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Available online 22 January 2019 which quantum effects should dominate. In 2012, experimental measurements of

electric resistance of nanowires in Si doped with phosphorus atoms demonstrate that

é\gggo quantum effects on charge transport almost disappear for nanowires of lengths larger
39A70 than a few nanometers, even at very low temperature (4.2 K). We mathematically
60F10 prove, for non-interacting lattice fermions with disorder, that quantum uncertainty

of microscopic electric current density around their (classical) macroscopic values
Keywords: is suppressed, exponentially fast with respect to the volume of the region of the
Fermionic charge transport lattice where an external electric field is applied. This is in accordance with the above
Disordered media experimental observation. Disorder is modeled by a random external potential along
Combes—Thomas estimates with random, complex-valued, hopping amplitudes. The celebrated tight-binding

Large deviations Anderson model is one particular example of the general case considered here. Our

mathematical analysis is based on Combes—Thomas estimates, the Akcoglu—Krengel
ergodic theorem, and the large deviation formalism, in particular the Gartner—Ellis
theorem.
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RESUME

Le besoin croissant de composants électroniques de plus en plus miniatures a
rendu incontournable la connaissance des limites de la théorie classique de la
conductivité électrique, sachant que les effets quantiques devraient dominer &
I’échelle atomique. En 2012, une mesure expérimentale de la résistance électrique
de fils nanoscopiques composés de silicium dopé avec des atomes de phosphore
démontre que les effets quantiques disparaissent pour des fils de seulement quelques
nanometres, et cela méme & trés basses températures (4.2 K). Nous montrons
mathématiquement, pour des fermions libres dans un milieu désordonné sur réseaux,
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que lincertitude quantique de la densité de courants microscopiques autour de sa
valeur macroscopique classique décroit exponentiellement avec le volume de la région
ol le champ électrique est appliqué. Ceci corrobore I’expérience de 2012. Le désordre
est modélisé par un potentiel extérieur aléatoire, mais aussi par des amplitudes
aléatoires de saut entre les sites. Le célébre modeéle d’Anderson sur réseaux est juste
un exemple particulier du cas général traité ici. Notre analyse mathématique est
basée sur ’estimée de Combes—Thomas, le théoréme ergodique d’Akcoglu—Krengel,
et le formalisme des grandes déviations, en particulier le théoréme de Gartner—Ellis.

© 2019 Elsevier Masson SAS. All rights reserved.

1. Introduction

The classical conductivity theory of materials, based on the existence of a well-defined bulk resistivity, was
expected to break down as atomic scales and low temperatures are reached, because quantum effects would
dominate. In particular, the linear dependence of the resistance as a function of the length of conducting
nanowires should be violated at atomic lengths, as explained in [1].

The growing need for smaller electronic components has recently sparked the interest in such a question.
For instance, in 2006, the validity of the classical theory was experimentally verified, at room temperature,
for nanowires in InAs with lengths down to ~ 200 nm [2]. Indeed, the measured resistivity for the nanowires
is 23 Q/nm, which is very near to the resistivity deduced from bulk properties of the material (24 2/nm).
See [2, discussions after Eq. (2)]. A few years later, in 2012, the same property was observed [3], even at
very low temperature (4.2 K) and lengths down to 20 nm (atomic scale), in experiments on nanowires in
Si doped with phosphorus atoms. The breakdown of the classical description of these nanowires is expected
[1] to be around ~ 10 nm (at similar temperature) since other experimental studies [4,5] on similar doped
Si wires show strong deviations from bulk values of the resistivity around this length scale.

These experimental results demonstrate that quantum effects on charge transport can very rapidly dis-
appear with respect to (w.r.t.) growing space-scales. We mathematically prove this fact by studying the
suppression rate of the probability of finding microscopic current densities that differ from the macroscopic
one. Observe that [6,7] already proved the convergence of the expectation values of microscopic current den-
sities, but no information about the suppression of quantum uncertainty was obtained in the macroscopic
limit.

There is a large mathematical literature on charged transport properties of fermions in disordered media,
for instance by Bellissard and Schulz-Baldes in the nineties [8,9] or, more recently, by Klein, Miiller and
coauthors [10-14]. See also [15,16] and references therein, etc. However, it is not the purpose of this intro-
duction to go into the details of the history of this specific research field. For a (non-exhaustive) historical
perspective on linear conductivity (Ohm’s law), see, e.g., [17] or our previous papers [6,7,18-22].

In spite of that large mathematical literature on quantum charged transport, the study performed in
the current paper covers a completely new theoretical aspect of this problem, not exploited in the available
literature, yet. Observe that although we were able in [7] to deal with interacting fermions, in the present
paper we restrict ourselves to the non-interacting case, similar to [6]. Within the class of non-interacting
particles the considered Hamiltonians are however completely general, since disorder is defined via random
potentials and random, complex valued, hopping amplitudes, which are only assumed to have ergodic
distributions. The celebrated tight-binding Anderson model is one particular example of the general case
analyzed here and models with random vector potentials are also included within the present study.

We prove that quantum uncertainty of microscopic electric current densities (around their classical,
macroscopic values) is suppressed, ezponentially fast w.r.t. the volume |Ay| = O(L?) (in lattice units (Lu.),
d € N being the space dimension) of the region of the lattice where an external electric field is applied.
In order to achieve this, we use the large deviation formalism [23,24], which has been adopted in quantum
statistical mechanics since the eighties [25, Section 7]. Other mathematical results which are pivotal in
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our analysis are the Combes—-Thomas estimates [26,27], the Akcoglu-Krengel ergodic theorem [28] and the
(Arzela-) Ascoli theorem [29, Theorem AS5]. Indeed, combined with the celebrated Géartner—Ellis theorem
(Theorem B.1), they allow us to prove a large deviation principle (LDP) for the current density distributions,
which quantify the probability of deviations, due to quantum uncertainty, from the expected value.

The interacting case, as studied in [7,21], is technically much more involved. The mathematical techniques
allowing to tackle such questions for interacting fermions are partially developed in [25,30], and use Grass-
mann integrals and Brydges—Kennedy tree expansions to construct Gartner—Ellis generating functions. For
the non-interacting case, in order to study properties of Gartner—Ellis generating functions, one can use the
Bogoliubov-type inequality

|In tr (Ce") —Intr (CeH")’ < sup sup ‘ euleit(-a)Ho) (g _ ) e~u(aHit+(1-a)Ho)

a€l0,1] ue[—1/2,1/2]

‘B(C”) ’

where Hy, H; are arbitrary self-adjoint matrices, C' is any positive matrix and tr denotes the normalized
trace. See [31, Lemma 3.6] or Lemma 4.2 below. The above bound turns out to be useful for fermionic
systems that are quasi-free (i.e. Hy, H; are polynomials of degree two in the fermionic creation and anni-
hilation operators). In this special case, the right-hand side of the inequality can be efficiently bounded by
[H1 — Hol|g(cn), using Combes-Thomas estimates. In contrast, for interacting fermions, explicit examples
for which the right-hand side is arbitrarily bigger than |[Hy — Ho||g(cn) at large volumes are known [32].

Our main results are Theorems 3.1, 3.4 and Corollaries 3.2, 3.5. From the technical point of view,
Theorem 3.1 is the pivotal statement of the paper, the other assertions, basically the LDP for currents
with a good rate function (Theorem 3.4 and Corollaries 3.2, 3.5), being all deduced from Theorem 3.1
by relatively standard methods of large deviations. Theorem 3.1 refers to the existence, continuity and
differentiability of the (infinite volume) deterministic generating function for currents, which appears in the
Gértner—Ellis theorem (Theorem B.1). Besides the Bogoliubov-type inequality, as discussed above, its proof
requires the Akcoglu-Krengel ergodic theorem [28] as an important argument, for one has to control the
thermodynamical limit of (finite volume) generating functions that are random. To make possible the use
of this important result from ergodic theory, various technical preliminaries are needed and the proof of
Theorem B.1 is highly non-trivial, as a whole: We perform a rather complicated box decomposition of these
random functions, which can be justified with the help of the Bogoliubov-type inequality and the “locality”
(or space decay) of both the quasi-free dynamics and space correlations of KMS states, as a consequence of
Combes—Thomas estimates (Appendix A).

To conclude, this paper is organized as follows:

e In Section 2, the mathematical setting is described in detail. It refers to quasi-free fermions on the lattice
in disordered media. We also discuss the physical motivations of the model, which are supplemented by
Appendix C to reduce the length of this section.

o In Section 3, the main results are stated and the large deviation (LD) formalism is shortly defined,
being supplemented by Appendix B. More precisely, we present the mathematical statements related
to the existence of generating functions of the LD formalism, an LD principle (LDP) for currents, as
well as the behavior of the corresponding rate function. We finally combine them to state and discuss
the exponentially fast suppression of quantum uncertainty of currents around the classical value of the
current.

e Section 4 gathers all technical proofs. In particular, Bogoliubov-type inequalities discussed above are
stated and proven in Section 4.1. Section 4.2 collects some useful, albeit elementary, properties of
bilinear elements, which are basically quadratic elements in the CAR algebra resulting from the second-
quantization of one-particle operators. Then, in Section 4.3, we show that current observable are bilinear
elements associated with explicit one-particle operators that satisfy several explicit estimates. These up-
per bounds are pivotal for the proof of our main theorem, i.e., Theorem 3.1, which, effectively, only starts
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in Section 4.4 and is finished in Section 4.5 with the use of the Akcoglu—Krengel ergodic theorem [28]
and the (Arzela-) Ascoli theorem [29, Theorem A5].

e We finally include Appendices A, B and C, stating general results used throughout the current paper, in
a way well-adapted to our proofs. Appendix A is about the Combes—Thomas estimates while Appendix B
explains the large deviation formalism, in particular the Gértner—Ellis theorem. Appendix C contains
supplementary information on the mathematical framework and relevant physical concepts, in order to
make unnecessary the use of further references for a clear understanding of the subject of the current
paper. More precisely, Appendix C summaries some important results on linear response current of our
papers [6,7,18-22]. Appendix C.2 explains the origin of current observables in relation with the discrete
continuity equation within the CAR algebra. Finally, Appendix C.3 makes explicit the link between
the algebraic formulation we use here and the (more popular) one-particle Hilbert space formulation of
non-interacting fermion systems.

Notation 1.1. A norm on a generic vector space X is denoted by || - ||x. The space of all bounded linear
operators on (X, || - ||x) is denoted by B(X). The scalar product of any Hilbert space X is denoted by (-, ) x.
Note that Rt = {z € R : 2 > 0} while R§ = R* U {0}.

2. Setup of the problem

We use the mathematical framework of [7,22] to study fermions on the lattice. For simplicity we take a
cubic lattice Z¢, even if other types of lattices can certainly be considered with the same, albeit adapted,
methods. Disorder within the conductive material, due to impurities, crystal lattice defects, etc., is modeled
by (a) a random external potential, like in the celebrated Anderson model, and (b) a random Laplacian,
i.e., a self-adjoint operator defined by a next-nearest neighbor hopping term with random complex-valued
amplitudes. In particular, random vector potentials can also be implemented.

Altogether, this yields the random tight-binding model mathematically described in Section 2.1: The
underlying probability space is defined in Part (ii) of that subsection, while the one-particle Hamiltonian
driven the non-interacting (or quasi-free) lattice-fermion system is explained in Part (iii), see in particular
Equation (4). Then, we apply on the quasi-free fermion system in disordered media some time-dependent
electromagnetic fields and look at the linear response current density in the thermodynamic limit of macro-
scopic electromagnetic fields. This study is already done in great generality in [7,21,22] and we shortly
explain it in Section 2.3, with complementary explanations postponed to Appendix C. Then, we will be
in a position to state the main results of the paper about the exponential rate of convergence of current
densities in the limit of macroscopic electromagnetic fields.

Observe that no interaction between fermions are considered in the sequel and one can do all our study
on the one-particle Hilbert space, as illustrated in Appendix C.3. Despite this, our approach is based on the
algebraic formulation of fermion systems on lattices explained in Section 2.2 because it makes the role played
by many-fermion correlations due to the Pauli exclusion principle, i.e., the antisymmetry of the many-body
wave function, more transparent. For instance, the conductivity is naturally defined from current-current
correlations, that is, four-point correlation functions, in this framework. The algebraic formulation also allows
a clear link between transport properties of fermion systems and the CCR algebra of current fluctuations
[20]. The latter is related to non-commutative central limit theorems (see, e.g., [33]). On top of this, the
approach ensures a continuity with our previous results while making much clearer its extension to a study
of interacting fermions for which the algebraic formulation is very advantageous. This paper can thus be
seen as a preparation to do a similar study for interacting fermions. Such an analysis has already started
with [25,30] via (highly technical) constructive methods used in quantum field theory, which will allow us
to obtain convergent expansion schemes around the quasi-free case for generic generating functions.
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Random tight-binding model

(i): The host material for conducting fermions is assumed to be a cubic crystal represented by the

d-dimensional cubic lattice Z¢ (d € N). Below, Px(Z%) C 22" is the set of all non-empty finite subsets
of Z%. Further,

D={z€C: |2|<1} and b= {{z,2'} CZ% |z —2/|=1}

is the set of (non-oriented) edges of the cubic lattice Z.

(ii): Disorder in the crystal is modeled by a random variable taking values in the measurable space (92, 2gq),

with distribution ao:

Q:

QLQ:

ao:

Elements of Q are pairs w = (w1, ws) € Q, where w; is a function on lattice sites with values in the
interval [—1,1] and ws is a function on edges with values in the complex closed unit disc D. Le.,

Q= [-1,1]% x D"

Let Qg}), x € Z%, be an arbitrary element of the Borel o-algebra ngcl) of the interval [—1, 1] w.r.t. the
usual metric topology. Define

Q[[_Ll]zd = ® ngl),

reZd

»a is the o-algebra generated by the cylinder sets [] Q&l), where Qg) = [-1,1] for all but
zeZ4

ie., 91[71’1]

finitely many z € Z¢. In the same way, let

Ape = X)AY)

x€Eb

where Ql§(2)7 X € b, is the Borel g-algebra of the complex closed unit disc D w.r.t. the usual metric
topology. Then

Qlﬂ = Q’l[—l,l]zd ®Q[]D)b .

The distribution ag is an arbitrary ergodic probability measure on the measurable space (2,2q). Le.,
it is invariant under the action

~—

(w1, ws) —> X;Q) (w1, we) = (ngZd) (w1) 7Xg(cb) (wz)) ) z ez, (1

of the group (Z%, +) of translations on Q and aq(X) € {0,1} whenever X € g, satisfies X;SUQ) X)=2x
for all z € Z?. Here, for any w = (w1,ws) € Q, x € Z% and y,y’ € Z¢ with |y — /| =1,

XED (@) () =wn (y+2), X (@) (9,0} = w2 ({y + 2.9 +2}) - (2)

As is usual, E[-] denotes the expectation value associated with aq.

iii): The one-particle Hilbert space is h = ¢2(Z%; C) with scalar product (-,-)y. Its canonical orthonormal
b

basis is denoted by {e, }

vezas which is defined by e, (y) = 0, for all 7,y € Z%. (6, is the Kronecker delta.)
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To any w € Q and strength ¢ € R{ of hopping disorder, we associate a self-adjoint operator A, y € B(£%(Z4))
describing the hoppings of a single particle in the lattice:

d
[Bua(¥)](@) = 2dib(@) = 3 (1 + Do,z = e)) vle — ¢;)
U@+ e)(1+ dws (o, + ¢;))) (3)

for any z € Z% and ¢ € (?(Z%), with {ek}gzl being the canonical orthonormal basis of the FEuclidean
space R%. In the case of vanishing hopping disorder ¥ = 0, (up to a minus sign) Ay 0 is the usual
d-dimensional discrete Laplacian. Since the hopping amplitudes are complex-valued (ws takes values in D),
note additionally that random vector potentials can be implemented in our model. Then, the random tight-
binding model is the one-particle Hamiltonian defined by

B = Apgt+dor,  w=(wi,w0) €Q A\ D RS, )

where the function wy: Z% — [~1,1] is identified with the corresponding (self-adjoint) multlphcatlon oper-
ator. We use this operator to define a (infinite volume) dynamics, by the unitary group {e”h }teR, in the
one-particle Hilbert space h. Note that the tight-binding Anderson model corresponds to the special case
9 =0.

@ Let

3= {ZCQZ (VZ1, Z5 € 2) Z1¢22:>Zlm22:(2)}’
3={Z€3: |Z|<ocand (VZ€ Z) 0<|Z] < oo}.

One can restrict the dynamics to collections Z € 3 of disjoint subsets of the lattice by using the orthogonal
projections Py, A C Z?, defined on h by

Pa(e)](z) = {W)’ ifrel (5)

0, else.

Then, the one-particle Hamiltonian within Z € 3 is

= 3" Pzh @) Py, (6)
zZeZ

ith'

leading to the unitary group {e'*"z }teR This kind of decomposition over collections of disjoint subsets of

the lattice is important in the technical proofs.

(V_): By the Combes—Thomas estimate (Appendix A),

<e$,e”h5;)ey> ‘ < 36eltnl—2unlz—yl (7)
b
for any n,u € R, 2,y € Z%, Z € 3, w € Q, and \,9 € R, where

o g

See Corollary A.3, by observing that the parameter S defined by (A.4) is bounded in this case by S( P u)
2d(1 4 9)e.
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2.2. Algebraic setting

Although all the problem can be formulated, in a mathematically equivalent way, in the one-particle
(or Hilbert space) setting (Appendix C.3), since the underlying physical system is a many-body one, it is
conceptually more appropriate to state the large deviation principle (LDP) related to microscopic current
densities within the algebraic formulation for lattice fermion systems:

(i): We denote by U = Uy, the CAR C*-algebra generated by the identity 1 and elements {a (1) }ycp satisfying

the canonical anticommutation relations (CAR): For all ¢, p € b,

a(¥)al(p) = —a(p)a(y), a(p)ale)” +alp) a(y) = (¥, @)y 1. (9)

Note that CAR imply that, for all ¢ € b,

la()llee < 140l » (10)

and the map ¢ — a(v)* from h to U is linear. As is usual, a(¢)) and a(y))* are called, respectively, annihilation
and creation operators.

(ii): For allw € Q and A\, 9 € R, the dynamics on the CAR C*-algebra U is defined by a strongly continuous

group 7 = {Tt(w)}teR of (Bogoliubov) #-automorphisms of U satisfying

7a(@) = a@™ ), teR, peb. (11)

See (4) as well as [34, Theorem 5.2.5] for more details on Bogoliubov automorphisms. Similarly, for any
Z € 3, we define the strongly continuous group 7(“ %) by replacing h(“) in (11) with h(zw) (see (6)). In order
to define the thermodynamic limit, we introduce the increasing family

Agi{(zl,...,xd)GZd:|x1|,...,|xd|§€}, EERS‘, (12)

@) — @z}

in P¢(Z%). Observe that, for any ¢ € R, Tt(w’{AZ}) converges strongly to 7, Tt( , as £ — oo.

iii): For any realization w € Q and disorder strengths X, € Ry, the thermal equilibrium state of the system
0

at inverse temperature 8 € R* (i.e., # > 0) is by definition the unique (7(+), 8)-KMS state o), see [34,

Example 5.3.2.] or [35, Theorem 5.9]. It is well-known that such a state is stationary w.r.t. the dynamics
(@), that i

7\ that is,

g(w) o Tt(w) = Q(“’) , we teR. (13)

The state o) is also gauge-invariant and quasi-free, and it satisfies

w * 1
ot )(a (p)a(y)) = <¢7 W¢>ba v, ED. (14)

For 8 = 0, one gets the tracial state (or chaotic state), denoted by tr € U*.
Recall that gauge-invariant quasi-free states are positive linear functionals p € U* such that p(1) = 1
and, for all N1, No € N and ¢1,...,¥Nn,+nN, €D,

p (@ (1) a™(Pn)a(Pn,en,) - a(Pn,41)) = 0 (15)

if N1 7& NQ, while in the case N1 = N2 = ]\]7



216 N.J.B. Aza et al. / J. Math. Pures Appl. 125 (2019) 209-246

p(a* (1) a* (¥n)a(tan) - alton 1)) = det [p (a™ (¥r)a(n11))]y ;- (16)

See, e.g., [36, Definition 3.1], which refers to a more general notion of quasi-free states. The gauge-invariant
property corresponds to Equation (15) whereas [36, Definition 3.1, Condition (3.1)] only imposes the quasi-
free state to be even, which is a strictly weaker property than being gauge-invariant.

Similarly, for any Z € 3, we define the quasi-free state Q(;) by replacing h(“) in (14) with h(zw) (see (6)).
In the thermodynamic limit ¢ — oo, Q?j\)é} converges in the weak® topology to o) = 9?221}'

2.3. Current densities

(i) Currents: Fix w € Q and ¢ € RY. For any oriented edge (z,y) € (Zd)Q, we define the paramagnetic
current observable by

I((w) = _9Qm (<e$) Aw)ﬂey%a(%)*a(ey)) . (17)

It is seen as a current because it satisfies a discrete continuity equation, as explained in Appendix C.2. Here,
the self-adjoint operators Sm(A) € U and Re(A) € U are the imaginary and real parts of A € U, that are,
respectively,

i‘sm(A)i%(AfA*) and é)%e(A)i%(AJrA*) . (18)
This “second-quantized” definition of current observable and the usual one in the one-particle setting, like in
[8,10,11], are perfectly equivalent, in the case of non-interacting fermions. See for instance Equation (C.19).

Note that electric fields accelerate charged particles and induce so-called diamagnetic currents, which
correspond to the ballistic movement of particles. In fact, as explained in [19, Sections III and IV], this
component of the total current creates a kind of “wave front” that destabilizes the whole system by changing
its state. The presence of diamagnetic currents leads then to the progressive appearance of paramagnetic
currents which are responsible for heat production and the in-phase AC-conductivity of the system. For

more details, see [7,19,21] as well as Appendix C on linear response currents.

(ii) Conductivity: As is usual, [4, B] = AB — BA € U denotes the commutator between the elements A € U
and B € U. For any finite subset A € P;(Z%), we define the space-averaged transport coefficient observable
¢\ e CY(R; B(R%;U?)), w.r.t. the canonical orthonormal basis {eq}d_, of the Euclidean space R?, by the
corresponding matrix entries

t
() .1 Z (@) p(w) ()
{CA (t)} “ A /Z[T_“(I(y+eq7y))’j(m+ek,r)}da
k,q |\ 0
z,y,x+e,yteq €A
201.q
|Al

+ Z%e((e“_%,vageﬁa(eﬁ_%)*a(em)) (19)

zEA

forany w € Q, t € R, \,¢ € RSF and k,q € {1,...,d}. This object is the conductivity observable matrix
associated with the lattice region A and time ¢. See Appendix C, in particular Equations (C.8)—(C.9). In
fact, the first term in the right-hand side of (19) corresponds to the paramagnetic coefficient, whereas the
second one is the diamagnetic component. For more details, see [21, Theorem 3.7].

111 mear response curren ensivy: 1X a direction w € W1 W||pd — and a 1me-dependen
iii) Li t density: Fix a direction @ € R? with ||a|g 1 and a (time-dependent

continuous, compactly supported, electric field £ € C§(R;R%), i.e., the external electric field is a continuous
function t ++ £(t) € R? of time ¢ € R with compact support. Then, as it is explained in Appendix C, [7,21]"

1 Strictly speaking, these papers use smooth electric fields, but the extension to the continuous case is straightforward.
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shows that the space-averaged linear response current observable in the lattice region A and at time ¢t = 0
in the direction w is equal to

q

11<Aw’5>iki Wi / (€ ()}, {cg‘“) (—a)}k da . (20)

a=1
To obtain the current density at any time ¢ € R, it suffices to replace £ € CJ(R;R%) in this equation with
Ei(a) =E(a+t), a €R. (21)
Compare with Equations (C.8)—(C.9).
3. Main results

We study large deviations (LD) for the microscopic current density produced by any fixed, time-dependent
electric field €. Via the Gartner—Ellis theorem (see, e.g., [24, Corollary 4.5.27]), this is a consequence of the
following result:

Theorem 3.1 (Generating functions for currents). There is a measurable subset Q C Q of full measure such
that, for all B € RT, 9, A € R, w € Q, € € CY(R;R?) and & € R with ||i]|ga = 1, the limit

1 (w,€)
lim —— 1o o) ( [AL|TY )
e T R R

exists and equals

02t el (5]

Moreover, for any £ € C’g(R;Rd), the map s — JGE) from R to itself is continuously differentiable and
convex.

Proof. The assertions directly follow from Corollaries 4.19 and 4.20. Note that the map s — J¢%) is a limit
of convex functions, and hence, it is also convex. 0O

In probability theory, the law of large numbers refers to the convergence (at least in probability), as
n — 00, of the average or empirical mean of n independent identically distributed (i.i.d.) random variables
towards their expected value (assuming it exists). The large deviation formalism quantitatively describes,
for large n > 1, the probability of finding an empirical mean that differs from the expected value. These are
rare events, by the law of large numbers, and an LD principle (LDP) gives their probability as exponentially
small (w.r.t. some speed) in the limit n — co.

In the context of the algebraic formulation of quantum mechanics, observables (i.e., self-adjoint elements
of some C*-algebra, here U) generalize the notion of random variables of classical probability theory. The
link between both notions is given via the Riesz—Markov theorem and functional calculus: The commutative
C*-subalgebra of U generated by any self-adjoint element A* = A € U is isomorphic to the algebra of
continuous functions on the compact set spec(4) C R. Hence, by the Riesz—Markov theorem, for any state
p € U™, there is a unique probability measure m, 4 on R such that

my a(spec(4)) =1 and  p(f(A)) =/f($)mp,A(d£) (22)
R
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for all complex-valued continuous functions f € C(R;C). m, 4 is called the distribution of the observable
A in the state p. The LD formalism naturally arises also in this more general framework: A rate function
is a lower semi-continuous function I : R — [0, 00]. If T is not the oo constant function and has compact
level sets, i.e., if I71([0,m]) = {z € R: I(x) < m} is compact for any m > 0, then one says that I is a
good rate function. A sequence (Ayr)ren C U of observables satisfies an LDP, in a state p € U*, with speed
(nz)ren C RT (a positive, increasing and divergent sequence) and rate function I if, for any Borel subset G
of R,

. o1 . 1 .
—Ilengfol(:r) < thilogfalnmp’AL (G) < hin_?;p ElnmvaL (G) < —;Ielgl(x)

Here, G° is the interior of G, while G is its closure. Compare with Equations (B.1)~(B.2) in Appendix B.
A sufficient condition to ensure that a sequence of observables satisfies an LDP is given by the Géartner—
Ellis theorem. In particular, Theorem 3.1 combined with Theorem B.1 yields the following corollary:

Corollary 3.2 (Large deviation principle for currents). Let Q C Q be the measurable subset of full measure
of Theorem 3.1. Then, for all 3 € RT, 9, A e R{, w € Q. leN,Ee CY(R;RY) and & € RY with ||||ga = 1,
the sequence (]IE\UJL"S))LGN of microscopic current densities satisfies an LDP, in the KMS state o), with speed
|AL| and good rate function 1) defined on R by

1) (z) = sup {sx - J(SS)} > 0.
seR

Remark 3.3. By direct estimates, one verifies that, for any fixed state p, (]IE\UJL’E)) Len yields an exponentially
tight family of probability measures, defined by (22) for A = ]IS\ML"S). Therefore, by [24, Lemma 4.1.23],
(]IS\“)L’S))LeN satisfies, along some subsequence, an LDP, in any state p, with speed |Ar| and a good rate
function. However, it is not clear whether this rate function depends on the choice of subsequences and

w € ). Moreover, no information on minimizers of the rate function, like in Theorem 3.4, can be deduced
from [24, Lemma 4.1.23].

Observe that, if an LDP holds true, then the law of large numbers follows [37, Theorem I1.6.4] from
the Borel-Cantelli lemma [37, Lemma A.5.2]. Therefore, by [6,7] and Corollary 3.2, the distributions of the
microscopic current density observables, in the state o), weak* converges, for w € Q almost surely, to the
delta distribution at the (classical value of the) macroscopic current density. Using Theorem 3.1, we sharpen
this result by proving that the microscopic current density converges exponentially fast to the macroscopic
one, w.r.t. the volume |Ay| of the region of the lattice where an external electric field is applied.

To this end, we remark from Corollary 4.20 (see (56)) that, for any 8 € R*, 9,\ € R, @ € R? with
||W||ga = 1, the macroscopic current density is equal to

2 = 9,069 |, € e CYR;RY). (23)
See also (C.10). Define
r_ = inf {x <z 1€ (2) < oo} , Ly =sup {x >z 19 (2) < oo} .
Obviously, 1) (z) = oo for z € R\[z_, ]. We start by giving important properties of the rate function 1(€):

Theorem 3.4 (Properties of the rate function). Fiz B € R, 9,\ € R}, @ € R? with |W]|ga = 1 and € €
CY(R;R?). The rate function I€) is a lower-semicontinuous convex function satisfying: (i) 1) (z(€)) = 0;
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(1) 1 (2) > 0 if x # 2©); (iii) 1) (2) < 00 for x € (x_,x4) with 1®) (z) <1E) (x_) for x € (x_, 2]
and 1€ (2) <T1E) (24) for x € [28),2y); (iv) I€) restricted to the interior of its domain, i.c., the (possibly
empty) open interval (x_, x4 ), is continuous.

Proof. Fix all parameters of the theorem. Note that I(®) is clearly a lower-semicontinuous convex function,
by construction. As the map s — J(*8) is differentiable and convex (Theorem 3.1), the map s — J€) is the
Legendre-Fenchel transform of 1), i.e.,

JGE) = sup {s:z: —1 (x)} , s €R,
z€R

and sg is a solution of the variational problem

19)(z) = sup {sx - J(sg)}
seR

if and only if sq solves = 9,J€)|,_,,. By (23), it follows that

0=JO = inf 1®) () = 1) (2(5)).
z€R

This proves Assertion (i). To prove (ii), it suffices to show that x(®) is the only minimizer of I1(¥). Note
that xo is a minimizer of 1) if and only if 0 is a subdifferential of 1(6) at z (Fermat’s principle). By [38,
Corollary 5.3.3] and the differentiability of the Legendre transform of 1(€), which is the map s — J©€) it
follows that the minimizer of I(¢) is unique and Assertion (ii) follows. Assertion (iii) is a direct consequence
of the fact that I'®) is a convex function with (¢) as unique minimizer. Assertion (iv) is deduced from [38,
Corollary 2.1.3]. O

Corollary 3.5 (Exponentially fast suppression of quantum uncertainty of currents). Let Q C Q be the measur-
able subset of full measure of Theorem 3.1. Then, for all 3 € RT, 9, A € R}, w € Q,leN, e CY(R;RY),
@ € RY with ||W]|ga = 1, and any open subset O C R with 2(¢) ¢ O,

1

Hin—folip o lnmg(W,H(A“L’S) (0) <0.

The above limit does not depend on the particular realization of w € Q. If, additionally, ON(z_,zy) £ 0,
then

. L _ (&)
2 Tagy M e (9=~ Jgp T (0 <0

See (22) for the definition of the distribution of HE\“)L’S), in the KMS state o).
Proof. It is a direct consequence of Corollary 3.2 and Theorem 3.4. O

Corollary 3.5 shows that the microscopic current density converges exponentially fast to the macroscopic
one, w.r.t. the volume |A | (in lattice units (1.u.)) of the region of the lattice where the electric field is applied.
As discussed in the introduction, this is in accordance with the low temperature (4.2 K) experiment [3] on
the resistance of nanowires with lengths down to approximately 40 l.u. (L ~ 20). The breakdown of the
classical description of these nanowires is expected [1,4,5] to be around 20 Lu. (L ~ 10).

To conclude, note that, in the experimental setting of [2,3], contacts are used to impose an electric
potential difference to the nanowires. These contacts yield supplementary resistances to the systems that are
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well-described by Landauer’s formalism [46] when a ballistic charge transport takes place in the nanowires.
In our model, the purely ballistic charge transport is reached when ¥ = 0 and A — 07, as proven in [20,
Theorem 4.6]. When the nanowire resistance becomes relatively small as compared to the contact resistances,
then the charge transport in the nanowire is well-described by a ballistic approximation and Landauer’s
formalism applies, as also experimentally verified in [2]. This is the reason why [3] reaches much smaller
length scales than [2]: the material used in [3] has a much larger linear resistivity (between 112 /nm and
855 Q/nm, see [3, Table 1]) than the one of [2] (23 /nm, see [2, discussions after Eq. (2)]).

4. Technical proofs
4.1. Preliminary estimates

We start by giving two general estimates which will be used many times afterwards. The first one is an
elementary observation:

Lemma 4.1 (Operator norm estimate). For any operator C € B(h),

€l < sup 3 flea: Ceyhy|
pAS

y€ezd

Proof. By the Cauchy—Schwarz inequality, for all ¢, € b,

|(0.Cuby| < D7 el@) (e Cy)y |

= % (et ftens o] ) (1o fterem, | )
< [ (Ie@P (en Condy|), [ 30 [P [(ea Ceyy)

< lelly Il s S [(ers Ceyhy| - O
z€ZLL yezd

The second one is a version of the Bogoliubov inequality. Recall that the tracial state tr € U™ is the
quasi-free state satisfying (14) at 8 = 0.

Lemma 4.2 (Bogoliubov-type inequalities). Let C € U be any strictly positive element.
(i) For any continuously differentiable family {Hu},cp CU of self-adjoint elements,

|0 In tr (C’eH“)| < sup He“H‘* {0oH,} e e Hu .
u€[-1/2,1/2]

(ii) Similarly, for any self-adjoint Hy, Hy € U,

|ln tr (C’eHl) — Intr (C’eHU)‘ < sup sup
a€l0,1]ue[—1/2,1/2]

eu(aH1+(1—a)Ho) (Hl _ HO) e—u(aH1+(1—a)H0)

U

Proof. (i) By Duhamel’s formula, for any continuously differentiable family {Ha},cp C U of self-adjoint
elements,
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Oy {eH“} = /e"H“ {(%Ha}e(l_“)H“du,
0

which implies that

1

tr Ce*Ho {9, H, } (1= Ha )
1 .
Oa ntr / tr (Celie) du
0

Using the cyclicity of the trace, we then get

e (e Co "t elvm D e {9, elh )
Oy Intr Ce :/ — — du
) tr (eJ‘leef‘>

du,

; tr (e%C eHo {9, H,} e vHa )
/ tr (e%Cerf>

which yields (i).
(ii) To prove the second assertion, it suffices to apply Assertion (i) to the family defined by

Ha:Ho—FO[(Hl—Ho), 066[0,1]. O

Observe that Lemma 4.2 (ii) is proven in [31, Lemma 3.6]. Here, we give a proof of this estimate for
completeness. These Bogoliubov-type inequalities are useful because we deal with quasi-free dynamics. In
this case, we have a very good control on the norm of

o 19, Hy} e e
because H, is a bilinear element, as explained in the next subsection.
4.2. Bilinear elements of CAR algebra

Similar to [39], bilinear elements are defined as follows:

Definition 4.3 (Bilinear elements). Fix an operator C € B(h) whose range ran(C') is finite dimensional.
Given any finite-dimensional subspace H C §, with orthonormal basis {;};cr, such that H O ran(C) and
H D ran(C*), we define the bilinear element associated with C' to be

(A, CA)Y = > (5, Coj)y a (i) a (1))

ijel
Note that such a finite dimensional # in this definition always exists, because
dim (ran(C)) = dim (ran(C™)) < oo,

and is an invariant space of C' containing (ker(C))". Hence, (A, CA) does not depend on the particular
choice of H and its orthonormal basis.
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Bilinear elements of U have adjoints equal to
(A,CA)" = (A,C*A), (24)
for any C' € B(h) whose range is finite dimensional. In particular,
Sm{(A,CA)} = (A, Sm{C}A), (25)

where we recall that Sm(A) € U is the imaginary part of A € U, see (18). For any C € B(h) whose range
is finite dimensional and any ¢ € b, note that

[(A,CA) a(p)] =—a(C"p)  and  [(A,CA),a(p)] =a(Cyp)".
In particular, for any C7,Cy € B(h) whose ranges are finite dimensional,
[(A,C1A), (A, CoA)]) = (A, [C1,C5] A) . (26)
Moreover, by (11), for any ¢ € h and C' € B(h), whose range is finite dimensional,

ANa() BN —a (6 Tp) and M Vafe) N (@) (20)

Because of the identities (27), bilinear elements can be used to represent the dynamics {Tt(w’z)}teR for
any w € Q and Z € 3;. See (11), replacing h(“) with h(zw) (cf. (6)), and observe that the range of h(;) € B(h)
is finite dimensional whenever Z € 3;. Additionally, by using the tracial state tr € U*, i.e., the quasi-free
state satisfying (14) for B = 0, the corresponding KMS state defined by (14), by replacing A(“) in this

equation with h(;) (see (6)), is explicitly given by

tr (Be*mA’h(ZW)A))

tr (e_B<A7h<Zw)A>)

o(B) = . Bel, (28)

for any w € Q, \,9 € R{, B € Rt and Z € 3.
We conclude now by an additional observation used later to control quantum fluctuations:

Lemma 4.4. For any self-adjoint operators C1,Cy € B(h) whose ranges are finite dimensional, let C =
In (e02e01602). Then,

ran(C) C lin{ran(Cy) Uran(Cs)}
and there is a constant D € R such that

o(A.C2A) ((A,C1A) ((A.C2A) _ (A,CA)+D1

Proof. Fix all parameters of the lemma. We give the proof in two steps:

Step 1: Let
ho = lin {ran(C7) Uran(C2)}

and Uy, C U = Uy be the (finite dimensional) CAR C*-subalgebra generated by the identity 1 and
{a(¥)}pep,- Take two strictly positive elements My, My of Uy, satisfying the conditions
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Ma(p)My ' = Mza(p)My"'  and  Mia(p)* My ' = Maa(p)* My
for any ¢ € hg. From this we conclude that
My AMY = MyAM, A € Uy,,
because all elements of Uy, are polynomials in {a(y), a(¢)*},cp,, by definition of Uy, and finite dimension-

ality of hg. In particular, by choosing, respectively, A = M{l and A = M{lBMg for B € Uy,, it follows
that

MMyt =M;'M;  and MMy 'B = BMM;*.

Hence, since any element of Uy, commuting with all elements of Uy, is a multiple of the identity, there is
D € C such that

MMyt = My M, = D1.
The constant D is non-zero because M7, Ms are assumed to be invertible. In fact, M; = DMs with D > 0

because My, My > 0.

Step 2: Observe that e“2e“1e“2> > 0 because C,Csy are both self-adjoint operators. In particular, C' =
In (eCzecleC2) is well-defined as a bounded self-adjoint operator acting on h with ran(C) C hg. Using (27),
we obtain that

A’CA>CL( (A, CA) _ e(A,CzA)e(A,ClA)e<A,CgA)a( e—(A,CzA)e—<A,ClA)e—(A,CzA)

ef p)e” ®)

and

ACA) (o) e~ (ACA) — o(AC2A) o (ACIA) o(AC2A) o (A,C2A) = (A,C1A) ,—(A,C2A)

! ¢) p)re”

By Step 1, the assertion follows. 0O
4.8. Bilinear elements associated with currents

For simplicity, we fix, once and for all, @ € R? with |@||zs = 1, and 1, u € R*. For any € € C§(R;R?),
any collection Z(7) € 3, Z € 3¢, and \, 9 € RS‘, w € Q, we define the observables

d 0 o
(w, &) - (@, 207) p(w) (w)
’QZ,Z(T) - Z Wk Z Z / {8 (a)}q da/o ds Z[T—S (I(y+eq,y))’l(x+ek7x)]

k,q=1 ZEZ xy,xtek,Yyteq€EZ "y

d 0
+ QZwk Z Z / {5 (O{)}q da | Re (<ea;+e;€7Aw,ﬂex>a(e$+ek)*a(eﬂﬁ)) ) (29)

k=1 ZeZ x,xter€Z

— OO

where we recall that Re(A) € U is the real part of A € U, see (18). Note that

RO ey = NI, AePiz?),

is a current observable (cf. (20)). These observables are bilinear elements (Definition 4.3):
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(i) Single-hopping operators: For any = € Z¢, the shift operator s, € B(h) is defined by

(se¥) () = (x+y), yeZ’ (30)

Note that s* = s_, = s;! for any @ € Z?. Then, for any w € Q and ¥ € Ry, the single-hopping operators
are

Sa(sy) = <ed?a Awﬁey>hp{x}3mfyp{y}v T,y € Zda (31)

where Py, is the orthogonal projection defined by (5) for A = {}. Observe that

<A, S:(C“’y)A> = (eg, Ay gey)pales) aley), x,y € 7%
Similarly, the paramagnetic current observables defined by (17) equal

I =—2(A, Sm{SW)}A),  z,yez, (32)

for any w € Q and ¢ € R} . Compare with (25).

(ii) Local current observables: By (26), for any £ € CJ(R;R%), any collection Z(") € 3, Z € 3, and
MY ERT, weQ,

w,E) w,&
8eD) = (A KLY, (33)

where

K(szg()r) =4 Z W Z Z / {€(a)}, da

k,g=1 ZEZ z,y,xteg,yteq€Z "

—a w
.| —ish ish(“
/0 ds i {e S g m{Sereq Jre ot ), m{SHek .

+22wkz 3 / (£ (@)}, da | Re(5),, .} (34)

= ZeZxx+te,€Z oo

is an operator acting on h whose range is finite dimensional. This one-particle operator satisfies the following
decay bounds:

Lemma 4.5 (Decay of local currents). For any £ € CJ(R;R?), X\, 9 € R ,w e Q, xy € Z%, and two
collections Z € 37 and Z(7) € 3y,

<ez,K§’§2ﬂey>h\§D4ﬁ / € (@)llga eda | (e7role=v] sy 1,y )

1
|UZ Z

z,y€zd

w,& « — z
<ex,K(z,zRf)ey>b]sul,a 1€ @lgs 27l | 3= el (141,
z€Z4

where
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Dys=4dn ' x 36 (1+9)* D (717D < o0,

z€Z4

Recall that p,, is defined by (8).

Proof. Fix the parameters of the lemma. By (7), note that for any z1,22, 2,y € Z%, w € Q, 9 € Rar and
s € R,

— w ) w —_ - — —
‘<em zshz( )S;ieq e zsh >S§1<)‘reg . y> < 362 (1 + 19)2 e2lsnl =2y (Jz—22—eq|+ly Zz“rek‘)éy’zl_ (35)
b

By the Cauchy—Schwarz and triangle inequalities, observe also that

E e_2ﬂn(‘1_z‘+|y_z|) < e_l‘n‘w_y‘ E e_Hn(W_ZH“y_ZD < e_N7I|E_y| E 6_2/%‘2‘ . (36)
z€Z% z€Z% z€Z4

From (35)—(36), we obtain the bound

2. X

ZE€Z z1,22,21Fe,22+€q€EZ

7 gw) -
<Ez7 Z( )Szz—i-e zz ( )Szl—i-ek z1 y>
b

< 362 (1 +0)2 e2lsnl—#alz=yl Z e21n(1=1zD) | (37)

z€Z4

using that |z —ex| > |z| — 1 for any 2z € Z¢ and k € {1,...,d}. The other terms computed from (34)
are estimated in the same way. We omit the details. This yields the first bound of the lemma. The second
estimate is also proven in the same way. O

It is convenient to introduce at this point the notation
onR) = {{o,y} € A: o —yl =1, {w,y} N A A0 and {z,y} N A £ 0} (38)
for any set A € A C Z¢ with complement A¢ = Zd\]X, while, for any Z € 3 such that UZ C A,
OA(Z)={0n(2):Z € Z}.
Then, the one-particle operators (34) also satisfy the following bounds:

Lemma 4.6 (Box decomposition of local currents — I). For any £ € C§(R;R?), A A € PHZY), N\, 0 € R,
we, and Z € 35 with UZ C A,

S e (575, - K2 o),
z,yeZd

< Dy, /”5 (a)H]Rd 042€2|m7|d04 Z Z e*#n|x*2| + Z e*#n\z\ Z 1],
R

zeA zcA\UZ 2€24 z€UI3 (Z)

where
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3

Dy =8x36"(1+9)° (dd+ A e [ S el | < oo,

z€Z4

Proof. Fix all parameters of the lemma. Let

w - . —18 w 1S (w w
C(Z )(Zly 22, k7Q) = /0 ds |: hZ {Sig-)‘req,zz} hz Jm{S£1+ek7Z1}

for any 21,20 € Z% and k,q € {1,...,d}. By Duhamel’s formula,

e—zsh{A)}A zsh 7e_i8h53w)AeiSh£3w>

— 71/ —i(s—u)hy” [h({w)} h%“)’ei“h%)}Aemh({A}] i(s—w)hs” 4,

and hence, for any 21,2 € Z¢ and k,q € {1,...,d},
C?};)} (Zh 22, k? q) - C(ZW) (Zh 22, k? q)
« r ) w o (@) ) w
_ 4/ dS/dU |:ez(su)h(z) |:h(0f) h(w) (A} \Sm{S(W) }e“Lh{;\):| ez(sfu)h(z)’%m{s(w)
0

{A} z2+teq,22

By developing the commutators and Sm{-} we get sixteen terms:

a 16
CEA)}(ZlazQ;kaq) 7C(ZW)(ZlazQ7k7q) :/0 dS/dUZX] (S,U,Zl,z2),

where, for instance,

; (w) —iuh(®) iuh() (w)
. _i(s—u)h (w) (w) iuh iuh . Yh
X4 (87 u, 21, 22) =¢ Homuhz (h Ay hZ © ) Szz-‘reqxzze {A}eZ(g ) SZ1+ek,21'

{A}

Since UZ C A, note that

= X sy Y (s est)

23,24 EA\UZ: |z3—z4]|=1 Z€Z {z3,24}€05(2)
+ E /\wl 23 23 23
ZgGA\UZ

z1+ek,z1

(39)

(40)

(41)

Meanwhile, for any z1, 2o, 23, 24, 7,y € Z% with |z3 — 24| < 1, and real numbers s > u > 0, we infer from (7)

and (36) that

23,24 za+eq,z

— (@)
‘<€ —z(s w) Z S(w) e zuh{A}S w) e h{A} i(s—u)hy’ 521+6k . ey>
b

3 _ _ _ _ _
< 364 (1 4 9)% e2lsml+3m E e 2knzl 02y 4@ pn (|22 —yl+|z—z3]+]23—22])
z€Z?

By (40)—(41), for any « > 0, it follows that



N.J.B. Aza et al. / J. Math. Pures Appl. 125 (2019) 209-246 227

Z Z /00‘ ds/du ‘(ex,Xl (s,u,zl,22)2y>b
0

x,YEL 21,22,21 ek, z2+eq EA

3
364
<=-a +19)° (4d + \) a2e2lonl+3u | N7 gmplz]
zE€ZI
Tz e e
TEA zcA\UZ 2€74 TEUO; (Z)

The fifteen other terms X, in (39) satisfy the same bound. By (34), the assertion follows for any £ €
CO(R;RY). O

Lemma 4.7 (Box decomposition of local currents — II). For any €& € C(R;RY), A € PHZ%), N\, 9 € R,
we, Z, €3, and Z € 35 with UZ C A,

Z <%a (KEX}&ZT - KE;ZST)) €y> ‘ <Dy~ /||5 (@)]|24 o] €2l dey Z 1,
z,y€L? b R 2€(A\UZ)U(UdA(2))
where
2
D7 =16 x 36% (1 +9)* de** Z =2l | 4 d(149) < oo

2€74
Proof. Fix all parameters of the lemma. By combining (35) with direct estimates we observe that

2 2

z,y€ZE 21,22,21+€k,z2+eqEA

S IID DY

z,y€LL ZEZ 21,22,21+eg,z2+e, €L

- o7 (@) s o (@)
—ish (w) ish (w)
<%,e Z(T)Szer@q,Zze = Sz1+ek,,Z1 ¢y
b

. g (w) . g (w)
—ish /. alw) ish 0y a(w)
<em,e =t >SZ2+eq,Z2e = )SZH-ek,zley
b

< 2 x 362 (1+19)% el | N~ g=2mlel > 1 (42)
z€Zd 2€(A\UZ)U(UOA(2))

for any s € R. Similar to (39), the quantity

(w,&) (w,&
Z <%, (K{A},ZT - Kz,z,)) ey>b‘

z,y€Ld

(w)

rter,r
d(1+9) in Dy7. The seven remaining ones satisfy the same bound as the first one. 0O

is a sum of nine terms. The first one is (42), the last one is related to Re{S } and gives the constant

4.4. Finite-volume generating functions

Fix 8 € RT and \,9 € R}. Given £ € CJ(R;R?Y), w € Q and three finite collections Z, Z(), Z(7) ¢ 3,
we define the finite-volume generating function
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w,& - w,E w,0
J;z?@,zm = gEz,z()g),z(ﬂ - g(z,zgg),z(rw (43)
where
w,& . 1 w w,&
g(z’zge)’z(ﬂ = U Z_\ In tr (exp(—ﬂ<A7h(Z()Q)A)) exp(ﬁ(z,zgﬂ)) . (44)

Recall that the tracial state tr € U* is the quasi-free state satisfying (14) at § = 0, and hg)g) is the

one-particle Hamiltonian defined by (6). See also Definition 4.3 and (29). By construction, note that

L @) (ALY s L (w,E)
g ™Y (RT) = tim i TSR (4)

The family of functions & »—>J(;’g)

Z(e) z(» 1S equicontinuous with uniformly bounded second derivative:

Proposition 4.8 (Equicontinuity of generating functions). Fix n € N. The family of maps & HJ(ZW,;()g),Z(T)
from CY([-n,n];RY) C CYR;RY) to R, for B € R, A € R{, w € Q, z, 2 z() ¢ 3, W € RY with
|W|ga =1, and ¥ in a compact set of Ry, is equicontinuous w.r.t. the sup norm for £ in any bounded set
of Cg([=n,n);RY).

Proof. Fix n € N, 3 € RT, \,¥ € R}, w € Q, z,2@ z() ¢ 3; By using Lemma 4.2 (ii), for any
&y, &1 € Cg([—n,n];Rd),

(w,€1) (w,&0)
z,2(),2(0) gZ,Z(e)7z(7—) (46)
< 1 sup sup euﬁ(;;élﬁ(lia)%)ﬁ(%fl—So)e_uﬁ(;);élﬁ“*a)%)
Sluz ’ 2,2(n) ’ .
UZ' a€l0, 1] ue[—1/2,1/2] , )

Recall that, for any £ € CJ(R;RY), ﬁ(zwé()ﬂ is the bilinear element associated with the operator KE;’;()T).

See (33) and (34). In particular, from (27), we deduce the inequality

~(w,€) Cuf(@E)

I
e zzMq (ex)* a (ey) e z,2(1) <e z,z(m) 1B() ) (47)

u

sup sup
u€[—1/2,1/2] z,ycZ

The assertion then follows by combining (33), (46) and Definition 4.3 with (47) and Lemmata 4.1, 4.5. O

Proposition 4.9 (Uniform boundedness of second derivatives). Fiz & € C§ (R; Rd) and B1,s1,%1,\1 € RT.

Then,
} < oQ.

Proof. Fix the parameters of the proposition. Then, by cyclicity of the tracial state,

aQJ(w,SE)

(w,s&)
0sJ T 195z 2@ 2z

z,2(), 2(7)

su {
56(0751]7 196[07791]7 AE[OvAl]
we, s€[—s1,81], Z,Z<9),Z<T)€3f

(w,5€) 1 (@,€)
8SJ2,3<9>,3<7> = 7| U Z‘ws (Rz,z(r))

and

(w,sE) 1 @& \? @& \?
852']2’3@),3(7) Uz (ws <(ﬁzyz(7)) ) —Ws (ﬁzyz(ﬂ) )
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where w; is the state defined, for any B € U, by

s g(w,&) (w) s g(w,&)
tr <Be2ﬁz,z<7>e—5<Avhz<e>A>e2ﬁZ'Z“>)

@, (B) =

s g(w,&) w s g(w,&) :
tr (ezkag(”eB<A’h;<)e>A>92RZ";T)>
By Lemma 4.4 and (33), observe that w, is the quasi-free state satisfying

1

_s (w8 Bh(‘*’) s
1+e 27 z2z20 ez 27 2,2(D

ws(a” (p)a(y)) = <¢,
Therefore, by (33) and Definition 4.3, we directly compute that

w,s€ 1 w,& *
asJ(Z,Z<@)),z<T) = —UZ\ Z <eI,K‘(Z’Z()T)ey>bws (a (ez) a(ey))
z,yeL?
and

2ywse) 1 (@) (@)
83(];;(9)72(,) = UZ‘ Z <9r7KZujZ(T)ey>b <e“’Kz“:z<f)e”>b

z,y,u,vELL

x @, (a(ey)ale,)) s (ales) ale,)),

because of the identity

— <ﬁ> . pvED
b

229

@ (a(er) aley)ales) aley)) = ws (aler) aley)) ws (a(ew) ales)) + @s (a(ey)ales)”) @s (ales) aley)),

for z,y,u,v € Z4, by (16) for p = w,. As a consequence,

(w,s€)
I3 20 2z

1
<70z

x,y€Zd

w,&
<e1, ng,zgr) ey>h ‘
and

2 1(w,sE)
05 Jz7z(e)7z<7)

< sup
u,veZ

1
WK e [ og
<2 ’ Z,Z(T)e b |U Z| Z

z,y€Ld

€
(e K2 ey>h ‘

X sup Z |s (a(ey)a(e,)”)] suz]% Z (s (a(e2)" alen))],

d
YEL wezZd IS vezd

which, by Lemma 4.5, implies that

(w,sE)
8st7z<g>,z<r>

< Dus | [ 1€ @)l e?*da ] Yo e (1 4m)
R

z€Z4

as well as

(49)
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2

€ 2 _
020537 2| < DR | [ e @lasc?™da | (1?3 el
R z€Z4
X sup Z |ws (a(ey)a(en)”) sup Z |ws (a(ex)alen))|- (50)
YEL! L ega ! veza

Again by Lemma 4.5 together with (7)—(8), for any p > p,

&
sup {SO(SK;Z()T),M) + So(ﬁh(zw()g),,u)} < oo0.
B€(0,81], 9€[0,91], A€[0,A1]
wEeR, s€[—s1,s1], z,z2) z(Ne3,

See (A.1). We thus infer from (48) and Corollary A.4 that there is a constant p; € RT such that, for any
@,y € L9,

sup |5 (a(ex)” aley))] < 2e7rlz=vl,
B€(0,61], 9€[0,91], AE[0,A1]
wEN, s€[—s1,51], Z,Z(Q),Z(T)GSf

Combining this estimate with (49)—(50), one gets the assertion. 0O

The local generating functionals (43) can be approximately decomposed into boxes of fixed volume: By
using the boxes (12), for any subset A C Z¢ and I € N, we define the I-th box decomposition Z*! of A by

ZOD = LA + 20+ 1)z 2w € Z% with (A, + (20 +1)z) C A} € 3.
Then, we get the following assertion:

Proposition 4.10 (Box decomposition of generating functions). Fiz n € N and 31, A\1,91 € RY. Then,

1 w
J( ,8)

li li (w,€) _ =
e O i LA REV ROV |Z<AL,z>|Z€§A:LJ) 2| =0

uniformly w.r.t. B € [0,51], ¥ € [0,91], A € [0, \1], w € Q and & in any bounded set of CJ([—n,n];R?).
The proof of this statement is divided in a series of Lemmata:

Lemma 4.11 (Boz decomposition of generating functions — I). Fix 31, 1,91 € R*. Then,

(w,€) (w,€)

Lfilgigig g{AL} {Ar AN} g{AL} {AL \AL ALY AL Y| T 0,

uniformly w.r.t. B € [0, 81], ¥ € [0,91], A € [0, \1], w € Q and € € CJ(R;RY).
Proof. Fix all parameters of the lemma. By Lemma 4.2 (ii),

(w &) (w,&)
9{ALY, {Ar, b {AL} g{AL} {AL \AL ALY AL}

< —— sup sup
|AL| a€el0,1] ue[-1/2,1/2]

)

u

GuBARA) (A (B — hO)A>efuB(A,hQA)H

where
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= W) (w)
ha_O‘h{ALg}+(1_O‘)h{ALg\AL,AL}’ a € [0,1].

By using estimates similar to (47), we get

B(A+2d)(1+9)
(@,€) (@,€) Be
g{AL}v{ALQ}v{ALT} o g{ALL{ALQ\AuAL},{ALJ < AL ‘<eﬂf7 (h1 — ho) ey>h‘
z,y€Z4
1
<4d(1+0) g2 N (51)

AL

ZEU@ALQ (AL)

See (41). Since

1
lim sup m Z 1=0,
L

LQZL—>(X> ZGU@ALQ (AL)
the assertion follows. 0O

Lemma 4.12 (Boz decomposition of generating functions — II). Fix n € N and 91, \; € RT. Then,

(w7£) O

li lim s (w,&) - _
lﬁ}}o erlfi;%goo g{AL}a{ALQ\ALvAL}v{ALT} g{AL},{ALQ\AL,AL},Z(ALJ)

uniformly w.r.t. 9 € [0,91], A € [0, \1], w € Q and € in any bounded set of CJ([—n,n];R?).

Proof. Fix all parameters of the lemma, in particular L, > L, > L > [, w € Q and A € [0, \1]. By
Lemma 4.2 (ii) and (33),

(w,€) _(w€)
IIALhAA L, \AL AL Y T~ (AL AL\ ALY ZALD

< ——— sup sup WA KaA) (A (K| — Ko)A) e’“<A’KQA>H 7

ALl ael01] uel-1/2,1/2] u

where
= (w7g) (UJ78)

Ko=aK{8) o,y +(0-a)KSE) 0,00 aclol.

Like in the proof of Lemma 4.11, by (33) and Lemma 4.6,
(w,€) (w,&)
‘g{AL}’{ALg\AL}’{ALT} T 9L AL, \ ALY, EALD (52)

< Duys /Hg(a)HRd a?e?lonlqq | estPacionliKallse)
R

Xﬁ Y e e [ Y e 3 .
L

TEAL zeAL \UZALD 2€74 z€Ud,, (E(BLD)

By Lemmata 4.1 and 4.5, for any n € N, observe that the operator norm of K, is uniformly bounded for
€ [0,1], 9 € [0,91], A € R}, w € Q, L,L,,l € N and £ in any bounded set of C§([—n,n];R%). Note
additionally that
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lim sup ﬁ Z Z e~ lr—zl = 0,

Ly>2L—o0 TzEAL ZGALT\UZ(ALJ)

whereas

limsup ——
L.>L—oo | ALl

> 1=0(0").

T€UDA (2(AL:b)
From these last observations combined with (52) the assertion follows. O

Lemma 4.13 (Box decomposition of generating functions — III). Fiz 31,91, \1 € RT. Then,

(w,€) (w,&)

lim  limsup g{AL},{ALQ\AL,AL},Z‘AL"" _g{AL},{ALQ\AL}UZ(AL,l),Z(ALJ) =

0,
=0 [ >L,>L—c0
uniformly w.r.t. B € [0, 81], ¥ € [0,91], A € [0, \1], w € Q and € € CJ(R;RY).

Proof. This lemma is proven exactly in the same way as Lemmata 4.11 and 4.12: Fix all parameters of the
lemma and observe that

(w) (w)
<e$’ (h{ALQ\ALxAL} - h{AL \ALYUZ(Meb ey>
o b

S (1 + 19) Z 523’?!624,1 + A Z 623,1623@

23,24 EAL\UZALD o |23—24]=1 23€AL\UZALD

+(1+0) > D N S S S

ZeZALD {23,24}€0n (Z)
See (41). Then, similar to (51), we get the bound

(w,&) (w,&)
IALY AL Y AL,y — I{AL AL, \AL ALY {AL, }

< (4d+\) (14 9) pefOr20+0 L oo+ Y o1,

A
ALl z€AL\UZALD Zecz(AL,h) 2€eU0,, (2)

where

limsup|A—1L| oo+ > o o1)=0(0". o

Lmroo z€AL\UZALD ZeZ(\L:) 2eUdn, (Z)
Lemma 4.14 (Boz decomposition of generating functions — IV). Fizn € N and 9; € RT. Then,

w,E) (w,€)

Ah AL \ALJUZOLD, 2000~ Iz000 (ay \agjuzten, z0en | = 05

lim  limsup ‘gi
=00 [ >L,>L—0c0

uniformly w.r.t. 3 € RY, 9 € [0,91], A€ R}, w € Q and € in any bounded set of CJ([—n,n]; R?).

Proof. Fix all parameters of the lemma. Then, like for previous lemmata, we use again Lemma 4.2 (ii) and
(33) to obtain the bound
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(w,€) (w,€)

{AL}7{ALQ\AL}UZ(AL‘Z)7Z(ALJ) - gZ(AL:l),{ALQ\AL}UZ(ALJ),Z(ALJ')
< —— sup sup (A KaA) (A, (K1 — Ko) A) e*“<A’K”A>H )
ALl a€l0,1] ue[—1/2,1/2] u
where
. w,& w,&
K, = O‘KEAL}),sz,w +(1—a) K(2<AL)J>,Z<ALJ>7 ael0,1].
Therefore, by Lemmata 4.1, 4.5 and 4.7, the assertion follows. O
We are now in a position to prove Proposition 4.10:
Proof. Fix all parameters of Proposition 4.10. By Lemmata 4.11-4.14,
. (w,&) (w,€) _
hmsup J{AL}7{ALQ}7{ALT} _JZ(ALJ),{ALQ\AL}UZ(AL'”,Z(AL’Z) —07 (53)

Ly>Ly>L—00

uniformly w.r.t. 8 € [0, 1], 9 € [0,91], A € [0,\1], w € Q and € in any bounded set of CJ([—n,n]; R?). To
conclude the proof, observe that

(@,E) _ (w8 _ 1 (@,€)
Jz(AL,L)’{ALQ\AL}Uz(AL,l)’Z(AL,Z) = J3<ALJ)’Z(ALJ)72(ALJ) - W Z J{Z},{Z},{Z}' (54)

Zeznsl

This follows from the fact that the tracial state tr € U* is a product of single-site states. See, e.g., [40]. O
4.5. Akcoglu—Krengel ergodic theorem and existence of generating functions

For convenience, we shortly recall the Akcoglu—Krengel ergodic theorem. We restrict ourselves to additive
processes associated with the probability space (2,%q,aq) defined in Section 2.1, even if the Akcoglu-
Krengel ergodic theorem holds for superadditive or subadditive ones (cf. [28, Definition VI.1.6]).

Definition 4.15 (Additive processes associated with random variables). {F) (M)} aep(z4) is an additive pro-
cess associated with the probability space (2,2, aq) if:

(i) the map w — F) (A) is bounded and measurable w.r.t. the o-algebra g for any A € Py(Z?).
(ii) For all disjoint Ay, Ay € P(Z%),

FOMUA) =FW (M) +FW(Ar) . weQ,
(iii) For all A € P¢(Z%) and any space shift 2 € Z4,
E[s0 )] =E[s0 (@+1)] . (55)
Recall that E[ - ] is the expectation value associated with the distribution agq.
We now define regular sequences (cf. [28, Remark VI.1.8]) as follows:

Definition 4.16 (Regular sequences). The non-decreasing sequence (A))pcn C Pe(Z?) of (possibly non-
cubic) boxes in Z? is a regular sequence if there is a finite constant D € (0,1] and a diverging sequence
(¢z)ren C N such that A) € Ay, and 0 < |Ag, | < D|AW)| for all L € N. Here, Ay, £ € R, is the family
of boxes defined by (12).



234 N.J.B. Aza et al. / J. Math. Pures Appl. 125 (2019) 209-246

Then, the form of Akcoglu—Krengel ergodic theorem we use in the sequel is the lattice version of [28
Theorem VI.1.7, Remark VI.1.8] for additive processes associated with the probability space (2, gq, aq):

Theorem 4.17 (Akcoglu—Krengel ergodic theorem). Let {F“) (A)}aep,(zey be an additive process. Then, for
any regular sequence (M) ey C Pf(Zd), there is a measurable subset Q C Q of full measure such that, for
allw € Q,

g {5 (1)} =2 ).

See also [41].
The Akcoglu—Krengel (superadditive) ergodic theorem, cornerstone of ergodic theory, generalizes the cel-
ebrated Birkhoff additive ergodic theorem. It is used to deduce, via Proposition 4.8, the following Corollary:

Corollary 4.18 (Akcoglu—Krengel ergodic theorem for generating functions). There is a measurable subset
Q C Q of full measure such that, for all 3 € RT, 9, e R}, w e Q, 1 €N, £ € CY(R;R?) and @ € R? with
[@]lga = 1,

1 (@,€) 8
Jm B Y. I hanun =F [J{Az} (A, {Al}}
ZezZMLh

Proof. Fix 3 € RT, 9,A e Rf,w € Q,1 € N, £ € CY(R;R?) and & € R? with ||&d||ga = 1. For any
I € Py(Z9), let

(w,€) (w,&)
gl (F) Z J{AlJr 2l+D)z} {N+ I+ x ), {A+ 21+ )x )}
zel

Then, if
AP = AED = Lo ez (A + 20+ 1)2) C A} C Ay,

observe that

(L) (w,8) <L)) _ (,8)
’A ‘ S (A _|Z(AL,Z)| Z Iy iy 12y
ZezL

Therefore, since (A(L))LeN is clearly a regular sequence, by Theorem 4.17, for any 8 € RT, 9, \ € RSF, leN,
& € CY(R;R?) and @ € R? with ||@||za = 1, there is a measurable subset O = QUBIALED) = O of full
measure such that, for all w € Q,

1 (@.€) )
Jim 2000 > Y Hizin =E {J{Al} (A, {Al}}
ZezALh

Observe that, for any n € N, there is a countable dense set D,, C CJ(R; R?). Let S?~! be a dense countable
subset of the (d — 1)-dimensional sphere. Hence, by Proposition 4.8, we arrive at the assertion for any
realization w € Q C Q, where

Q=

ﬂ n ﬂ ﬂ ﬂ ﬂQ(ﬂ,ﬂ,/\,z,g,w)’

9,AeQNRF BEQNRTweSd—tneNE€D,IEN

[Recall that any countable intersection of measurable sets of full measure has full measure.] 0O
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Corollary 4.19 (Almost surely existence of generating functions). Let Q C Q be the measurable subset of
Corollary /.18. Then, for all 3 € RY, 9, N € R}, w € Q,leN e CO(R; R?Y) and w € R with ||i||g. = 1,

1 )
. () (AL _ . (w,€) = 1(&)
Jim prg® e () =, i IED inan =3

For all n € N, the convergence is uniform w.r.t. 3,9, in compact sets, w € Q, & € R with |W|lga =1 and
& in any bounded set of C§([—n,n];RY).

Proof. By translation invariance of the distribution aq,

(-€) _ 1 (&)
E 155 (aian) =E 20| > IS
YAFAS AL

Hence,

('1‘5)
{E {J{AL};{AZ}){AZ}] }ZEN

is a Cauchy sequence, by (53) and (54). By Proposition 4.10 and Corollary 4.18, there is a measurable subset
Q C Q of full measure such that, for all 3 € RT, ¥,\ € RS‘, weleN, e ClR;RY) and w € R? with
[@]|gs = 1,

. (w,&) T -,€)
po T ) s,y = I E G aian] -

For all n € N, the convergence is uniform w.r.t. 8,9, \ in compact sets, w € Q, @ € R% with |0 ga =1 and
& in any bounded set of C§([—n,n];R?). By (45), the assertion then follows. O

Corollary 4.20 (Differentiability of generating functions). Fiz B, \,9 € R* and @ € R? with ||@||z. = 1. For
any € € CY(R;RY), the map s JGE) from R to itself is continuously differentiable, so that

(w,&)

Q(w) (HE\WL’g)eslALIHAL )
9,368 = lim )
L—so00 Q(w) (es\ALUIAL )

Proof. Take any £ € CJ(R; R?) and w € Q. See Corollary 4.19. Then, for any s € R,

(s&€) _ . (w,s&)
T = iy T, Ay

By Proposition 4.9 combined with the mean value theorem and the (Arzela-) Ascoli theorem [29, Theo-
rem A5, there are three sequences (L™ )nen, (LY )nen, (L™ )nen € RE, with L& > LIV > L™ such
that the maps

(w,sE)

(w,sE)
s—J (AL 1A o 1A o0}

{ L(n)}f{ALgn)}u{AL(Tn)} and s+ 05

converge uniformly for s in any compact set of R. In particular, the map s — J) from R to itself is
continuously differentiable with
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L

0,369 = lim 9,3

= lim O
L:>L,>L—o00 {AL(n)}’{ALg")}’{AL(T”)} L=s00 Q(w) (eslAL‘HS\WL’S))
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Appendix A. Combes—Thomas estimates

For any operator h € B(h) and p € Ry, let

So(h, 1) = sup Z ety ‘(egg,hey}b’ € R U {oo}. (A1)
T€EZLA p
YyEL
Note that
So(hiha, n) < So(h1, 1)So(ha, 1), (A.2)

for any hi, ho € B(h) and p € Ry . In particular, for any z € C, h € B(h) and p € R,
SO(eZh,NJ) S eSO(Zh7M) e e|Z|SO(h7M) (AS)
and hence,
)<%7 ezhey>b‘ < e|z|SU(h,u)e—u\x—y\.
The above bound can be sharpened if z = it is imaginary by using the Combes—Thomas estimate, first

proven in [26]. We give a version of this estimate that is adapted to the present setting: Given a self-adjoint
operator h = h* € B(h) whose spectrum is denoted by spec(h), we define the constants

S(h, ) = sup Z (e“|$_y| - 1) ’(%,h&y)h‘ € R U {o0}, (A.4)

TEZ yezd
for p € Ry, and
A(h,z) =inf {|z — A : X € spec(h)}, z€C,

as being the distance from the point z to the spectrum of h. Since the function z — (" —1)/z is increasing
on RT for any fixed r > 0, it follows that

S(h, 1) < %sm, p2) . p2 > >0 (A.5)

The version of the Combes-Thomas estimate that is most convenient for the current study is the following:



N.J.B. Aza et al. / J. Math. Pures Appl. 125 (2019) 209-246 237

Theorem A.1 (Combes-Thomas). Let h = h* € B(h), p € Ry and z € C. If A(h,z) > S(h, u) then, for all
x,y €2,

efiu"wiyl

(e (e =M )| < X "5

Proof. This theorem is an instance of the first part of [27, Theorem 10.5] and is proven in the same way. O
The Combes-Thomas estimate yields the following bound [42, Lemma 3]:

Proposition A.2 (Bound on differences of resolvents). Let h = h* € B(h), u € R and n € R* such that
S(h, 1) <n/2. Then, for all x,y € Z¢ and u € R,

(e (b = ) +7%) ey, |

< 12¢ Hlz—vl <%7 (h—u)?+ 772)_1€z>;/2 <ey7 ((h—u)? + 772)_1ey>1/2

b

We are now in a position to prove the space decay of propagators:

Corollary A.3 (Space decay of propagators — I). For any self-adjoint operator h = h* € B(h), n,u € RT, all
z,y € Z% and t € R,

‘<ez,eithey>h’ < 36exp <|t77| — pmin {1, m} |z — yl) .

Proof. The proof is a simple adaptation of the one from [42, Theorem 3]: Fix all parameters of the lemma
and observe that Proposition A.2 combined with Inequality (A.5) yields

‘(ex’((h—U)QJrnQ)*ley%,( (A.6)

1/2

<1267 DI (e (= w) +02) Mea )y (s (R = ) +9) ey,

for z,y € Z%, u € R and nn € R*. On the other hand, at fixed € R*, the function defined by G (z) = e'**
on the stripe

R+in[-1,1] c C

is analytic and uniformly bounded by e/*l. Using Cauchy’s integral formula and translations by =+in of the
integration variable, u, we write the function G as

() = 1 /(G(u—in) G(u—f—in))du

“2mi) \u—in—E u+tin-E
— i 2
_n GG, B CW (A7)
7 (B —u)’ + 12 ™) (B—u) 4

for all E € R and n € RT. By spectral calculus, together with (A.6)—(A.7) and the Cauchy—Schwarz
inequality, the assertion follows. O
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Corollary A.4 (Space decay of propagators — II). For any self-adjoint operators hi,ha € B(h) and all

T,y € Zd,
1
b 7 + ehz2eghighz by b

Proof. By (A.1)—(A.4), note that, for any u € Ry,

<2 inf exp ( 'ue*So(h1,M)*Qso(hz,#)|JC _ y|) .
HERY 2

S(ehzefehz 1) < Sy(ehzehiehz, ) < eSolhi+2Solhzum)
Fix p € R} and define
= H o =So(h1,1m)=280(h2,p)

,u1:§e

By (A.5), S(ehzef1eh2 y) < 1/2. Meanwhile, by using Theorem A.1 with h = e2ef1el2 > 0,

1
|<ex’ 1+ eh2ehieha ey>h

Appendix B. Large deviation formalism

<2emlr=yl g

In probability theory, the large deviation (LD) formalism quantitatively describes, for large n > 1, the
probability of finding an empirical mean that differs from the expected value, by more than some fixed
amount. That’s the reason is why we apply it in Section 3 to prove the exponentially fast convergence of mi-
croscopic current densities towards their (classical) macroscopic values. For completeness, in this appendix,
we present the main result from LD theory used in the current study, namely, the Gartner—Ellis theorem
(Theorem B.1 below). For more details, see [23,24]. For a historical review of LD in quantum statistical
mechanics, see [25, Section 7.1].

Let X denote a topological vector space. A lower semi-continuous function I: X — [0, 00] is called a good
rate function if I is not identically co and has compact level sets, i.e., [71([0,m]) = {z € X : I(z) < m} is
compact for any m > 0. A sequence (X )ren of X-valued random variables satisfies the LD upper bound
with speed (np)pen € R (a positive, increasing and divergent sequence) and rate function I if, for any
closed subset F' of X,

li 1 px F) < — inf I(z B.1
im sup = In (X1 eF) m“élp() (B.1)

and it satisfies the LD lower bound if, for any open subset G of X,

- > .
thlloIéf - ln}P’(Xl €q) T}IElgI( x). (B.2)

If both, upper and lower bound, are satisfied, one says that (X1)ren satisfies an LD principle (LDP). The
principle is called weak if the upper bound in (B.1) holds only for compact sets F.

A weak LDP can be strengthened to a full one by showing that the sequence (X,)en of distributions is
exponentially tight, i.e., if for any a € R, there is a compact subset G, of X such that

1
limsup —InP(X € X\G,) < —a. (B.3)

L—oo 0L
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If X is a locally compact topological space, i.e., every point possesses a compact neighborhood, then the
existence of an LDP with a good rate function I for the sequence (X,)rcn implies its exponential tightness
[24, Exercise 1.2.19].

A sufficient condition to ensure that a sequence (X,)ren of X-valued random variables satisfies an LDP
is given by the Gértner—Ellis theorem. It says [24, Corollary 4.5.27] that an exponentially tight sequence
(XL)Len of X-valued random variables on a Banach space X satisfies an LDP with the good rate function

I(x) = sseu/%)* {s(x) = J(s)} , x e X, (B.4)

whenever the so-called limiting logarithmic moment generating function

J(s) = lim - InE [e“LS(XL)} . seX”, (B.5)
L—oo Ny,

exists as a Gateaux differentiable and weak™ lower semi-continuous (finite-valued) function on the dual

space X*. See also [23, Theorem 2.2.4].

The random variables we study in this paper result from bounded sequences (Ar)ren C U of self-adjoint
elements of the CAR C*-algebra U along with some fixed state p € U*. In Section 3, we explain how such
a sequence and state naturally define an exponentially tight sequence of random variables on the real line
X = R, via the Riesz—Markov theorem and functional calculus (cf. (22)). The following simple version of
the celebrated Gértner—Ellis theorem of LD theory is sufficient for our purposes:

Theorem B.1 (Gdartner—Ellis). Take any exponentially tight sequence (Xp)pen of real-valued random vari-
ables (i.e., X = X* = R) and assume that the limiting logarithmic moment generating function J defined
by (B.5) exists for all s € R. Then:

(LD1) (X1)ren satisfies the LD upper bound (B.1) with rate function 1 given by (B.4).
(LD2) If, additionally, J is differentiable for all s € R then (X1 )ren satisfies the LD lower bound (B.2)
with good rate function 1 given again by (B.4).

Proof. (LD1) and (LD2) are special cases of [43, Theorem V.6.(a) and (c)], respectively. O
Appendix C. Response of quasi-free fermion systems to electric fields
C.1. Linear response current

Recall that (£, 2q) is the measurable space defined in Section 2.1, h = ¢%(Z%;C) is the one-particle

Hilbert space with scalar product (-}, and canonical orthonormal basis denoted by {e;} and the

z€LL>
one-particle Hamiltonian of the quasi-free fermion system equals (4), i.e.,

h(w) iAwﬂ?"‘)\Wl , w:(wl,wQ)GQ, )\,ﬁGR(T,

with A, y being (up to a minus sign) the random discrete Laplacian. See again Section 2.1. The associate

ik (@)
Y e

Then, apply on the fermion system an electromagnetic field resulting® from a compactly supported

(quasi-) free dynamics is thus defined from the (random) unitary group {e

time-dependent space-rescaled vector potential nA defined by

2 We use the Weyl gauge, also named temporal gauge.
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nAp(t,z) =nA(t, L7 z), teR,zcRY ne Ry, (C.1)
where

AcCy = COFE®x [-1,0%; (RY").
leR+

Here, (R%)* is the set of one-forms® on R that take values in R. We see any A € Cg°(R x [—1,1]% ; (R%)*) C
C:°, 1 € Rt as a function R x R? — (R?)* via the convention A(t,x) = 0 for x ¢ [—I,1]?. The main reason
for not using (the standard choice) C§°(R x R?; (R9)*) instead of C° as a space of vector potentials, is
that we need to include (in general non-smooth) functions that are constant for x inside cubes [—1,1]¢ and
vanish outside. The time derivative of this vector potential is the (time-dependent) electric field. Since we
are interested here in the linear response current to electromagnetic fields, we use in (C.1) a real parameter
ne RS‘ to also rescale the strength of the vector potential Ay,.

To simplify notation, we consider, without loss of generality, spinless fermions with negative charge. So,
such an electromagnetic field leads to a time-dependent Hamiltonian defined by

AUSY) 4 dwy, teER,

where Afﬁg = Aw%(t")) € B((?(£)) is the time-dependent self-adjoint operator defined* by

(2, A ey )y = exp ( / (At ay + (1 - @)l (y — w)da) (e Doy )y (C:2)

for A e Cf°,t € Rand z,y € 7%, Tt is (up to a minus sign) the magnetic Laplacian, as explained in [44,
Section III, in particular Corollary 3.1]. This yields a dynamics, perturbed by the time-dependent vector
potential nAp, given by the (well-defined random) two-parameter family {Ugﬁg}to,teﬂg of unitary operators
on b satisfying the non-autonomous evolution equation

Vit €R: UL = —i(AUSY 4w U, UYL =1, (C.3)

In the algebraic formulation, it corresponds to the quasi-free dynamics on the CAR C*-algebra U, defined
by the unique two-parameter group {§t(“t’()) Ho.ter of (Bogoliubov) x-automorphisms satisfying

£ @) = a(UE))*Y),  to,t €R, ¢ €D, (C.4)

The above procedure for coupling charged lattice fermions to a vector potential is sometimes called “Peierls

coupling”.
(w)

Additionally to the paramagnetic current observable (oy

) (17), the perturbing vector potential A € C&°
yields a second type of current observable, defined® by

7lw . il a —a)x —z)do *
1)) = —29m ( (et iAot Oanlomnde 1) (e, A e, )pale) ale) ) (C.5)

3 In a strict sense, one should take the dual space of the tangent spaces T(Rd)m, z € R

4 Observe that the sign of the coupling between A € C5° and the Laplacian is wrong in [18, Eq. (2.8)] for negatively charged
fermions.

5 Observe that the sign in the exponent in [21, Eq. (50)] and [7, (4.2)] for negatively charged fermions is wrong, with no
consequence on the corresponding results.



N.J.B. Aza et al. / J. Math. Pures Appl. 125 (2019) 209-246 241

forany w € Q, 9 € ]Ra', t € Rand x,y € Z%, where we recall that 3m(A) € U is the imaginary part of A € U,
see (18). We name it diamagnetic current observable. The derivation of the paramagnetic and diamagnetic
current observables is explained in detail in Appendix C.2. The decomposition of the full current observable

(w w A * w,A
I((x,) ) I((m )y) = —2%m (<€z, Af,,;n,ﬁ L)gy>ha(ez) ( )) = IEI y)) (CG)

in so-called paramagnetic and diamagnetic current observables has a physical relevance. First, it comes
from the physics literature, see, e.g., [45, Eq. (A2.14)]. Secondly, the paramagnetic current observable is
intrinsic to the system and related to a heat production, whereas the diamagnetic one is only non-vanishing
in presence of vector potentials and refers to the ballistic accelerations, induced by electromagnetic fields,
of charged particles. For more details, see [6,19].

Observe that the time evolution of the KMS state o) € U* (see (13)-(14)) is given by o) o ft(“t’[)) for
t,to € R. In [6,18-20]° we perform a detailed study the behavior of current densities when n — 0, uniformly
w.r.t. the volume O (L?) of the boxes where the vector potential Ay is non-zero. In [7,21,22], these results
are generalized to lattice-fermion systems in disordered media with very general interactions” and on passive
states (not necessarily KMS). These mathematically rigorous studies yield an alternative physical picture
of Ohm and Joule’s laws (at least in the AC-regime), different from usual explanations coming from the
Drude model or the Landau theory of Fermi liquids.

To shortly present how the linear response current naturally appears, without requiring a thorough
reading of this series of papers, consider a space homogeneous electric fields in the box Ay (12) for any
L € RT. To be more precise, let A € C°(R;RY) and set £(t) = —.A(t) for all ¢ € R. Therefore, A is
defined to be the vector potential such that the electric field is given by £(t) € C5°(R;R?) at time t € R,
for all z € [-1,1]4, and (0,0,...,0) for t € R and = ¢ [~1,1]%. It yields a rescaled vector potential nA j, for
LeR* and n € R{.

Then, by (17) and (C.5), the space-averaged response current observable, or response current density
observable, in the box Az and in the direction W = (w1, ..., wq) € R? (|@] = 1), forany w € Q, A\, 9,1 € Ry,
LeR", A e Cy and tyg,t € R e R, is, by definition, equal to

(w) (W) (w) FwnAr) (w)
J ‘A |Zwk Z < t,to (I (z+ek,x) + I(T+Pk ’I‘)) - I(T+ek7 )) (07)
TEAL

with {ej}¢_, being the canonical orthonormal basis of the Euclidean space R<.
By using the generalization done in [22] of the celebrated Lieb—Robinson bounds (for commutators) to
multi-commutators, the full current density observable in the direction @ € R? (|uf| = 1) satisfies

3 (t,m) =038 (1) + O (n?) (C.8)

in the CAR C*-algebra U. The correction terms of order O(n?) are uniformly bounded in L € RY, w € Q,
At e Rar and 9 on compacta. By explicit computations, one checks that the linear part is

Zwk / (& (a c<“’>( a)}k,qda, (C.9)

k,q=1

which is equal to HE\WL’&) (20) for the electric field defined by (21). See also (19) for the definition of C[(\w) €
CH(R; B(R%;U?)). This current density observable is therefore the space-averaged linear response current

6 In all our papers we use smooth electric fields, but the extension to the continuous case is straightforward.
7 Sufficiently strong polynomial decays of interactions are necessary. This includes basically standard models of physics that
describes interacting fermions in crystal.
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observable (or linear response current density observable) in the direction W € R we study in all the paper.
Because of (C.9), C “;) is called the conductivity observable matrix associated with A. For more details,
see also [21, Theorem 3.7].

In [6,7,20,22], for any time ¢t € R, we prove the existence of the limit L. — oo of the random linear
response current density

o (IW),  Ler,
to a deterministic value, with probability one. At time ¢ = 0 this refers to the following assertion:

2 = lim o (J(L“) (0)) , (C.10)
which is directly related with (23) and (56) at s = 0.
C.2. Discrete continuity equation in the CAR algebra

As is usual, the self-adjoint element
a(es)*a(ey) €U

represents the particle number observable at the lattice site z € Z?. Fixing once for all w € €,

N, € RY, L € RY, A € C, its time-evolution by the two-parameter group {fi;}g}to’teﬂg of (Bogoli-
ubov) x-automorphisms defined by (C.4) equals

& (a(e) a(ea)) = a((US5)"e) al(Uf) "ex) (can)
for any to,t € R and x € Z¢. Observe that (U( o) U§ for any to,t € R while
Vigt€R: 9, UL = iU (AUSY) 4 wy), UL, =15 . (C.12)

From standard properties of the so-called fermionic creation/annihilation operators, the time derivative of
(C.11) equals

w * w A * Ap)
00 (69 (a(e2)" a(e2)) ) = &) ((aGATS + Mon)ea)ales) + ale) ali(ATFY + dwn)ea)) ) -
Recall now that the map ¢ + a())* from b to U is linear and, by (3) and (C.2), for any x € Z,

AU 1 dw)er = Mt (@) ea+ D {ewrs, AU e dpenys.

2€72%,|z|=1

It follows that

o (6 (@) ae))) = D &) (—29m ((en AT euradpales) alenss))) (C.13)

z€Z%,|z|=1

for any tp,t € R and = € Z%. Another way to prove this equation is to use [21, Theorem 2.1 (ii) with U'F = (]
together with straightforward computations using the CAR (9). Proceeding in this manner, observe that
the quasi-free property of the dynamics is not needed at all. In particular this derivation easily extends to
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the interacting case. It is not so for the one-particle picture discussed in the next section, which is much
more restrictive than the algebraic approach.
Equation (C.13) is interpreted as a discrete continuity equation

o () 0o alen) = 30 ) (1Y)

z€74,|z|=1

in the CAR C*-algebra U. The observable IE:J,,’Z‘S) defined by (C.6) is the observable related to the flow
of particles from the lattice site x to the lattice site y or the current from y to x for negatively charged
particles. [Positively charged particles can of course be treated in the same way.] In the non-interacting
case, this definition of current observable is mathematically equivalent to the usual one in the one-particle
picture, like in [8,10,11]. See Equation (C.19).

C.3. The one-particle picture

When dealing with non-interacting fermions, most of the time, the one-particle picture of such a physical
system is employed, as for instance in [11]. This is frequently technically convenient. Indeed, note that
various important estimates in the current study were obtained in this picture and even all the analysis
performed here could have been done in the one-particle Hilbert space . However, in many cases, this
preference is only subjective and motivated by the fact that, by some reason, people feel more comfortable
in dealing with Hilbert spaces than with C*-algebras. We stress that the algebraic formulation is, from a
conceptual point of view, the natural one, as the underlying physical system is many-body. Moreover, it has
some advantageous technical aspects, both specific (like the possibility of using Bogoliubov-type inequalities
in important estimates) and general ones (like the very powerful theory of KMS states). For convenience of
those preferring the one-particle picture of free fermion systems, we establish in the following the precise
relation of the “second quantized” objects we used here with this picture.

As in the previous subsection, fix once for all w € Q, A\, 9,n € R}, L € RT, A € C5°. Recall that the
corresponding KMS state o(*) is the gauge-invariant quasi-free state satisfying (14), i.e.,

o (p)aw) = (w.de) . e, (C.14)
where
A = (1+e™)71 € B(n)
and the one-particle Hamiltonian h() = (h(“))* € B () is defined by (4). The positive bounded operator
d®) satisfies 0 < d@) < 1, and is called the symbol, or one-particle density matrix, of the quasi-free

state o). See (15)-(16) for the definition of gauge-invariant quasi-free states.
The time-evolution o) by the two-parameter group {{g“;g Ho,ter of (Bogoliubov) s-automorphisms de-

fined by (C.4) is o) o §t(“t’()) for any to,t € R. It is again a gauge-invariant quasi-free state and satisfies
@ o %) (a* = (4, U d@ (U)* C.15
0 0 &t (a7 (p)a (W) = (¥, Uiy d (Ui )'¢) o @0 €D, (C.15)
for any to,t € R, by (C.4) and (C.14). Again,

w) - w (W) _ W)\
di,ti = Ut,tz(l +e) 1(U1(5,t()3) €B(h) (C.16)
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is a positive bounded operator dg";) satisfying 0 < d “) < 1y. It is the symbol or one-particle density
matrix, of the quasi-free state o) o f(w) Recall that the unitary operators U, 1o € B (h), to,t € R, are
uniquely defined by (C.12).

By (C.3), (C.12) and (C.16) together with (Ug";?}) U,EO +, the symbol d( ) is the solution of the Liouville
equation:

Vit €R: i0ydl) = [(Afjjg‘“ n /\wl) ,dgg;g} . aw

to,to

=dw, (C.17)

as for instance in [11, Eq. (2.5)]. Then, all the study performed in the current paper for second quantized
currents of non-interacting fermions can be translated into the one-particle picture by using the Liouville
equation and the fact that the corresponding quasi-free states are completely determined by the one-particle
density matrices {dg“;?] o ter, solving the above initial value problem.

In this framework, the current observable discussed in Section C.1, and studied along the paper, can be
represented by self-adjoint operators on the one-particle Hilbert space h. See, e.g., (32). In this perspective,
note that the full current density observable in a box Ay, in a fixed direction ex, k € {1,...,d}, in R? is the
so-called second quantization of the operator defined by

I = |A | S Sm{(earen AV ea)y Ploserysen Play ), L ERT, (C.18)
TEAL

using the notation (30) for shift operators. See also (31). In other words, by Definition 4.3,
[@nAL) _ p )
\ALI ZA: (renm) = (ATLTA)
re

The one-particle operator fi(Lw) is directly related with the commonly used current observable in the one-
particle Hilbert space, like in [8,10,11]. To see this, for k € {1,...,d}, define the (unbounded) multiplication
operator on h with the k" component by

Xi(W)(z1,. .., xq) = zpp(x1, ..., 24),

for ¢ within the domain of Xj. For any x € Z%, remark that

AEJZ?L)% = Z (eat2, Aﬂ?mew>hew+z
2€7%,|z|=1
and
A A A
—1 [A(n L) k} (<ew+6kvA¢(Z¢9L)ew>bew+ek - <ea:—emA£;n,19L)ew>hew—6k> .

Combining this with (C.18), one checks that

ﬁ(w) 1
3 = —P
b AL

L (fi [Afj;;‘“ + i, XkD P, +O(L7Y), LeRH, (C.19)
uniformly in U/ w.r.t. all parameters, where P, is the orthogonal projection with range lin {e,: = € Ap}, that
is, the multiplication operator with the characteristic function of the box Az. The term of order O(L~1)
results from the existence of O(L?~!) points x € Ay, such that = + ey, ¢ Ap.

We recover from (C.19) the usual description for the current observable as a self-adjoint operator on the
one-particle Hilbert space b, in our case the velocity operator —Z[A("AL) + A\wi, Xi]. See, e.g., [8,10,11].
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Observe additionally that the quantity obtained by applying the state o« of,g,“;g on the full current density

observable gives, in the large volume limit (i.e., L — 00), the density of trace of the product of symbol dg";g

with the velocity operator on the one-particle Hilbert space b, similar to [11, Equation (2.6)].
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