In this simplified model we shall suppose that the different grammars act 
on the same finite set of word categories A. From now on, we shall use the 
shorthand word instead of word category. The class of grammars we consider 
a.re topologically markovian and each grammar g can be identified by a matrix 
indexed by A and with entries equal to O or 1. The set of all the sentences of 
length n generated by g is the set 

L,.(g) = {(x1, · · ·, x,.), x; EA, g(x;, x;+i) = 1, 1 $ j $ n - 1} . (1) 

This means that the grammaticality of a sentence (xi,•••, x,.), according to 
grammar g, depends only on the allowance of each transition (x;,x;+i) ex­
pressed by the fact that g(x;,x;+1 ) = 1. We will denote by Q the set of all 
such grammars. It is natural to assume that the grammars in Q a.re irreducible 
and aperiodic matrices. 

From now on we shall use xi as a shorthand for (xi,•••, x,.). 

Let us now suppose that '{) is a. real function on Am where m is a positive 
integer. For any n > m we define a Gibbs state p:,s on L,.(g) in the usual 
way by 

p,,..s( ") = exp[-H,,.(xi)] ITj;f g(x;, z;+1) 
R X1 Z ( ) ' .. rp,g 

(2) 
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where 

n-m+l 

H,,,(x~)=- L cp(x;,·",Xi+m-1) (3) 
i=l 

and 

{ 

-1 } Z,.(cp,g) = L exp (-H..,(y1)] IJ g(y;, Y;+1) 
vi j=l 

(4) 

is the partition function. 

With this simple model it is possible to give a precise formulation to the ques­
tion of how prosody provides hints to language acquisition. We are interested 
in the problem of identifying a gramma.r in Q given a sentence x1 produced 
by a fixed but unknown grammar. We assume that the prosody, given by the 
potential cp, has been already acquired and is, therefore, known and fixed. 

A first natural trial is to treat this as the statistical problem of estimating the 
grammar by a Maximum Likelihood procedure. This amounts to looking for 
the grammars g which maximize the probability P:•K(xr). Since in this simple 
model the hamiltonian H.., does not depend on g, the maximum likelihood 
procedure amounts to minimizing the partition function Z,. ( cp, g ). Needless to 
say that this is a standard statistical physics question. 

Let g .. (xj') be the matrix defined by assigning the value 1 to all the entries 
which appear as transitions in the sentence xj', and the value O to all the other 
entries. We now have the following theorem 

Theorem 1 For any cp and any 9o E Q, the estimator 9n ( xj') is the maximum 
likelihood estimator of the parental grammar, given the sample x1. Moreover, 
there exists p E (0, 1) such that for any n large enough 

(5) 

For the proof we refer the reader to (10]. 

This result is quite satisfactory if all we need is a statement about the ro­
bustness of the acquisition procedure. It says that the learning child always 
identifies the parental gram.mar 9o if he has a large enough sample of positive 
evidence. However, this is not what happens in real life, in which from time to 
time a generation of children chooses a grammar which is different from the 
parental one. 

5 



To improve the model in order to cover situations of language change we have 
two possibilities. The more realistic one is to add an additional feature to the 
model, namely the fact that a sentence is not only an ordered string of words, 
but it h1111 also a syntactic structure produced by the grammar. This structure 
is not explicit in the sample and must be guessed by the learning child. In this 
extended model the maximum likelihood procedure may lead to the choice of 
a new grammar. An example of this will be presented in the next section. 

The other possibility it is to use a different criterion to choose a grammar. In­
stead of minimizing the partition function Zn(r.p,g), we shall look for a gram­
mar g which minimizes the entropy of P:,11. 

Let us define the entropy of the Gibbs state P:•' defined on L,.(g) as 

h(P:,11) = - :,EP:,.(xi)logP:,.(xi). (6) 
•! 

Given an ordered string of words xi we define the Minimum Entropy Subset 
£,,.(xi) by 

£.,(xi)= {g E Cl : xi E L,.(g) and h(P!.s) is minimal } . (7) 

We may now introduce the Minimum Entropy procedure. Given r.p, xi the 
learning child chooses a grammar belonging to £ .. (xi)-

Let us define the variation var( r.p) as 

Then the following theorem holds 

Theorem 2 There ezists a poaitive real number r, such that for any potential 
r.p such that var( r.p) ~ r and any grammar g 

(9) 

Theorem 2 says that the minimum entropy procedure coincides with the max­
imum likelihood procedure and identifies correctly the parental grammar, 
whenever the prosody is not too biased. This accounts for the robustness 
of the acquisition procedure. However, it i.s possible to choose the potential r.p 
in such a way that the minimum entropy procedure leads to a new grammar. 
It is important to emphasize that this new grammar may be strictly greater 
than the maternal one. Here we are defining an order relation on g in the 
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usual way: g < g' means that g(x,y) S g'(x,y) for all pair of words x and y 

and there exists at least one pair (x, y) for which g(x, y) < g'(z, y). 

This is the content of the next theorem. 

Theorem 3 For any g and g' in g, such that g < g', there exi.sts a potential 
<.p such that 

We refer the reader to [10) for the proofs of theorems 2 and 3. 

A simple example may help the reader to understand what is the situation 
expressed by theorem 3. Let us take A= {1, 2} and 

g(l, 1) = g(l, 2) = g(2, 1) = 1 and g(2, 2) = 0. (11) 

Let's now take the potential 'f a.cting only on pair of points (m = 2). If 'f 
gives an overwhelming weight to the transition (2, 2) which is not allowed by 
g, then the minimum entropy procedure leads to the choice of the grammar 
g' allowing all the transitions (g'(x, y) = 1, for all pair of words x and y). 
In effect, g' is able to generate any sentence generated by g and moreover as 
sentences generated by P:,g' typically consist of very long sequences of 2, its 
entropy is very small. 

Statistical analyses based on entropy considerations go back at least to the 
seminal work of Kullback (18], who showed that the notion of relative entropy 
appears naturally in maximal likelihood estimation. However, in our approach, 
entropy appears in a different way, close to the concept of measure of diversity 
like the Sba.n.uon index and Renyi's a-entropy (cf. [22]). A very nice related 
paper in the context dynamical systems is [6]. 

4 Structure identification and language change 

A sentence produced by a grammar is not only an ordered string of words, 
it also has a structure. This structure is only indirectly indicated, through 
intonation, stress and other prosodic features. A native speaker is able to 
parse a sentence produced by his grammar, using these prosodic hints, as well 
as his own knowledge of the grammar. But a learning child, before he sets the 
parameters of Universal Grammar, must guess the structures of the sentences 
he receives. In this section we shall discuss this iSBue, by extending the model 
introduced in section 3. 
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In this extended model, a. sentence will be an ordered string 

(12) 

where x1 , • •• , x,. are words belonging to A and B1 , ••• , B,._1 are hidden syn­
tactica.l positions, which may either be occupied by a. boundary mark I or 
empty. 

Let us call A the set 

A=AU{I}- (13) 

As before a. gra.mma.r will be a.n element of (J, the set of a.II matrices indexed 
by A, with entries equal to O or 1. As in section 3, we shall assume that these 
matrices a.re irreducible and aperiodic. To avoid ambiguities, we shall also 
impose an extra constraint: for any g E O and any ordered couple of words 
(x,y), we have 

g(x,y)g(x, I )g( I ,Y) = 0 • (14) 

Given a grammar g E (;, a sentence of length n generated by g is any ordered 
string (x1, B1, x2, B2, · · ·, B,.-1, x,., B,.), such that 

where 

and 

.. -1 

IT x,11 (x;,B;+1,Xi+1) = 1, 
i=l 

(15) 

Before introducing the prosodic potential, we must add an extra. detail to the 
picture. Words came from A with a. stress mark. To simplify, we may 888ume 
that this mark has only two values, say "atressed" and "unstressed", which 
will be represented by the symbols + and -, respectively. The Boltzmann­
Gibbs weight of a sentence will be a function only of the ordered string of 
stress marks of the words and the boundary marks I which are present in 
the sentence. 
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Let 'f' be a real function on {-,+}2. The hamiltonian fl,, will be defined as 
follows 

n-1 
H,,(x1, B,, x2, · .. , B,._,,x,.) = L U,p(x;, B;+1,Xi+1) (18) 

i=l 

with 

if B;+l = I 
if B;+i is empty 

where s; and s;H are the stress marks of x; and x;+i respectively. 

Now we define the Gibbs state p~,g as 

P~•g(x1, B1, · · ·, Bn-1, x,.) = 
exp[-H,p(x,, B1,'' •, Bn-1,x,,)] TT;'.:/ xg(x;, B;+i, X;+i) 

Z,.(r.p,g) 

where Z,,(r.p,g) is the partition function. 

(19) 

(20) 

(21) 

A mother speaking to her child offers him a long sentence (x1 , Bi,···, B,._1, x,.). 
But the only explicit data he receives is (xi,•··, x,.). He must estimate the 
hidden structure (Bi,···, B,._1 ), using his previous knowledge of rp. The esti­
mation can be done using a Maximum Likelihood procedure. This amounts to 
look for a grammar g which assigns to that specific ordered string of words a 
sequence of syntactic marks (Bf,···, B:-,) such that Ji,,(xi, Bj_, • · ·, B:-i, x,.) 
is minimum. 

Remember that the mother must obey the interdictions of her own grammar, 
but the child is free to choose any grammar which is able to produce the string 
of words his mother offered to him. This opens the possibility of language 
change, even using the Maximum Likelihood procedure. 

An example will help understanding this point. Let's take A= {1, 2} and let's 
assume that the stress mark of 1 is+ and the stress mark of 2 is -. Let us 
suppose that the the maternal grammar is g defined as follows 

g(l, 1) = g(l,2) = g(2, 1) = g(2, I)= g( I ,2) = 1. (22) 

If cp(l, I ) > 0 , cp(l, I ) > 0 and i;(2,2) > 0, the maximum likelihood 
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procedure will lead to the choice of the grammar g' defined as follows 

g'(l, I ) = g'( I , 1) = g'(2, 2) = g'(l, 2) = g'(2, 1) = 1. (23) 

This example mimics in a very simplified way the mechanism behind the 
change which leads from Classical to Modem European Portuguese. The in­
terested reader can find a detailed discussion of this in [13]. 

5 A simulated annealing model of language acquisition 

The Trigger Leaming Algorithm was recently introduced in the linguistic lit­
erature (cf.[15,11,1]). This algorithm models language acquisition by a child 
as a stochastic process taking values in the set () of all natural grammars. The 
algorithm explores () in a random way, deciding at each step of the procedure 
either to stay at the grammar at which it arrived at the previous step or to 
jump to a neighbor obtained by modifying the value of one randomly chosen 
parameter. This decision is taken under the stimulus of a random sample of 
sentences belonging to the parental language. The jump takes place if and only 
if this sample can be generated by the new but not by the actual grammar. 

It follows from this definition that the algorithm stops its search when, for the 
first time, none of the grammars in the neighborhood is able to do any better 
than the actual grammar. This happens in particular (but not only) any time 
the parental grammar is reached. 

Even if this issue is not raised in an explicit form in the linguistic literature, 
the aim of the algorithm is to achieve a maximization procedure, namely to 
find the grammars which maximize a given family of evaluation functions. 
However, given the way the algorithm is defined, the process may get trapped 
by grammars which are not global maxima of the family of fitness functiOilB. 
This is a major problem for the Trigger Learning Algorithm since the fact of 
getting trapped somewhere is the only way it has to choose a grammar. 

To avoid the problem of the algorithm getting trapped in grammars which 
are not global maxima there are two possibilities. The first one is to allow the 
algorithm to perform jumps between grammars which are not neighbors. This 
hypothesis does not seem to correspond to a realistic situation. 

The second solution is obtained by weakening the restriction about jumps 
which do not increase the evaluation function, which will be no more forbid­
den, but only strongly depressed. In this section we show how to implement 
this alternative solution, by using a suitable generalization of the simulated 
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aIJIJealing process (cf. [14] for a nice introduction to the subject, with appli­
cations). 

Let us suppose that grammars are characterized by N binary parameters and 
that the set g of all possible grammars can be identified with the set {O, l}N 
of all ordered sequences of N elements assuming the values O and 1. 

Two grammars g and g' are said to be neighbors if they have all the pa­
rameters set at the same values with the exception of one. Given g E g and 
i E { 1, 2, · · · , N}, let 118 denote by g' the grammar obtained by setting all the 
parameters as in g, with the exception of the parameter of index i. 

Let !JO be the parental grammar. Let us call L(g0 ) the set of all the sentences 
offered as evidence of !Jo during acquisition. It is natural to assume that there 
exists a maximal length M for the sentences offered to the learning child 
during acquisition. Therefore we may take 

(24) 

where Ln(!Jo) denotes the set of all the sentences of length n generated by !Jo. 

Let 118 suppose that for each sentence T/ from the parental language £(90), 
there exists an evaluation function /.,, which associates a strictly positive real 
number to each grammar g E g. 

A natural class of evaluation functions is the following. For any fixed grammar 
g E g, let w1 be the function which associates to each ordered string of words 
xj either its structure according to g, in case there is one available , or a 
special symbol t, in case there is none. 

A mother offers a sentence T/ = (xj, wgo(x)) from L(g0 ) to her child. However, 
the only explicit data received by the learning child is the string of words xj. 
Let ,p be the potential defining the parental prosody. Since the learning child 
has already acquired rp, he can evaluate a candidate grammar g looking at the 
value of H,p(rj, w1 (x)). Therefore, it is natural to define/., as the Boltzmann­
Gibbs weight 

(25) 

with the convention that 

exp(-.H,p(x~, t)] = 0. (26) 

What follows does not depend on the particular way we define the class of 
evaluation functions. 
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The model is defined as follows. The mother offen a sequence of sentences to 
her child. Let us suppose that this choice is made at each step independently 
of the former choices and with the same law p. The distribution remains fixed 
during the evolution of the process. The only assumption we make about p it 

is that p(77) > 0 for every '1 E L(gu). 

Let us suppose that after t - 1 steps, the algorithm has reached the grammar 
g. The choice of the position at time t id made as follows. 

A para.meter index i E {1, • • ·, N} is chosen at random and with uniform 
distribution. At time t + 1 the process updates its value to yi with probability 

(27) 

where '71 is the sentence offered to the learning child at time t and (lh, /31, • • ·) 

is a sequence of positive real numbers diverging sufficiently slowly to +oo. 

Let us call { G,, t = 0, 1, · • ·} the non homogeneous Markov chain defined this 
way. By construction its transition probability matrix at time t is 

for any g and any i and 

N 

Q,(g,g) = 1- :EQ,(g,i). 
i=l 

Let us call ,r, be its invariant probability measure. 

The existence of the limits 

lim ,r1(g) = ,r(g) , 
t➔+oo 

and 

lim P {G, = g} = ,r(g), 
f➔+oo 

for any g E {i, follows in a standard way under conditions like 

/3, :5 Clogt, 
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where C > 0 is a suitable constant which depends only on the family of 
evaluation functions (d. [16,171). 

The interesting issue here is to find necessary and sufficient conditions on the 
family {f.,, '1 E L(9o)} assuring that the limit distribution 71' is a Dirac measure. 
In effect, it is reasonable to expect that in a given community, in which all 
the adults have the same gram.mar and prosody, all the learning children 
will converge to the same and unique gram.mar. It is important to emphasize 
that this unique grammar may be different from the grammar spoken by the 
generation of the adults. 

The following theorem holds 

Theorem 4 A sufficient condition for the process ( Gt) to converge in law to 
a Dirac measure is that there exists a grammar g, a sentence ii and an index 
'i such that 

(33) 

for all g f g, and all j and(. 

This section is based on [2-4]. It will appear in a more general context in a 
forthcoming article [5]. 
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