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The growing need for smaller electronic components has recently sparked the interest 
in the breakdown of the classical conductivity theory near the atomic scale, at 
which quantum effects should dominate. In 2012, experimental measurements of 
electric resistance of nanowires in Si doped with phosphorus atoms demonstrate that 
quantum effects on charge transport almost disappear for nanowires of lengths larger 
than a few nanometers, even at very low temperature (4.2 K). We mathematically 
prove, for non-interacting lattice fermions with disorder, that quantum uncertainty 
of microscopic electric current density around their (classical) macroscopic values 
is suppressed, exponentially fast with respect to the volume of the region of the 
lattice where an external electric field is applied. This is in accordance with the above 
experimental observation. Disorder is modeled by a random external potential along 
with random, complex-valued, hopping amplitudes. The celebrated tight-binding 
Anderson model is one particular example of the general case considered here. Our 
mathematical analysis is based on Combes–Thomas estimates, the Akcoglu–Krengel 
ergodic theorem, and the large deviation formalism, in particular the Gärtner–Ellis 
theorem.

© 2019 Elsevier Masson SAS. All rights reserved.

r é s u m é

Le besoin croissant de composants électroniques de plus en plus miniatures a 
rendu incontournable la connaissance des limites de la théorie classique de la 
conductivité électrique, sachant que les effets quantiques devraient dominer à 
l’échelle atomique. En 2012, une mesure expérimentale de la résistance électrique 
de fils nanoscopiques composés de silicium dopé avec des atomes de phosphore 
démontre que les effets quantiques disparaissent pour des fils de seulement quelques 
nanomètres, et cela même à très basses températures (4.2 K). Nous montrons 
mathématiquement, pour des fermions libres dans un milieu désordonné sur réseaux, 
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que l’incertitude quantique de la densité de courants microscopiques autour de sa 
valeur macroscopique classique décroit exponentiellement avec le volume de la région 
où le champ électrique est appliqué. Ceci corrobore l’expérience de 2012. Le désordre 
est modélisé par un potentiel extérieur aléatoire, mais aussi par des amplitudes 
aléatoires de saut entre les sites. Le célèbre modèle d’Anderson sur réseaux est juste 
un exemple particulier du cas général traité ici. Notre analyse mathématique est 
basée sur l’estimée de Combes–Thomas, le théorème ergodique d’Akcoglu–Krengel, 
et le formalisme des grandes déviations, en particulier le théorème de Gärtner–Ellis.

© 2019 Elsevier Masson SAS. All rights reserved.

1. Introduction

The classical conductivity theory of materials, based on the existence of a well-defined bulk resistivity, was 
expected to break down as atomic scales and low temperatures are reached, because quantum effects would 
dominate. In particular, the linear dependence of the resistance as a function of the length of conducting 
nanowires should be violated at atomic lengths, as explained in [1].

The growing need for smaller electronic components has recently sparked the interest in such a question. 
For instance, in 2006, the validity of the classical theory was experimentally verified, at room temperature, 
for nanowires in InAs with lengths down to ∼ 200 nm [2]. Indeed, the measured resistivity for the nanowires 
is 23 Ω/nm, which is very near to the resistivity deduced from bulk properties of the material (24 Ω/nm). 
See [2, discussions after Eq. (2)]. A few years later, in 2012, the same property was observed [3], even at 
very low temperature (4.2 K) and lengths down to 20 nm (atomic scale), in experiments on nanowires in 
Si doped with phosphorus atoms. The breakdown of the classical description of these nanowires is expected 
[1] to be around ∼ 10 nm (at similar temperature) since other experimental studies [4,5] on similar doped 
Si wires show strong deviations from bulk values of the resistivity around this length scale.

These experimental results demonstrate that quantum effects on charge transport can very rapidly dis-
appear with respect to (w.r.t.) growing space-scales. We mathematically prove this fact by studying the 
suppression rate of the probability of finding microscopic current densities that differ from the macroscopic 
one. Observe that [6,7] already proved the convergence of the expectation values of microscopic current den-
sities, but no information about the suppression of quantum uncertainty was obtained in the macroscopic 
limit.

There is a large mathematical literature on charged transport properties of fermions in disordered media, 
for instance by Bellissard and Schulz-Baldes in the nineties [8,9] or, more recently, by Klein, Müller and 
coauthors [10–14]. See also [15,16] and references therein, etc. However, it is not the purpose of this intro-
duction to go into the details of the history of this specific research field. For a (non-exhaustive) historical 
perspective on linear conductivity (Ohm’s law), see, e.g., [17] or our previous papers [6,7,18–22].

In spite of that large mathematical literature on quantum charged transport, the study performed in 
the current paper covers a completely new theoretical aspect of this problem, not exploited in the available 
literature, yet. Observe that although we were able in [7] to deal with interacting fermions, in the present 
paper we restrict ourselves to the non-interacting case, similar to [6]. Within the class of non-interacting 
particles the considered Hamiltonians are however completely general, since disorder is defined via random 
potentials and random, complex valued, hopping amplitudes, which are only assumed to have ergodic 
distributions. The celebrated tight-binding Anderson model is one particular example of the general case 
analyzed here and models with random vector potentials are also included within the present study.

We prove that quantum uncertainty of microscopic electric current densities (around their classical, 
macroscopic values) is suppressed, exponentially fast w.r.t. the volume |ΛL| = O(Ld) (in lattice units (l.u.), 
d ∈ N being the space dimension) of the region of the lattice where an external electric field is applied. 
In order to achieve this, we use the large deviation formalism [23,24], which has been adopted in quantum 
statistical mechanics since the eighties [25, Section 7]. Other mathematical results which are pivotal in 
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our analysis are the Combes–Thomas estimates [26,27], the Akcoglu–Krengel ergodic theorem [28] and the 
(Arzelà-) Ascoli theorem [29, Theorem A5]. Indeed, combined with the celebrated Gärtner–Ellis theorem 
(Theorem B.1), they allow us to prove a large deviation principle (LDP) for the current density distributions, 
which quantify the probability of deviations, due to quantum uncertainty, from the expected value.

The interacting case, as studied in [7,21], is technically much more involved. The mathematical techniques 
allowing to tackle such questions for interacting fermions are partially developed in [25,30], and use Grass-
mann integrals and Brydges–Kennedy tree expansions to construct Gärtner–Ellis generating functions. For 
the non-interacting case, in order to study properties of Gärtner–Ellis generating functions, one can use the 
Bogoliubov-type inequality
∣∣ln tr

(
CeH1

)
− ln tr

(
CeH0

)∣∣ ≤ sup
α∈[0,1]

sup
u∈[−1/2,1/2]

∥∥∥eu(αH1+(1−α)H0) (H1 −H0) e−u(αH1+(1−α)H0)
∥∥∥
B(Cn)

,

where H0, H1 are arbitrary self-adjoint matrices, C is any positive matrix and tr denotes the normalized 
trace. See [31, Lemma 3.6] or Lemma 4.2 below. The above bound turns out to be useful for fermionic 
systems that are quasi-free (i.e. H0, H1 are polynomials of degree two in the fermionic creation and anni-
hilation operators). In this special case, the right-hand side of the inequality can be efficiently bounded by 
‖H1 −H0‖B(Cn), using Combes–Thomas estimates. In contrast, for interacting fermions, explicit examples 
for which the right-hand side is arbitrarily bigger than ‖H1 −H0‖B(Cn) at large volumes are known [32].

Our main results are Theorems 3.1, 3.4 and Corollaries 3.2, 3.5. From the technical point of view, 
Theorem 3.1 is the pivotal statement of the paper, the other assertions, basically the LDP for currents 
with a good rate function (Theorem 3.4 and Corollaries 3.2, 3.5), being all deduced from Theorem 3.1
by relatively standard methods of large deviations. Theorem 3.1 refers to the existence, continuity and 
differentiability of the (infinite volume) deterministic generating function for currents, which appears in the 
Gärtner–Ellis theorem (Theorem B.1). Besides the Bogoliubov-type inequality, as discussed above, its proof 
requires the Akcoglu–Krengel ergodic theorem [28] as an important argument, for one has to control the 
thermodynamical limit of (finite volume) generating functions that are random. To make possible the use 
of this important result from ergodic theory, various technical preliminaries are needed and the proof of 
Theorem B.1 is highly non-trivial, as a whole: We perform a rather complicated box decomposition of these 
random functions, which can be justified with the help of the Bogoliubov-type inequality and the “locality” 
(or space decay) of both the quasi-free dynamics and space correlations of KMS states, as a consequence of 
Combes–Thomas estimates (Appendix A).

To conclude, this paper is organized as follows:

• In Section 2, the mathematical setting is described in detail. It refers to quasi-free fermions on the lattice 
in disordered media. We also discuss the physical motivations of the model, which are supplemented by 
Appendix C to reduce the length of this section.

• In Section 3, the main results are stated and the large deviation (LD) formalism is shortly defined, 
being supplemented by Appendix B. More precisely, we present the mathematical statements related 
to the existence of generating functions of the LD formalism, an LD principle (LDP) for currents, as 
well as the behavior of the corresponding rate function. We finally combine them to state and discuss 
the exponentially fast suppression of quantum uncertainty of currents around the classical value of the 
current.

• Section 4 gathers all technical proofs. In particular, Bogoliubov-type inequalities discussed above are 
stated and proven in Section 4.1. Section 4.2 collects some useful, albeit elementary, properties of 
bilinear elements, which are basically quadratic elements in the CAR algebra resulting from the second-
quantization of one-particle operators. Then, in Section 4.3, we show that current observable are bilinear 
elements associated with explicit one-particle operators that satisfy several explicit estimates. These up-
per bounds are pivotal for the proof of our main theorem, i.e., Theorem 3.1, which, effectively, only starts 
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in Section 4.4 and is finished in Section 4.5 with the use of the Akcoglu–Krengel ergodic theorem [28]
and the (Arzelà-) Ascoli theorem [29, Theorem A5].

• We finally include Appendices A, B and C, stating general results used throughout the current paper, in 
a way well-adapted to our proofs. Appendix A is about the Combes–Thomas estimates while Appendix B
explains the large deviation formalism, in particular the Gärtner–Ellis theorem. Appendix C contains 
supplementary information on the mathematical framework and relevant physical concepts, in order to 
make unnecessary the use of further references for a clear understanding of the subject of the current 
paper. More precisely, Appendix C summaries some important results on linear response current of our 
papers [6,7,18–22]. Appendix C.2 explains the origin of current observables in relation with the discrete 
continuity equation within the CAR algebra. Finally, Appendix C.3 makes explicit the link between 
the algebraic formulation we use here and the (more popular) one-particle Hilbert space formulation of 
non-interacting fermion systems.

Notation 1.1. A norm on a generic vector space X is denoted by ‖ · ‖X . The space of all bounded linear 
operators on (X , ‖ · ‖X ) is denoted by B(X ). The scalar product of any Hilbert space X is denoted by 〈·, ·〉X . 
Note that R+ .= {x ∈ R : x > 0} while R+

0
.= R+ ∪ {0}.

2. Setup of the problem

We use the mathematical framework of [7,22] to study fermions on the lattice. For simplicity we take a 
cubic lattice Zd, even if other types of lattices can certainly be considered with the same, albeit adapted, 
methods. Disorder within the conductive material, due to impurities, crystal lattice defects, etc., is modeled 
by (a) a random external potential, like in the celebrated Anderson model, and (b) a random Laplacian, 
i.e., a self-adjoint operator defined by a next-nearest neighbor hopping term with random complex-valued 
amplitudes. In particular, random vector potentials can also be implemented.

Altogether, this yields the random tight-binding model mathematically described in Section 2.1: The 
underlying probability space is defined in Part (ii) of that subsection, while the one-particle Hamiltonian 
driven the non-interacting (or quasi-free) lattice-fermion system is explained in Part (iii), see in particular 
Equation (4). Then, we apply on the quasi-free fermion system in disordered media some time-dependent 
electromagnetic fields and look at the linear response current density in the thermodynamic limit of macro-
scopic electromagnetic fields. This study is already done in great generality in [7,21,22] and we shortly 
explain it in Section 2.3, with complementary explanations postponed to Appendix C. Then, we will be 
in a position to state the main results of the paper about the exponential rate of convergence of current 
densities in the limit of macroscopic electromagnetic fields.

Observe that no interaction between fermions are considered in the sequel and one can do all our study 
on the one-particle Hilbert space, as illustrated in Appendix C.3. Despite this, our approach is based on the 
algebraic formulation of fermion systems on lattices explained in Section 2.2 because it makes the role played 
by many-fermion correlations due to the Pauli exclusion principle, i.e., the antisymmetry of the many-body 
wave function, more transparent. For instance, the conductivity is naturally defined from current-current 
correlations, that is, four-point correlation functions, in this framework. The algebraic formulation also allows 
a clear link between transport properties of fermion systems and the CCR algebra of current fluctuations 
[20]. The latter is related to non-commutative central limit theorems (see, e.g., [33]). On top of this, the 
approach ensures a continuity with our previous results while making much clearer its extension to a study 
of interacting fermions for which the algebraic formulation is very advantageous. This paper can thus be 
seen as a preparation to do a similar study for interacting fermions. Such an analysis has already started 
with [25,30] via (highly technical) constructive methods used in quantum field theory, which will allow us 
to obtain convergent expansion schemes around the quasi-free case for generic generating functions.
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2.1. Random tight-binding model

(i): The host material for conducting fermions is assumed to be a cubic crystal represented by the 

d-dimensional cubic lattice Zd (d ∈ N). Below, Pf(Zd) ⊂ 2Zd is the set of all non-empty finite subsets 
of Zd. Further,

D
.= {z ∈ C : |z| ≤ 1} and b

.=
{
{x, x′} ⊂ Z

d : |x− x′| = 1
}

is the set of (non-oriented) edges of the cubic lattice Zd.

(ii): Disorder in the crystal is modeled by a random variable taking values in the measurable space (Ω, AΩ), 
with distribution aΩ:

Ω: Elements of Ω are pairs ω = (ω1, ω2) ∈ Ω, where ω1 is a function on lattice sites with values in the 
interval [−1, 1] and ω2 is a function on edges with values in the complex closed unit disc D. I.e.,

Ω .= [−1, 1]Z
d × D

b.

AΩ: Let Ω(1)
x , x ∈ Zd, be an arbitrary element of the Borel σ-algebra A(1)

x of the interval [−1, 1] w.r.t. the 
usual metric topology. Define

A[−1,1]Zd
.=
⊗
x∈Zd

A(1)
x ,

i.e., A[−1,1]Zd is the σ-algebra generated by the cylinder sets 
∏

x∈Zd

Ω(1)
x , where Ω(1)

x = [−1, 1] for all but 

finitely many x ∈ Zd. In the same way, let

ADb

.=
⊗
x∈b

A(2)
x ,

where A(2)
x , x ∈ b, is the Borel σ-algebra of the complex closed unit disc D w.r.t. the usual metric 

topology. Then

AΩ
.= A[−1,1]Zd ⊗ ADb .

aΩ: The distribution aΩ is an arbitrary ergodic probability measure on the measurable space (Ω, AΩ). I.e., 
it is invariant under the action

(ω1, ω2) �−→ χ(Ω)
x (ω1, ω2)

.=
(
χ(Zd)
x (ω1) , χ(b)

x (ω2)
)

, x ∈ Z
d , (1)

of the group (Zd, +) of translations on Ω and aΩ(X ) ∈ {0, 1} whenever X ∈ AΩ satisfies χ(Ω)
x (X ) = X

for all x ∈ Zd. Here, for any ω = (ω1, ω2) ∈ Ω, x ∈ Zd and y, y′ ∈ Zd with |y − y′| = 1,

χ(Zd)
x (ω1) (y) .= ω1 (y + x) , χ(b)

x (ω2) ({y, y′}) .= ω2 ({y + x, y′ + x}) . (2)

As is usual, E [·] denotes the expectation value associated with aΩ.

(iii): The one-particle Hilbert space is h 
.= �2(Zd; C) with scalar product 〈·, ·〉h. Its canonical orthonormal 

basis is denoted by {ex} d , which is defined by ex(y) 
.= δx,y for all x, y ∈ Zd. (δx,y is the Kronecker delta.) 
x∈Z
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To any ω ∈ Ω and strength ϑ ∈ R
+
0 of hopping disorder, we associate a self-adjoint operator Δω,ϑ ∈ B(�2(Zd))

describing the hoppings of a single particle in the lattice:

[Δω,ϑ(ψ)](x) .= 2dψ(x) −
d∑

j=1

(
(1 + ϑω2({x, x− ej})) ψ(x− ej)

+ ψ(x + ej)(1 + ϑω2({x, x + ej}))
)

(3)

for any x ∈ Zd and ψ ∈ �2(Zd), with {ek}dk=1 being the canonical orthonormal basis of the Euclidean
space Rd. In the case of vanishing hopping disorder ϑ = 0, (up to a minus sign) Δω,0 is the usual 
d-dimensional discrete Laplacian. Since the hopping amplitudes are complex-valued (ω2 takes values in D), 
note additionally that random vector potentials can be implemented in our model. Then, the random tight-
binding model is the one-particle Hamiltonian defined by

h(ω) .= Δω,ϑ + λω1 , ω = (ω1, ω2) ∈ Ω, λ, ϑ ∈ R
+
0 , (4)

where the function ω1 : Zd → [−1, 1] is identified with the corresponding (self-adjoint) multiplication oper-
ator. We use this operator to define a (infinite volume) dynamics, by the unitary group {eith(ω)}t∈R, in the 
one-particle Hilbert space h. Note that the tight-binding Anderson model corresponds to the special case 
ϑ = 0.

(iv): Let

Z
.=
{
Z ⊂ 2Z

d

: (∀Z1, Z2 ∈ Z) Z1 �= Z2 =⇒ Z1 ∩ Z2 = ∅
}
,

Zf
.= {Z ∈ Z : |Z| < ∞ and (∀Z ∈ Z) 0 < |Z| < ∞} .

One can restrict the dynamics to collections Z ∈ Z of disjoint subsets of the lattice by using the orthogonal 
projections PΛ, Λ ⊂ Zd, defined on h by

[PΛ(ϕ)](x) .=
{

ϕ(x), if x ∈ Λ.
0, else.

(5)

Then, the one-particle Hamiltonian within Z ∈ Z is

h
(ω)
Z

.=
∑
Z∈Z

PZh
(ω)PZ , (6)

leading to the unitary group {eith(ω)
Z }t∈R. This kind of decomposition over collections of disjoint subsets of 

the lattice is important in the technical proofs.

(v): By the Combes–Thomas estimate (Appendix A),
∣∣∣∣〈ex, eith(ω)

Z ey

〉
h

∣∣∣∣ ≤ 36e|tη|−2μη|x−y| (7)

for any η, μ ∈ R+, x, y ∈ Zd, Z ∈ Z, ω ∈ Ω, and λ, ϑ ∈ R
+
0 , where

μη
.= μmin

{
1
2 ,

η

8d (1 + ϑ) eμ

}
. (8)

See Corollary A.3, by observing that the parameter S defined by (A.4) is bounded in this case by S(h(ω)
Z , μ) ≤

2d(1 + ϑ)eμ.
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2.2. Algebraic setting

Although all the problem can be formulated, in a mathematically equivalent way, in the one-particle 
(or Hilbert space) setting (Appendix C.3), since the underlying physical system is a many-body one, it is 
conceptually more appropriate to state the large deviation principle (LDP) related to microscopic current 
densities within the algebraic formulation for lattice fermion systems:

(i): We denote by U ≡ Uh the CAR C∗-algebra generated by the identity 1 and elements {a(ψ)}ψ∈h satisfying 
the canonical anticommutation relations (CAR): For all ψ, ϕ ∈ h,

a(ψ)a(ϕ) = −a(ϕ)a(ψ), a(ψ)a(ϕ)∗ + a(ϕ)∗a(ψ) = 〈ψ,ϕ〉
h
1. (9)

Note that CAR imply that, for all ψ ∈ h,

‖a(ψ)‖U ≤ ‖ψ‖
h
, (10)

and the map ψ �→ a(ψ)∗ from h to U is linear. As is usual, a(ψ) and a(ψ)∗ are called, respectively, annihilation 
and creation operators.

(ii): For all ω ∈ Ω and λ, ϑ ∈ R
+
0 , the dynamics on the CAR C∗-algebra U is defined by a strongly continuous 

group τ (ω) .= {τ (ω)
t }t∈R of (Bogoliubov) ∗-automorphisms of U satisfying

τ
(ω)
t (a(ψ)) = a(eith

(ω)
ψ) , t ∈ R, ψ ∈ h. (11)

See (4) as well as [34, Theorem 5.2.5] for more details on Bogoliubov automorphisms. Similarly, for any 
Z ∈ Z, we define the strongly continuous group τ (ω,Z) by replacing h(ω) in (11) with h(ω)

Z (see (6)). In order 
to define the thermodynamic limit, we introduce the increasing family

Λ�
.= {(x1, . . . , xd) ∈ Z

d : |x1|, . . . , |xd| ≤ �}, � ∈ R
+
0 , (12)

in Pf(Zd). Observe that, for any t ∈ R, τ (ω,{Λ�})
t converges strongly to τ (ω)

t ≡ τ
(ω,{Zd})
t , as � → ∞.

(iii): For any realization ω ∈ Ω and disorder strengths λ, ϑ ∈ R
+
0 , the thermal equilibrium state of the system 

at inverse temperature β ∈ R+ (i.e., β > 0) is by definition the unique (τ (ω), β)-KMS state �(ω), see [34, 
Example 5.3.2.] or [35, Theorem 5.9]. It is well-known that such a state is stationary w.r.t. the dynamics 
τ (ω), that is,

�(ω) ◦ τ (ω)
t = �(ω) , ω ∈ Ω, t ∈ R. (13)

The state �(ω) is also gauge-invariant and quasi-free, and it satisfies

�(ω)(a∗ (ϕ) a (ψ)) =
〈
ψ,

1
1 + eβh(ω) ϕ

〉
h

, ϕ, ψ ∈ h. (14)

For β = 0, one gets the tracial state (or chaotic state), denoted by tr ∈ U∗.
Recall that gauge-invariant quasi-free states are positive linear functionals ρ ∈ U∗ such that ρ(1) = 1

and, for all N1, N2 ∈ N and ψ1, . . . , ψN1+N2 ∈ h,

ρ (a∗(ψ1) · · · a∗(ψN1)a(ψN1+N2) · · · a(ψN1+1)) = 0 (15)

if N1 �= N2, while in the case N1 = N2 ≡ N ,
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ρ (a∗(ψ1) · · · a∗(ψN )a(ψ2N ) · · · a(ψN+1)) = det
[
ρ
(
a+(ψk)a(ψN+l)

)]N
k,l=1 . (16)

See, e.g., [36, Definition 3.1], which refers to a more general notion of quasi-free states. The gauge-invariant 
property corresponds to Equation (15) whereas [36, Definition 3.1, Condition (3.1)] only imposes the quasi–
free state to be even, which is a strictly weaker property than being gauge-invariant.

Similarly, for any Z ∈ Z, we define the quasi-free state �(ω)
Z by replacing h(ω) in (14) with h(ω)

Z (see (6)). 
In the thermodynamic limit � → ∞, �(ω)

{Λ�} converges in the weak∗ topology to �(ω) ≡ �
(ω)
{Zd}.

2.3. Current densities

(i) Currents: Fix ω ∈ Ω and ϑ ∈ R
+
0 . For any oriented edge (x, y) ∈

(
Zd
)2, we define the paramagnetic 

current observable by

I
(ω)
(x,y)

.= −2�m (〈ex,Δω,ϑey〉ha(ex)∗a(ey)) . (17)

It is seen as a current because it satisfies a discrete continuity equation, as explained in Appendix C.2. Here, 
the self-adjoint operators �m(A) ∈ U and �e(A) ∈ U are the imaginary and real parts of A ∈ U , that are, 
respectively,

�m (A) .= 1
2i (A−A∗) and �e (A) .= 1

2 (A + A∗) . (18)

This “second-quantized” definition of current observable and the usual one in the one-particle setting, like in 
[8,10,11], are perfectly equivalent, in the case of non-interacting fermions. See for instance Equation (C.19).

Note that electric fields accelerate charged particles and induce so-called diamagnetic currents, which 
correspond to the ballistic movement of particles. In fact, as explained in [19, Sections III and IV], this 
component of the total current creates a kind of “wave front” that destabilizes the whole system by changing 
its state. The presence of diamagnetic currents leads then to the progressive appearance of paramagnetic 
currents which are responsible for heat production and the in-phase AC-conductivity of the system. For 
more details, see [7,19,21] as well as Appendix C on linear response currents.

(ii) Conductivity: As is usual, [A,B] .= AB−BA ∈ U denotes the commutator between the elements A ∈ U
and B ∈ U . For any finite subset Λ ∈ Pf(Zd), we define the space-averaged transport coefficient observable 
C(ω)
Λ ∈ C1(R; B(Rd; Ud)), w.r.t. the canonical orthonormal basis {eq}dq=1 of the Euclidean space Rd, by the 

corresponding matrix entries

{
C(ω)
Λ (t)

}
k,q

.= 1
|Λ|

∑
x,y,x+ek,y+eq∈Λ

∫ t

0
i[τ (ω)

−α (I(ω)
(y+eq,y)), I

(ω)
(x+ek,x)]dα

+ 2δk,q
|Λ|

∑
x∈Λ

�e (〈ex+ek ,Δω,ϑex〉a(ex+ek)∗a(ex)) (19)

for any ω ∈ Ω, t ∈ R, λ, ϑ ∈ R
+
0 and k, q ∈ {1, . . . , d}. This object is the conductivity observable matrix 

associated with the lattice region Λ and time t. See Appendix C, in particular Equations (C.8)–(C.9). In 
fact, the first term in the right-hand side of (19) corresponds to the paramagnetic coefficient, whereas the 
second one is the diamagnetic component. For more details, see [21, Theorem 3.7].

(iii) Linear response current density: Fix a direction �w ∈ Rd with ‖�w‖Rd = 1 and a (time-dependent) 
continuous, compactly supported, electric field E ∈ C0

0 (R; Rd), i.e., the external electric field is a continuous 
function t �→ E(t) ∈ Rd of time t ∈ R with compact support. Then, as it is explained in Appendix C, [7,21]1

1 Strictly speaking, these papers use smooth electric fields, but the extension to the continuous case is straightforward.
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shows that the space-averaged linear response current observable in the lattice region Λ and at time t = 0
in the direction �w is equal to

I
(ω,E)
Λ

.=
d∑

k,q=1

wk

0∫
−∞

{E (α)}q
{
C(ω)
Λ (−α)

}
k,q

dα . (20)

To obtain the current density at any time t ∈ R, it suffices to replace E ∈ C0
0 (R; Rd) in this equation with

Et(α) .= E (α + t) , α ∈ R. (21)

Compare with Equations (C.8)–(C.9).

3. Main results

We study large deviations (LD) for the microscopic current density produced by any fixed, time-dependent 
electric field E . Via the Gärtner–Ellis theorem (see, e.g., [24, Corollary 4.5.27]), this is a consequence of the 
following result:

Theorem 3.1 (Generating functions for currents). There is a measurable subset Ω̃ ⊂ Ω of full measure such 
that, for all β ∈ R+, ϑ, λ ∈ R

+
0 , ω ∈ Ω̃, E ∈ C0

0 (R; Rd) and �w ∈ Rd with ‖�w‖Rd = 1, the limit

lim
L→∞

1
|ΛL|

ln �(ω)
(
e|ΛL|I(ω,E)

ΛL

)

exists and equals

J(E) .= lim
L→∞

1
|ΛL|

E

[
ln �(·)

(
e|ΛL|I(·,E)

ΛL

)]
.

Moreover, for any E ∈ C0
0 (R; Rd), the map s �→ J(sE) from R to itself is continuously differentiable and 

convex.

Proof. The assertions directly follow from Corollaries 4.19 and 4.20. Note that the map s �→ J(sE) is a limit 
of convex functions, and hence, it is also convex. �

In probability theory, the law of large numbers refers to the convergence (at least in probability), as 
n → ∞, of the average or empirical mean of n independent identically distributed (i.i.d.) random variables 
towards their expected value (assuming it exists). The large deviation formalism quantitatively describes, 
for large n � 1, the probability of finding an empirical mean that differs from the expected value. These are 
rare events, by the law of large numbers, and an LD principle (LDP) gives their probability as exponentially 
small (w.r.t. some speed) in the limit n → ∞.

In the context of the algebraic formulation of quantum mechanics, observables (i.e., self-adjoint elements 
of some C∗-algebra, here U) generalize the notion of random variables of classical probability theory. The 
link between both notions is given via the Riesz–Markov theorem and functional calculus: The commutative 
C∗-subalgebra of U generated by any self-adjoint element A∗ = A ∈ U is isomorphic to the algebra of 
continuous functions on the compact set spec(A) ⊂ R. Hence, by the Riesz–Markov theorem, for any state 
ρ ∈ U∗, there is a unique probability measure mρ,A on R such that

mρ,A(spec(A)) = 1 and ρ (f(A)) =
∫

f(x)mρ,A(dx) (22)

R
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for all complex-valued continuous functions f ∈ C(R; C). mρ,A is called the distribution of the observable 
A in the state ρ. The LD formalism naturally arises also in this more general framework: A rate function 
is a lower semi-continuous function I : R → [0, ∞]. If I is not the ∞ constant function and has compact 
level sets, i.e., if I−1([0, m]) = {x ∈ R : I(x) ≤ m} is compact for any m ≥ 0, then one says that I is a 
good rate function. A sequence (AL)L∈N ⊂ U of observables satisfies an LDP, in a state ρ ∈ U∗, with speed 
(nL)L∈N ⊂ R+ (a positive, increasing and divergent sequence) and rate function I if, for any Borel subset G
of R,

− inf
x∈G◦

I (x) ≤ lim inf
L→∞

1
nL

lnmρ,AL
(G) ≤ lim sup

L→∞

1
nL

lnmρ,AL
(G) ≤ − inf

x∈Ḡ
I (x) .

Here, G◦ is the interior of G, while Ḡ is its closure. Compare with Equations (B.1)–(B.2) in Appendix B.
A sufficient condition to ensure that a sequence of observables satisfies an LDP is given by the Gärtner–

Ellis theorem. In particular, Theorem 3.1 combined with Theorem B.1 yields the following corollary:

Corollary 3.2 (Large deviation principle for currents). Let Ω̃ ⊂ Ω be the measurable subset of full measure 
of Theorem 3.1. Then, for all β ∈ R+, ϑ, λ ∈ R

+
0 , ω ∈ Ω̃, l ∈ N, E ∈ C0

0 (R; Rd) and �w ∈ Rd with ‖�w‖Rd = 1, 
the sequence (I(ω,E)

ΛL
)L∈N of microscopic current densities satisfies an LDP, in the KMS state �(ω), with speed 

|ΛL| and good rate function I(E) defined on R by

I(E)(x) .= sup
s∈R

{
sx− J(sE)

}
≥ 0.

Remark 3.3. By direct estimates, one verifies that, for any fixed state ρ, (I(ω,E)
ΛL

)L∈N yields an exponentially 

tight family of probability measures, defined by (22) for A = I
(ω,E)
ΛL

. Therefore, by [24, Lemma 4.1.23], 
(I(ω,E)

ΛL
)L∈N satisfies, along some subsequence, an LDP, in any state ρ, with speed |ΛL| and a good rate 

function. However, it is not clear whether this rate function depends on the choice of subsequences and 
ω ∈ Ω. Moreover, no information on minimizers of the rate function, like in Theorem 3.4, can be deduced 
from [24, Lemma 4.1.23].

Observe that, if an LDP holds true, then the law of large numbers follows [37, Theorem II.6.4] from 
the Borel–Cantelli lemma [37, Lemma A.5.2]. Therefore, by [6,7] and Corollary 3.2, the distributions of the 
microscopic current density observables, in the state �(ω), weak∗ converges, for ω ∈ Ω almost surely, to the 
delta distribution at the (classical value of the) macroscopic current density. Using Theorem 3.1, we sharpen 
this result by proving that the microscopic current density converges exponentially fast to the macroscopic 
one, w.r.t. the volume |ΛL| of the region of the lattice where an external electric field is applied.

To this end, we remark from Corollary 4.20 (see (56)) that, for any β ∈ R+, ϑ, λ ∈ R
+
0 , �w ∈ Rd with 

‖�w‖Rd = 1, the macroscopic current density is equal to

x(E) .= ∂sJ(sE)|s=0, E ∈ C0
0 (R;Rd). (23)

See also (C.10). Define

x−
.= inf

{
x ≤ x(E) : I(E) (x) < ∞

}
, x+

.= sup
{
x ≥ x(E) : I(E) (x) < ∞

}
.

Obviously, I(E) (x) = ∞ for x ∈ R\[x−, x+]. We start by giving important properties of the rate function I(E):

Theorem 3.4 (Properties of the rate function). Fix β ∈ R+, ϑ, λ ∈ R
+
0 , �w ∈ Rd with ‖�w‖Rd = 1 and E ∈

C0
0 (R; Rd). The rate function I(E) is a lower-semicontinuous convex function satisfying: (i) I(E)(x(E)) = 0; 
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(ii) I(E)(x) > 0 if x �= x(E); (iii) I(E) (x) < ∞ for x ∈ (x−, x+) with I(E) (x) ≤ I(E) (x−) for x ∈ (x−, x(E)]
and I(E) (x) ≤ I(E) (x+) for x ∈ [x(E), x+); (iv) I(E) restricted to the interior of its domain, i.e., the (possibly 
empty) open interval (x−, x+), is continuous.

Proof. Fix all parameters of the theorem. Note that I(E) is clearly a lower-semicontinuous convex function, 
by construction. As the map s �→ J(sE) is differentiable and convex (Theorem 3.1), the map s �→ J(sE) is the 
Legendre–Fenchel transform of I(E), i.e.,

J(sE) = sup
x∈R

{
sx− I(E)(x)

}
, s ∈ R,

and s0 is a solution of the variational problem

I(E)(x) .= sup
s∈R

{
sx− J(sE)

}

if and only if s0 solves x = ∂sJ(sE)|s=s0 . By (23), it follows that

0 = J(0) = inf
x∈R

I(E)(x) = I(E)(x(E)).

This proves Assertion (i). To prove (ii), it suffices to show that x(E) is the only minimizer of I(E). Note 
that x0 is a minimizer of I(E) if and only if 0 is a subdifferential of I(E) at x0 (Fermat’s principle). By [38, 
Corollary 5.3.3] and the differentiability of the Legendre transform of I(E), which is the map s �→ J(sE), it 
follows that the minimizer of I(E) is unique and Assertion (ii) follows. Assertion (iii) is a direct consequence 
of the fact that I(E) is a convex function with x(E) as unique minimizer. Assertion (iv) is deduced from [38, 
Corollary 2.1.3]. �
Corollary 3.5 (Exponentially fast suppression of quantum uncertainty of currents). Let Ω̃ ⊂ Ω be the measur-
able subset of full measure of Theorem 3.1. Then, for all β ∈ R+, ϑ, λ ∈ R

+
0 , ω ∈ Ω̃, l ∈ N, E ∈ C0

0 (R; Rd), 
�w ∈ Rd with ‖�w‖Rd = 1, and any open subset O ⊂ R with x(E) /∈ Ō,

lim sup
L→∞

1
|ΛL|

lnm

(ω),I

(ω,E)
ΛL

(O) < 0.

The above limit does not depend on the particular realization of ω ∈ Ω̃. If, additionally, O∩(x−, x+) �= ∅, 
then

lim
L→∞

1
|ΛL|

lnm

(ω),I

(ω,E)
ΛL

(O) = − inf
x∈O

I(E) (x) < 0.

See (22) for the definition of the distribution of I(ω,E)
ΛL

, in the KMS state �(ω).

Proof. It is a direct consequence of Corollary 3.2 and Theorem 3.4. �
Corollary 3.5 shows that the microscopic current density converges exponentially fast to the macroscopic 

one, w.r.t. the volume |ΛL| (in lattice units (l.u.)) of the region of the lattice where the electric field is applied. 
As discussed in the introduction, this is in accordance with the low temperature (4.2 K) experiment [3] on 
the resistance of nanowires with lengths down to approximately 40 l.u. (L � 20). The breakdown of the 
classical description of these nanowires is expected [1,4,5] to be around 20 l.u. (L � 10).

To conclude, note that, in the experimental setting of [2,3], contacts are used to impose an electric 
potential difference to the nanowires. These contacts yield supplementary resistances to the systems that are 
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well-described by Landauer’s formalism [46] when a ballistic charge transport takes place in the nanowires. 
In our model, the purely ballistic charge transport is reached when ϑ = 0 and λ → 0+, as proven in [20, 
Theorem 4.6]. When the nanowire resistance becomes relatively small as compared to the contact resistances, 
then the charge transport in the nanowire is well-described by a ballistic approximation and Landauer’s 
formalism applies, as also experimentally verified in [2]. This is the reason why [3] reaches much smaller 
length scales than [2]: the material used in [3] has a much larger linear resistivity (between 112 Ω/nm and 
855 Ω/nm, see [3, Table 1]) than the one of [2] (23 Ω/nm, see [2, discussions after Eq. (2)]).

4. Technical proofs

4.1. Preliminary estimates

We start by giving two general estimates which will be used many times afterwards. The first one is an 
elementary observation:

Lemma 4.1 (Operator norm estimate). For any operator C ∈ B(h),

‖C‖B(h) ≤ sup
x∈Zd

∑
y∈Zd

∣∣∣〈ex, Cey〉h
∣∣∣ .

Proof. By the Cauchy–Schwarz inequality, for all ϕ, ψ ∈ h,∣∣∣〈ϕ,Cψ〉
h

∣∣∣ ≤ ∑
x,y∈Zd

∣∣∣ϕ(x)ψ(y) 〈ex, Cey〉h
∣∣∣

=
∑

x,y∈Zd

(
|ϕ(x)|

∣∣∣〈ex, Cey〉h
∣∣∣1/2)(|ψ(y)|

∣∣∣〈ex, Cey〉h
∣∣∣1/2)

≤
√ ∑

x,y∈Zd

(
|ϕ(x)|2

∣∣∣〈ex, Cey〉h
∣∣∣)√ ∑

x,y∈Zd

|ψ(y)|2
∣∣∣〈ex, Cey〉h

∣∣∣
≤ ‖ϕ‖

h
‖ψ‖

h
sup
x∈Zd

∑
y∈Zd

∣∣∣〈ex, Cey〉h
∣∣∣ . �

The second one is a version of the Bogoliubov inequality. Recall that the tracial state tr ∈ U∗ is the 
quasi-free state satisfying (14) at β = 0.

Lemma 4.2 (Bogoliubov-type inequalities). Let C ∈ U be any strictly positive element.

(i) For any continuously differentiable family {Hα}α∈R ⊂ U of self-adjoint elements,

∣∣∂α ln tr
(
CeHα

)∣∣ ≤ sup
u∈[−1/2,1/2]

∥∥euHα {∂αHα} e−uHα
∥∥
U .

(ii) Similarly, for any self-adjoint H0, H1 ∈ U ,

∣∣ln tr
(
CeH1

)
− ln tr

(
CeH0

)∣∣ ≤ sup
α∈[0,1]

sup
u∈[−1/2,1/2]

∥∥∥eu(αH1+(1−α)H0) (H1 −H0) e−u(αH1+(1−α)H0)
∥∥∥
U
.

Proof. (i) By Duhamel’s formula, for any continuously differentiable family {Hα}α∈R ⊂ U of self-adjoint 
elements,
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∂α
{
eHα
}

=
1∫

0

euHα {∂αHα} e(1−u)Hαdu,

which implies that

∂α ln tr
(
CeHα

)
=

1∫
0

tr
(
CeuHα {∂αHα} e(1−u)Hα

)
tr (CeHα) du.

Using the cyclicity of the trace, we then get

∂α ln tr
(
CeHα

)
=

1∫
0

tr
(
eHα

2 CeHα
2 e

(
u− 1

2
)
Hα {∂αHα} e( 1

2−u)Hα

)
tr
(
eHα

2 CeHα
2

) du

=

1
2∫

− 1
2

tr
(
eHα

2 CeHα
2 euHα {∂αHα} e−uHα

)
tr
(
eHα

2 CeHα
2

) du,

which yields (i).
(ii) To prove the second assertion, it suffices to apply Assertion (i) to the family defined by

Hα = H0 + α (H1 −H0) , α ∈ [0, 1] . �
Observe that Lemma 4.2 (ii) is proven in [31, Lemma 3.6]. Here, we give a proof of this estimate for 

completeness. These Bogoliubov-type inequalities are useful because we deal with quasi-free dynamics. In 
this case, we have a very good control on the norm of

euHα {∂αHα} e−uHα ,

because Hα is a bilinear element, as explained in the next subsection.

4.2. Bilinear elements of CAR algebra

Similar to [39], bilinear elements are defined as follows:

Definition 4.3 (Bilinear elements). Fix an operator C ∈ B(h) whose range ran(C) is finite dimensional. 
Given any finite-dimensional subspace H ⊂ h, with orthonormal basis {ψi}i∈I , such that H ⊇ ran(C) and 
H ⊇ ran(C∗), we define the bilinear element associated with C to be

〈A, CA〉 .=
∑
i,j∈I

〈ψi, Cψj〉h a (ψi)∗ a (ψj) .

Note that such a finite dimensional H in this definition always exists, because

dim (ran(C)) = dim (ran(C∗)) < ∞,

and is an invariant space of C containing (ker(C))⊥. Hence, 〈A, CA〉 does not depend on the particular 
choice of H and its orthonormal basis.
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Bilinear elements of U have adjoints equal to

〈A, CA〉∗ = 〈A, C∗A〉, (24)

for any C ∈ B(h) whose range is finite dimensional. In particular,

�m {〈A, CA〉} = 〈A,�m {C}A〉, (25)

where we recall that �m(A) ∈ U is the imaginary part of A ∈ U , see (18). For any C ∈ B(h) whose range 
is finite dimensional and any ϕ ∈ h, note that

[〈A, CA〉 , a (ϕ)] = −a (C∗ϕ) and
[
〈A, CA〉 , a (ϕ)∗

]
= a (Cϕ)∗ .

In particular, for any C1, C2 ∈ B(h) whose ranges are finite dimensional,

[〈A, C1A〉 , 〈A, C2A〉] = 〈A, [C1, C2] A〉 . (26)

Moreover, by (11), for any ϕ ∈ h and C ∈ B(h), whose range is finite dimensional,

e〈A,CA〉a (ϕ) e−〈A,CA〉 = a
(
e−C∗

ϕ
)

and e〈A,CA〉a (ϕ)∗ e−〈A,CA〉 = a
(
eCϕ

)∗
. (27)

Because of the identities (27), bilinear elements can be used to represent the dynamics {τ (ω,Z)
t }t∈R for 

any ω ∈ Ω and Z ∈ Zf. See (11), replacing h(ω) with h(ω)
Z (cf. (6)), and observe that the range of h(ω)

Z ∈ B(h)
is finite dimensional whenever Z ∈ Zf. Additionally, by using the tracial state tr ∈ U∗, i.e., the quasi-free 
state satisfying (14) for β = 0, the corresponding KMS state defined by (14), by replacing h(ω) in this 
equation with h(ω)

Z (see (6)), is explicitly given by

�
(ω)
Z (B) =

tr
(
Be−β〈A,h

(ω)
Z A〉

)
tr
(
e−β〈A,h

(ω)
Z A〉

) , B ∈ U , (28)

for any ω ∈ Ω, λ, ϑ ∈ R
+
0 , β ∈ R+ and Z ∈ Zf.

We conclude now by an additional observation used later to control quantum fluctuations:

Lemma 4.4. For any self-adjoint operators C1, C2 ∈ B(h) whose ranges are finite dimensional, let C .=
ln
(
eC2eC1eC2

)
. Then,

ran(C) ⊂ lin {ran(C1) ∪ ran(C2)}

and there is a constant D ∈ R such that

e〈A,C2A〉e〈A,C1A〉e〈A,C2A〉 = e〈A,CA〉+D1.

Proof. Fix all parameters of the lemma. We give the proof in two steps:

Step 1: Let

h0
.= lin {ran(C1) ∪ ran(C2)}

and Uh0 ⊂ U ≡ Uh be the (finite dimensional) CAR C∗-subalgebra generated by the identity 1 and 
{a(ϕ)}ϕ∈h0 . Take two strictly positive elements M1, M2 of Uh0 satisfying the conditions
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M1a(ϕ)M−1
1 = M2a(ϕ)M−1

2 and M1a(ϕ)∗M−1
1 = M2a(ϕ)∗M−1

2

for any ϕ ∈ h0. From this we conclude that

M1AM−1
1 = M2AM−1

2 , A ∈ Uh0 ,

because all elements of Uh0 are polynomials in {a(ϕ), a(ϕ)∗}ϕ∈h0 , by definition of Uh0 and finite dimension-
ality of h0. In particular, by choosing, respectively, A = M−1

2 and A = M−1
2 BM2 for B ∈ Uh0 , it follows 

that

M1M
−1
2 = M−1

2 M1 and M1M
−1
2 B = BM1M

−1
2 .

Hence, since any element of Uh0 commuting with all elements of Uh0 is a multiple of the identity, there is 
D ∈ C such that

M1M
−1
2 = M−1

2 M1 = D1.

The constant D is non-zero because M1, M2 are assumed to be invertible. In fact, M1 = DM2 with D > 0
because M1, M2 > 0.

Step 2: Observe that eC2eC1eC2 > 0 because C1, C2 are both self-adjoint operators. In particular, C .=
ln
(
eC2eC1eC2

)
is well-defined as a bounded self-adjoint operator acting on h with ran(C) ⊂ h0. Using (27), 

we obtain that

e〈A,CA〉a(ϕ)e−〈A,CA〉 = e〈A,C2A〉e〈A,C1A〉e〈A,C2A〉a(ϕ)e−〈A,C2A〉e−〈A,C1A〉e−〈A,C2A〉

and

e〈A,CA〉a(ϕ)∗e−〈A,CA〉 = e〈A,C2A〉e〈A,C1A〉e〈A,C2A〉a(ϕ)∗e−〈A,C2A〉e−〈A,C1A〉e−〈A,C2A〉.

By Step 1, the assertion follows. �
4.3. Bilinear elements associated with currents

For simplicity, we fix, once and for all, �w ∈ Rd with ‖�w‖Rd = 1, and η, μ ∈ R+. For any E ∈ C0
0 (R; Rd), 

any collection Z(τ) ∈ Z, Z ∈ Zf, and λ, ϑ ∈ R
+
0 , ω ∈ Ω, we define the observables

K
(ω,E)
Z,Z(τ)

.=
d∑

k,q=1

wk

∑
Z∈Z

∑
x,y,x+ek,y+eq∈Z

0∫
−∞

{E (α)}q dα
∫ −α

0
ds i[τ (ω,Z(τ))

−s (I(ω)
(y+eq,y)), I

(ω)
(x+ek,x)]

+ 2
d∑

k=1

wk

∑
Z∈Z

∑
x,x+ek∈Z

⎛
⎝ 0∫
−∞

{E (α)}q dα

⎞
⎠�e (〈ex+ek ,Δω,ϑex〉a(ex+ek)∗a(ex)) , (29)

where we recall that �e(A) ∈ U is the real part of A ∈ U , see (18). Note that

K
(ω,E)
{Λ},{Zd} = |Λ| I(ω,E)

Λ , Λ ∈ Pf(Zd),

is a current observable (cf. (20)). These observables are bilinear elements (Definition 4.3):
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(i) Single-hopping operators: For any x ∈ Zd, the shift operator sx ∈ B(h) is defined by

(sxψ) (y) .= ψ (x + y) , y ∈ Z
d. (30)

Note that s∗x = s−x = s−1
x for any x ∈ Zd. Then, for any ω ∈ Ω and ϑ ∈ R

+
0 , the single-hopping operators 

are

S(ω)
x,y

.= 〈ex,Δω,ϑey〉hP{x}sx−yP{y}, x, y ∈ Z
d, (31)

where P{x} is the orthogonal projection defined by (5) for Λ = {x}. Observe that

〈
A, S(ω)

x,yA
〉

= 〈ex,Δω,ϑey〉ha(ex)∗a(ey), x, y ∈ Z
d.

Similarly, the paramagnetic current observables defined by (17) equal

I
(ω)
(x,y) = −2〈A,�m{S(ω)

x,y }A〉, x, y ∈ Z
d, (32)

for any ω ∈ Ω and ϑ ∈ R
+
0 . Compare with (25).

(ii) Local current observables: By (26), for any E ∈ C0
0 (R; Rd), any collection Z(τ) ∈ Z, Z ∈ Zf, and 

λ, ϑ ∈ R
+
0 , ω ∈ Ω,

K
(ω,E)
Z,Z(τ) =

〈
A,K

(ω,E)
Z,Z(τ)A

〉
, (33)

where

K
(ω,E)
Z,Z(τ)

.= 4
d∑

k,q=1

wk

∑
Z∈Z

∑
x,y,x+ek,y+eq∈Z

0∫
−∞

{E (α)}q dα

∫ −α

0
ds i

[
e−ish

(ω)
Z(τ)�m{S(ω)

y+eq,y}e
ish

(ω)
Z(τ) ,�m{S(ω)

x+ek,x
}
]

+ 2
d∑

k=1

wk

∑
Z∈Z

∑
x,x+ek∈Z

⎛
⎝ 0∫

−∞

{E (α)}q dα

⎞
⎠�e{S(ω)

x+ek,x
} (34)

is an operator acting on h whose range is finite dimensional. This one-particle operator satisfies the following 
decay bounds:

Lemma 4.5 (Decay of local currents). For any E ∈ C0
0 (R; Rd), λ, ϑ ∈ R

+
0 , ω ∈ Ω, x, y ∈ Zd, and two 

collections Z ∈ Zf and Z(τ) ∈ Zf,

∣∣∣∣〈ex,K(ω,E)
Z,Z(τ)ey

〉
h

∣∣∣∣ ≤ D4.5

⎛
⎝∫

R

‖E (α)‖Rd e2|αη|dα

⎞
⎠(e−μη|x−y| + ηδ1,|x−y|

)
,

1
| ∪ Z|

∑
x,y∈Zd

∣∣∣∣〈ex,K(ω,E)
Z,Z(τ)ey

〉
h

∣∣∣∣ ≤ D4.5

⎛
⎝∫

R

‖E (α)‖Rd e2|αη|dα

⎞
⎠ ∑

z∈Zd

e−μη|z| (1 + η) ,

where
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D4.5
.= 4dη−1 × 362 (1 + ϑ)2

∑
z∈Zd

e2μη(1−|z|) < ∞.

Recall that μη is defined by (8).

Proof. Fix the parameters of the lemma. By (7), note that for any z1, z2, x, y ∈ Zd, ω ∈ Ω, ϑ ∈ R
+
0 and 

s ∈ R,
∣∣∣∣∣
〈
ex, e−ish

(ω)
Z(τ)S

(ω)
z2+eq,z2e

ish
(ω)
Z(τ)S

(ω)
z1+ek,z1

ey

〉
h

∣∣∣∣∣ ≤ 362 (1 + ϑ)2 e2|sη|−2μη(|x−z2−eq|+|y−z2+ek|)δy,z1 . (35)

By the Cauchy–Schwarz and triangle inequalities, observe also that

∑
z∈Zd

e−2μη(|x−z|+|y−z|) ≤ e−μη|x−y|
∑
z∈Zd

e−μη(|x−z|+|y−z|) ≤ e−μη|x−y|

⎛
⎝∑

z∈Zd

e−2μη|z|

⎞
⎠ . (36)

From (35)–(36), we obtain the bound

∑
Z∈Z

∑
z1,z2,z1+ek,z2+eq∈Z

∣∣∣∣∣
〈
ex, e−ish

(ω)
Z(τ)S

(ω)
z2+eq,z2e

ish
(ω)
Z(τ)S

(ω)
z1+ek,z1

ey

〉
h

∣∣∣∣∣
≤ 362 (1 + ϑ)2 e2|sη|−μη|x−y|

⎛
⎝∑

z∈Zd

e2μη(1−|z|)

⎞
⎠ , (37)

using that |z − ek| ≥ |z| − 1 for any z ∈ Zd and k ∈ {1, . . . , d}. The other terms computed from (34)
are estimated in the same way. We omit the details. This yields the first bound of the lemma. The second 
estimate is also proven in the same way. �

It is convenient to introduce at this point the notation

∂Λ(Λ̃) .=
{
{x, y} ⊂ Λ: |x− y| = 1, {x, y} ∩ Λ̃ �= ∅ and {x, y} ∩ Λ̃c �= ∅

}
(38)

for any set Λ̃ ⊂ Λ ⊂ Zd with complement Λ̃c .= Zd\Λ̃, while, for any Z ∈ Z such that ∪Z ⊂ Λ,

∂Λ(Z) .= {∂Λ(Z) : Z ∈ Z} .

Then, the one-particle operators (34) also satisfy the following bounds:

Lemma 4.6 (Box decomposition of local currents – I). For any E ∈ C0
0 (R; Rd), Λ, Λ̃ ∈ Pf(Zd), λ, ϑ ∈ R

+
0 , 

ω ∈ Ω, and Z ∈ Zf with ∪Z ⊂ Λ̃,

∑
x,y∈Zd

∣∣∣∣〈ex,(K(ω,E)
{Λ},{Λ̃} −K

(ω,E)
{Λ},Z

)
ey

〉
h

∣∣∣∣

≤ D4.6

⎛
⎝∫

R

‖E (α)‖Rd α
2e2|αη|dα

⎞
⎠
⎛
⎝∑

x∈Λ

∑
z∈Λ̃\∪Z

e−μη|x−z| +
∑
z∈Zd

e−μη|z|
∑

x∈∪∂Λ̃(Z)

1

⎞
⎠ ,

where
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D4.6
.= 8 × 364 (1 + ϑ)3 (4d + λ) e3μη

⎛
⎝∑

z∈Zd

e−μη|z|

⎞
⎠

3

< ∞.

Proof. Fix all parameters of the lemma. Let

C
(ω)
Z (z1, z2, k, q) =

∫ −α

0
ds i

[
e−ish

(ω)
Z �m{S(ω)

z2+eq,z2}e
ish

(ω)
Z ,�m{S(ω)

z1+ek,z1
}
]

for any z1, z2 ∈ Zd and k, q ∈ {1, . . . , d}. By Duhamel’s formula,

e−ish
(ω)
{Λ̃}Aeish

(ω)
{Λ̃} − e−ish

(ω)
Z Aeish

(ω)
Z

= −i

s∫
0

e−i(s−u)h(ω)
Z

[
h

(ω)
{Λ̃} − h

(ω)
Z , e−iuh

(ω)
{Λ̃}Aeiuh

(ω)
{Λ̃}

]
ei(s−u)h(ω)

Z du

and hence, for any z1, z2 ∈ Zd and k, q ∈ {1, . . . , d},

C
(ω)
{Λ̃}(z1, z2, k, q) − C

(ω)
Z (z1, z2, k, q)

= 4
∫ α

0
ds

s∫
0

du
[
e−i(s−u)h(ω)

Z

[
h

(ω)
{Λ̃} − h

(ω)
Z , e−iuh

(ω)
{Λ̃}�m{S(ω)

z2+eq,z2}e
iuh

(ω)
{Λ̃}

]
ei(s−u)h(ω)

Z ,�m{S(ω)
z1+ek,z1

}
]
.

By developing the commutators and �m{·} we get sixteen terms:

C
(ω)
{Λ̃}(z1, z2, k, q) − C

(ω)
Z (z1, z2, k, q) =

∫ α

0
ds

s∫
0

du
16∑
j=1

Xj (s, u, z1, z2) , (39)

where, for instance,

X1 (s, u, z1, z2)
.= e−i(s−u)h(ω)

Z
(
h

(ω)
{Λ̃} − h

(ω)
Z

)
e−iuh

(ω)
{Λ̃}Sz2+eq,z2e

iuh
(ω)
{Λ̃}ei(s−u)h(ω)

Z Sz1+ek,z1 . (40)

Since ∪Z ⊂ Λ̃, note that

h
(ω)
{Λ̃} − h

(ω)
Z =

∑
z3,z4∈Λ̃\∪Z : |z3−z4|=1

S(ω)
z3,z4 +

∑
Z∈Z

∑
{z3,z4}∈∂Λ̃(Z)

(
S(ω)
z3,z4 + S(ω)

z4,z3

)

+
∑

z3∈Λ̃\∪Z

λω1 (z3)S(ω)
z3,z3 . (41)

Meanwhile, for any z1, z2, z3, z4, x, y ∈ Zd with |z3 − z4| ≤ 1, and real numbers s ≥ u ≥ 0, we infer from (7)
and (36) that

∣∣∣∣∣
〈
ex, e−i(s−u)h(ω)

Z S(ω)
z3,z4e

−iuh
(ω)
{Λ̃}S

(ω)
z2+eq,z2e

iuh
(ω)
{Λ̃}ei(s−u)h(ω)

Z S
(ω)
z1+ek,z1

ey

〉
h

∣∣∣∣∣
≤ 364 (1 + ϑ)3 e2|sη|+3μη

⎛
⎝∑

z∈Zd

e−2μη|z|

⎞
⎠ δz1,ye−μη(|z2−y|+|x−z3|+|z3−z2|).

By (40)–(41), for any α ≥ 0, it follows that
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∑
x,y∈Zd

∑
z1,z2,z1+ek,z2+eq∈Λ

∫ α

0
ds

s∫
0

du
∣∣∣〈ex,X1 (s, u, z1, z2) ey〉h

∣∣∣

≤ 364

2 (1 + ϑ)3 (4d + λ)α2e2|αη|+3μη

⎛
⎝∑

z∈Zd

e−μη|z|

⎞
⎠

3

×

⎛
⎝∑

x∈Λ

∑
z∈Λ̃\∪Z

e−μη|x−z| +
∑
z∈Zd

e−μη|z|
∑

x∈∪∂Λ̃(Z)

1

⎞
⎠ .

The fifteen other terms Xj in (39) satisfy the same bound. By (34), the assertion follows for any E ∈
C0

0 (R; Rd). �
Lemma 4.7 (Box decomposition of local currents – II). For any E ∈ C0

0 (R; Rd), Λ ∈ Pf(Zd), λ, ϑ ∈ R
+
0 , 

ω ∈ Ω, Zτ ∈ Z, and Z ∈ Zf with ∪Z ⊂ Λ,

∑
x,y∈Zd

∣∣∣∣〈ex,(K(ω,E)
{Λ},Zτ

−K
(ω,E)
Z,Zτ

)
ey

〉
h

∣∣∣∣ ≤ D4.7

⎛
⎝∫

R

‖E (α)‖2
Rd |α| e2|αη|dα

⎞
⎠ ∑

z∈(Λ\∪Z)∪(∪∂Λ(Z))

1,

where

D4.7
.= 16 × 362 (1 + ϑ)2 de4μη

⎛
⎝∑

z∈Zd

e−2μη|z|

⎞
⎠

2

+ d (1 + ϑ) < ∞.

Proof. Fix all parameters of the lemma. By combining (35) with direct estimates we observe that

∑
x,y∈Zd

∑
z1,z2,z1+ek,z2+eq∈Λ

∣∣∣∣∣
〈
ex, e−ish

(ω)
Z(τ)S

(ω)
z2+eq,z2e

ish
(ω)
Z(τ)S

(ω)
z1+ek,z1

ey

〉
h

∣∣∣∣∣
−
∑

x,y∈Zd

∑
Z∈Z

∑
z1,z2,z1+ek,z2+eq∈Z

∣∣∣∣∣
〈
ex, e−ish

(ω)
Z(τ)S

(ω)
z2+eq,z2e

ish
(ω)
Z(τ)S

(ω)
z1+ek,z1

ey

〉
h

∣∣∣∣∣
≤ 2 × 362 (1 + ϑ)2 e2|sη|+4μη

⎛
⎝∑

x∈Zd

e−2μη|x|

⎞
⎠

2 ∑
z∈(Λ\∪Z)∪(∪∂Λ(Z))

1 (42)

for any s ∈ R. Similar to (39), the quantity

∑
x,y∈Zd

∣∣∣∣〈ex,(K(ω,E)
{Λ},Zτ

−K
(ω,E)
Z,Zτ

)
ey

〉
h

∣∣∣∣
is a sum of nine terms. The first one is (42), the last one is related to �e{S(ω)

x+ek,x
} and gives the constant 

d (1 + ϑ) in D4.7. The seven remaining ones satisfy the same bound as the first one. �
4.4. Finite-volume generating functions

Fix β ∈ R+ and λ, ϑ ∈ R
+
0 . Given E ∈ C0

0 (R; Rd), ω ∈ Ω and three finite collections Z, Z(
), Z(τ) ∈ Zf, 
we define the finite-volume generating function
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J(ω,E)
Z,Z(�),Z(τ)

.= g
(ω,E)
Z,Z(�),Z(τ) − g

(ω,0)
Z,Z(�),Z(τ) , (43)

where

g
(ω,E)
Z,Z(�),Z(τ)

.= 1
| ∪ Z| ln tr

(
exp(−β〈A, h

(ω)
Z(�)A〉) exp(K(ω,E)

Z,Z(τ))
)
. (44)

Recall that the tracial state tr ∈ U∗ is the quasi-free state satisfying (14) at β = 0, and h(ω)
Z(�) is the 

one-particle Hamiltonian defined by (6). See also Definition 4.3 and (29). By construction, note that

1
|ΛL|

ln �(ω)
(
e|ΛL|I(ω,E)

ΛL

)
= lim

L�→∞
lim

Lτ→∞
J(ω,E)
{ΛL},{ΛL�},{ΛLτ }

. (45)

The family of functions E �→J(ω,E)
Z,Z(�),Z(τ) is equicontinuous with uniformly bounded second derivative:

Proposition 4.8 (Equicontinuity of generating functions). Fix n ∈ N. The family of maps E �→J(ω,E)
Z,Z(�),Z(τ)

from C0
0 ([−n, n]; Rd) ⊂ C0

0 (R; Rd) to R, for β ∈ R+, λ ∈ R
+
0 , ω ∈ Ω, Z, Z(
), Z(τ) ∈ Zf, �w ∈ Rd with 

‖�w‖Rd = 1, and ϑ in a compact set of R+
0 , is equicontinuous w.r.t. the sup norm for E in any bounded set 

of C0
0 ([−n, n]; Rd).

Proof. Fix n ∈ N, β ∈ R+, λ, ϑ ∈ R
+
0 , ω ∈ Ω, Z, Z(
), Z(τ) ∈ Zf. By using Lemma 4.2 (ii), for any 

E0, E1 ∈ C0
0 ([−n, n]; Rd),

∣∣∣g(ω,E1)
Z,Z(�),Z(τ) − g

(ω,E0)
Z,Z(�),Z(τ)

∣∣∣ (46)

≤ 1
| ∪ Z| sup

α∈[0, 1]
sup

u∈[−1/2, 1/2]

∥∥∥∥euK(ω,αE1+(1−α)E0)
Z,Z(τ) K

(ω,E1−E0)
Z,Z(τ) e−uK

(ω,αE1+(1−α)E0)
Z,Z(τ)

∥∥∥∥
U
.

Recall that, for any E ∈ C0
0 (R; Rd), K(ω,E)

Z,Z(τ) is the bilinear element associated with the operator K(ω,E)
Z,Z(τ) . 

See (33) and (34). In particular, from (27), we deduce the inequality

sup
u∈[−1/2, 1/2]

sup
x,y∈Zd

∥∥∥∥euK(ω,E)
Z,Z(τ)a (ex)∗ a (ey) e−uK

(ω,E)
Z,Z(τ)

∥∥∥∥
U
≤ e‖K

(ω,E)
Z,Z(τ)‖B(h) . (47)

The assertion then follows by combining (33), (46) and Definition 4.3 with (47) and Lemmata 4.1, 4.5. �
Proposition 4.9 (Uniform boundedness of second derivatives). Fix E ∈ C0

0
(
R;Rd

)
and β1, s1, ϑ1, λ1 ∈ R+. 

Then,

sup
β∈(0,β1], ϑ∈[0,ϑ1], λ∈[0,λ1]

ω∈Ω, s∈[−s1,s1], Z,Z(�),Z(τ)∈Zf

{∣∣∣∂sJ(ω,sE)
Z,Z(�),Z(τ)

∣∣∣+ ∣∣∣∂2
sJ

(ω,sE)
Z,Z(�),Z(τ)

∣∣∣} < ∞.

Proof. Fix the parameters of the proposition. Then, by cyclicity of the tracial state,

∂sJ(ω,sE)
Z,Z(�),Z(τ) = 1

| ∪ Z|�s

(
K

(ω,E)
Z,Z(τ)

)

and

∂2
sJ

(ω,sE)
Z,Z(�),Z(τ) = 1

(
�s

((
K

(ω,E)
Z,Z(τ)

)2
)
−�s

(
K

(ω,E)
Z,Z(τ)

)2
)
,
| ∪ Z|



N.J.B. Aza et al. / J. Math. Pures Appl. 125 (2019) 209–246 229
where �s is the state defined, for any B ∈ U , by

�s (B) =
tr
(
Be

s
2K

(ω,E)
Z,Z(τ) e−β〈A,h

(ω)
Z(�)A〉e

s
2K

(ω,E)
Z,Z(τ)

)

tr
(

e
s
2K

(ω,E)
Z,Z(τ) e−β〈A,h

(ω)
Z(�)A〉e

s
2K

(ω,E)
Z,Z(τ)

) .

By Lemma 4.4 and (33), observe that �s is the quasi-free state satisfying

�s(a∗ (ϕ) a (ψ)) =
〈
ψ,

1

1 + e−
s
2K

(ω,E)
Z,Z(τ) eβh

(ω)
Z(�) e−

s
2K

(ω,E)
Z,Z(τ)

ϕ

〉
h

, ϕ, ψ ∈ h. (48)

Therefore, by (33) and Definition 4.3, we directly compute that

∂sJ(ω,sE)
Z,Z(�),Z(τ) = 1

| ∪ Z|
∑

x,y∈Zd

〈
ex,K

(ω,E)
Z,Z(τ)ey

〉
h
�s

(
a (ex)∗ a (ey)

)

and

∂2
sJ(ω,sE)

Z,Z(�),Z(τ) = 1
| ∪ Z|

∑
x,y,u,v∈Zd

〈
ex,K

(ω,E)
Z,Z(τ)ey

〉
h

〈
eu,K

(ω,E)
Z,Z(τ)ev

〉
h

×�s

(
a (ey) a (eu)∗

)
�s

(
a (ex)∗ a (ev)

)
,

because of the identity

�s (a(ex)∗a(ey)a(eu)∗a(ev)) = �s (a(ex)∗a(ey))�s (a(eu)∗a(ev)) + �s (a(ey)a(eu)∗)�s (a(ex)∗a(ev)) ,

for x, y, u, v ∈ Zd, by (16) for ρ = �s. As a consequence,

∣∣∣∂sJ(ω,sE)
Z,Z(�),Z(τ)

∣∣∣ ≤ 1
| ∪ Z|

∑
x,y∈Zd

∣∣∣∣〈ex,K(ω,E)
Z,Z(τ)ey

〉
h

∣∣∣∣
and

∣∣∣∂2
sJ(ω,sE)

Z,Z(�),Z(τ)

∣∣∣ ≤ sup
u,v∈Zd

∣∣∣∣〈eu,K(ω,E)
Z,Z(τ)ev

〉
h

∣∣∣∣
⎛
⎝ 1
| ∪ Z|

∑
x,y∈Zd

∣∣∣∣〈ex,K(ω,E)
Z,Z(τ)ey

〉
h

∣∣∣∣
⎞
⎠

× sup
y∈Zd

∑
u∈Zd

∣∣�s

(
a (ey) a (eu)∗

)∣∣ sup
x∈Zd

∑
v∈Zd

∣∣�s

(
a (ex)∗ a (ev)

)∣∣ ,
which, by Lemma 4.5, implies that

∣∣∣∂sJ(ω,sE)
Z,Z(�),Z(τ)

∣∣∣ ≤ D4.5

⎛
⎝∫

R

‖E (α)‖Rd e2|αη|dα

⎞
⎠ ∑

z∈Zd

e−μη|z| (1 + η) (49)

as well as
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∣∣∣∂2
sJ

(ω,sE)
Z,Z(�),Z(τ)

∣∣∣ ≤ D2
4.5

⎛
⎝∫

R

‖E (α)‖Rd e2|αη|dα

⎞
⎠

2

(1 + η)2
∑
z∈Zd

e−μη|z|

× sup
y∈Zd

∑
u∈Zd

∣∣�s

(
a (ey) a (eu)∗

)∣∣ sup
x∈Zd

∑
v∈Zd

∣∣�s

(
a (ex)∗ a (ev)

)∣∣ . (50)

Again by Lemma 4.5 together with (7)–(8), for any μ > μη,

sup
β∈(0,β1], ϑ∈[0,ϑ1], λ∈[0,λ1]

ω∈Ω, s∈[−s1,s1], Z,Z(�),Z(τ)∈Zf

{
S0(sK(ω,E)

Z,Z(τ) , μ) + S0(βh(ω)
Z(�) , μ)

}
< ∞.

See (A.1). We thus infer from (48) and Corollary A.4 that there is a constant μ1 ∈ R+ such that, for any 
x, y ∈ Zd,

sup
β∈(0,β1], ϑ∈[0,ϑ1], λ∈[0,λ1]

ω∈Ω, s∈[−s1,s1], Z,Z(�),Z(τ)∈Zf

∣∣�s

(
a (ex)∗ a (ey)

)∣∣ ≤ 2e−μ1|x−y|.

Combining this estimate with (49)–(50), one gets the assertion. �
The local generating functionals (43) can be approximately decomposed into boxes of fixed volume: By 

using the boxes (12), for any subset Λ ⊂ Zd and l ∈ N, we define the l-th box decomposition Z(Λ,l) of Λ by

Z(Λ,l) .=
{
Λl + (2l + 1)x : x ∈ Z

d with (Λl + (2l + 1)x) ⊂ Λ
}
∈ Z.

Then, we get the following assertion:

Proposition 4.10 (Box decomposition of generating functions). Fix n ∈ N and β1, λ1, ϑ1 ∈ R+. Then,

lim
l→∞

lim sup
Lτ≥L�≥L→∞

∣∣∣∣∣∣J(ω,E)
{ΛL},{ΛL�},{ΛLτ }

− 1∣∣Z(ΛL,l)
∣∣ ∑
Z∈Z(ΛL,l)

J(ω,E)
{Z},{Z},{Z}

∣∣∣∣∣∣ = 0,

uniformly w.r.t. β ∈ [0, β1], ϑ ∈ [0, ϑ1], λ ∈ [0, λ1], ω ∈ Ω and E in any bounded set of C0
0([−n, n]; Rd).

The proof of this statement is divided in a series of Lemmata:

Lemma 4.11 (Box decomposition of generating functions – I). Fix β1, λ1, ϑ1 ∈ R+. Then,

lim sup
Lτ≥L�≥L→∞

∣∣∣g(ω,E)
{ΛL},{ΛL�},{ΛLτ }

− g
(ω,E)
{ΛL},{ΛL�\ΛL,ΛL},{ΛLτ }

∣∣∣ = 0,

uniformly w.r.t. β ∈ [0, β1], ϑ ∈ [0, ϑ1], λ ∈ [0, λ1], ω ∈ Ω and E ∈ C0
0 (R; Rd).

Proof. Fix all parameters of the lemma. By Lemma 4.2 (ii),
∣∣∣g(ω,E)

{ΛL},{ΛL�},{ΛLτ }
− g

(ω,E)
{ΛL},{ΛL�\ΛL,ΛL},{ΛLτ }

∣∣∣
≤ β

|ΛL|
sup

α∈[0,1]
sup

u∈[−1/2,1/2]

∥∥∥euβ〈A,hαA〉 〈A, (h1 − h0) A〉 e−uβ〈A,hαA〉
∥∥∥
U
,

where
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hα
.= αh

(ω)
{ΛL�}

+ (1 − α)h(ω)
{ΛL�\ΛL,ΛL}, α ∈ [0, 1] .

By using estimates similar to (47), we get

∣∣∣g(ω,E)
{ΛL},{ΛL�},{ΛLτ }

− g
(ω,E)
{ΛL},{ΛL�\ΛL,ΛL},{ΛLτ }

∣∣∣ ≤ βeβ(λ+2d)(1+ϑ)

|ΛL|
∑

x,y∈Zd

∣∣∣〈ex, (h1 − h0) ey〉h
∣∣∣

≤ 4d (1 + ϑ)βeβ(λ+2d)(1+ϑ) 1
|ΛL|

∑
z∈∪∂ΛL�

(ΛL)

1. (51)

See (41). Since

lim sup
L�≥L→∞

1
|ΛL|

∑
z∈∪∂ΛL�

(ΛL)

1 = 0,

the assertion follows. �
Lemma 4.12 (Box decomposition of generating functions – II). Fix n ∈ N and ϑ1, λ1 ∈ R+. Then,

lim
l→∞

lim sup
Lτ≥Lρ≥L→∞

∣∣∣g(ω,E)
{ΛL},{ΛL�\ΛL,ΛL},{ΛLτ }

− g
(ω,E)
{ΛL},{ΛL�\ΛL,ΛL},Z(ΛL,l)

∣∣∣ = 0,

uniformly w.r.t. ϑ ∈ [0, ϑ1], λ ∈ [0, λ1], ω ∈ Ω and E in any bounded set of C0
0([−n, n]; Rd).

Proof. Fix all parameters of the lemma, in particular Lτ ≥ Lρ ≥ L ≥ l, ω ∈ Ω and λ ∈ [0, λ1]. By 
Lemma 4.2 (ii) and (33),

∣∣∣g(ω,E)
{ΛL},{ΛL�\ΛL},{ΛLτ }

− g
(ω,E)
{ΛL},{ΛL�\,ΛL},Z(ΛL,l)

∣∣∣
≤ 1

|ΛL|
sup

α∈[0,1]
sup

u∈[−1/2,1/2]

∥∥∥eu〈A,KαA〉 〈A, (K1 −K0) A〉 e−u〈A,KαA〉
∥∥∥
U
,

where

Kα
.= αK

(ω,E)
{ΛL},{ΛLτ }

+ (1 − α)K(ω,E)
{ΛL},Z(ΛL,l) , α ∈ [0, 1] .

Like in the proof of Lemma 4.11, by (33) and Lemma 4.6,
∣∣∣g(ω,E)

{ΛL},{ΛL�\ΛL},{ΛLτ }
− g

(ω,E)
{ΛL},{ΛL�\,ΛL},Z(ΛL,l)

∣∣∣ (52)

≤ D4.6

⎛
⎝∫

R

‖E (α)‖Rd α
2e2|αη|dα

⎞
⎠ esupα∈[0,1]‖Kα‖B(h)

× 1
|ΛL|

⎛
⎜⎝∑

x∈ΛL

∑
z∈ΛLτ \∪Z(ΛL,l)

e−
μη
2 |x−z| +

⎛
⎝∑

z∈Zd

e−
μη
2 |z|

⎞
⎠ ∑

x∈∪∂ΛLτ
(Z(ΛL,l))

1

⎞
⎟⎠ .

By Lemmata 4.1 and 4.5, for any n ∈ N, observe that the operator norm of Kα is uniformly bounded for 
α ∈ [0, 1], ϑ ∈ [0, ϑ1], λ ∈ R

+
0 , ω ∈ Ω, L, Lτ , l ∈ N and E in any bounded set of C0

0([−n, n]; Rd). Note 
additionally that



232 N.J.B. Aza et al. / J. Math. Pures Appl. 125 (2019) 209–246
lim sup
Lτ≥L→∞

1
|ΛL|

∑
x∈ΛL

∑
z∈ΛLτ \∪Z(ΛL,l)

e−
μη
2 |x−z| = 0,

whereas

lim sup
Lτ≥L→∞

1
|ΛL|

∑
x∈∪∂ΛLτ

(Z(ΛL,l))

1 = O
(
l−1) .

From these last observations combined with (52) the assertion follows. �
Lemma 4.13 (Box decomposition of generating functions – III). Fix β1, ϑ1, λ1 ∈ R+. Then,

lim
l→∞

lim sup
Lτ≥L�≥L→∞

∣∣∣g(ω,E)
{ΛL},{ΛL�\ΛL,ΛL},Z(ΛL,l) − g

(ω,E)
{ΛL},{ΛL�\ΛL}∪Z(ΛL,l),Z(ΛL,l)

∣∣∣ = 0,

uniformly w.r.t. β ∈ [0, β1], ϑ ∈ [0, ϑ1], λ ∈ [0, λ1], ω ∈ Ω and E ∈ C0
0 (R; Rd).

Proof. This lemma is proven exactly in the same way as Lemmata 4.11 and 4.12: Fix all parameters of the 
lemma and observe that∣∣∣∣〈ex,(h(ω)

{ΛL�\ΛL,ΛL} − h
(ω)
{ΛL�\ΛL}∪Z(ΛL,l)

)
ey

〉
h

∣∣∣∣
≤ (1 + ϑ)

∑
z3,z4∈ΛL\∪Z(ΛL,l) : |z3−z4|=1

δz3,yδz4,x + λ
∑

z3∈ΛL\∪Z(ΛL,l)

δz3,xδz3,y

+ (1 + ϑ)
∑

Z∈Z(ΛL,l)

∑
{z3,z4}∈∂ΛL

(Z)

(δz3,yδz4,x + δz4,yδz3,x) .

See (41). Then, similar to (51), we get the bound

∣∣∣g(ω,E)
{ΛL},{ΛL�},{ΛLτ }

− g
(ω,E)
{ΛL},{ΛL�\ΛL,ΛL},{ΛLτ }

∣∣∣
≤ (4d + λ) (1 + ϑ)βeβ(λ+2d)(1+ϑ) 1

|ΛL|

⎛
⎝ ∑

z∈ΛL\∪Z(ΛL,l)

1 +
∑

Z∈Z(ΛL,l)

∑
z∈∪∂ΛL

(Z)

1

⎞
⎠ ,

where

lim sup
L→∞

1
|ΛL|

⎛
⎝ ∑

z∈ΛL\∪Z(ΛL,l)

1 +
∑

Z∈Z(ΛL,l)

∑
z∈∪∂ΛL

(Z)

1

⎞
⎠ = O

(
l−1) . �

Lemma 4.14 (Box decomposition of generating functions – IV). Fix n ∈ N and ϑ1 ∈ R+. Then,

lim
l→∞

lim sup
Lτ≥L�≥L→∞

∣∣∣g(ω,E)
{ΛL},{ΛL�\ΛL}∪Z(ΛL,l),Z(ΛL,l) − g

(ω,E)
Z(ΛL,l),{ΛL�\ΛL}∪Z(ΛL,l),Z(ΛL,l)

∣∣∣ = 0,

uniformly w.r.t. β ∈ R+, ϑ ∈ [0, ϑ1], λ ∈ R
+
0 , ω ∈ Ω and E in any bounded set of C0

0 ([−n, n]; Rd).

Proof. Fix all parameters of the lemma. Then, like for previous lemmata, we use again Lemma 4.2 (ii) and 
(33) to obtain the bound
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∣∣∣g(ω,E)
{ΛL},{ΛL�\ΛL}∪Z(ΛL,l),Z(ΛL,l) − g

(ω,E)
Z(ΛL,l),{ΛL�\ΛL}∪Z(ΛL,l),Z(ΛL,l)

∣∣∣
≤ 1

|ΛL|
sup

α∈[0,1]
sup

u∈[−1/2,1/2]

∥∥∥eu〈A,KαA〉 〈A, (K1 −K0) A〉 e−u〈A,KαA〉
∥∥∥
U
,

where

Kα
.= αK

(ω,E)
{ΛL},Z(ΛL,l) + (1 − α)K(ω,E)

Z(ΛL,l),Z(ΛL,l) , α ∈ [0, 1] .

Therefore, by Lemmata 4.1, 4.5 and 4.7, the assertion follows. �
We are now in a position to prove Proposition 4.10:

Proof. Fix all parameters of Proposition 4.10. By Lemmata 4.11–4.14,

lim sup
Lτ≥L�≥L→∞

∣∣∣J(ω,E)
{ΛL},{ΛL�},{ΛLτ }

− J(ω,E)
Z(ΛL,l),{ΛL�\ΛL}∪Z(ΛL,l),Z(ΛL,l)

∣∣∣ = 0, (53)

uniformly w.r.t. β ∈ [0, β1], ϑ ∈ [0, ϑ1], λ ∈ [0, λ1], ω ∈ Ω and E in any bounded set of C0
0 ([−n, n]; Rd). To 

conclude the proof, observe that

J(ω,E)
Z(ΛL,l),{ΛL�\ΛL}∪Z(ΛL,l),Z(ΛL,l) = J(ω,E)

Z(ΛL,l),Z(ΛL,l),Z(ΛL,l) = 1∣∣Z(ΛL,l)
∣∣ ∑
Z∈Z(ΛL,l)

J(ω,E)
{Z},{Z},{Z}. (54)

This follows from the fact that the tracial state tr ∈ U∗ is a product of single-site states. See, e.g., [40]. �
4.5. Akcoglu–Krengel ergodic theorem and existence of generating functions

For convenience, we shortly recall the Akcoglu–Krengel ergodic theorem. We restrict ourselves to additive
processes associated with the probability space (Ω, AΩ, aΩ) defined in Section 2.1, even if the Akcoglu–
Krengel ergodic theorem holds for superadditive or subadditive ones (cf. [28, Definition VI.1.6]).

Definition 4.15 (Additive processes associated with random variables). {F(ω) (Λ)}Λ∈Pf(Zd) is an additive pro-
cess associated with the probability space (Ω, AΩ, aΩ) if:

(i) the map ω �→ F(ω) (Λ) is bounded and measurable w.r.t. the σ-algebra AΩ for any Λ ∈ Pf(Zd).
(ii) For all disjoint Λ1, Λ2 ∈ Pf(Zd),

F(ω) (Λ1 ∪ Λ2) = F(ω) (Λ1) + F(ω) (Λ2) , ω ∈ Ω .

(iii) For all Λ ∈ Pf(Zd) and any space shift x ∈ Zd,

E

[
F(·) (Λ)

]
= E

[
F(·) (x + Λ)

]
. (55)

Recall that E[ · ] is the expectation value associated with the distribution aΩ.

We now define regular sequences (cf. [28, Remark VI.1.8]) as follows:

Definition 4.16 (Regular sequences). The non-decreasing sequence (Λ(L))L∈N ⊂ Pf(Zd) of (possibly non-
cubic) boxes in Zd is a regular sequence if there is a finite constant D ∈ (0, 1] and a diverging sequence 
(�L)L∈N ⊂ N such that Λ(L) ⊂ Λ�L and 0 < |Λ�L | ≤ D|Λ(L)| for all L ∈ N. Here, Λ�, � ∈ R+, is the family 
of boxes defined by (12).
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Then, the form of Akcoglu–Krengel ergodic theorem we use in the sequel is the lattice version of [28, 
Theorem VI.1.7, Remark VI.1.8] for additive processes associated with the probability space (Ω, AΩ, aΩ):

Theorem 4.17 (Akcoglu–Krengel ergodic theorem). Let {F(ω) (Λ)}Λ∈Pf (Zd) be an additive process. Then, for 
any regular sequence (Λ(L))L∈N ⊂ Pf(Zd), there is a measurable subset Ω̃ ⊂ Ω of full measure such that, for 
all ω ∈ Ω̃,

lim
L→∞

{∣∣∣Λ(L)
∣∣∣−1

F(ω)
(
Λ(L)

)}
= E

[
F(·) ({0})

]
.

See also [41].
The Akcoglu–Krengel (superadditive) ergodic theorem, cornerstone of ergodic theory, generalizes the cel-

ebrated Birkhoff additive ergodic theorem. It is used to deduce, via Proposition 4.8, the following Corollary:

Corollary 4.18 (Akcoglu–Krengel ergodic theorem for generating functions). There is a measurable subset 
Ω̃ ⊂ Ω of full measure such that, for all β ∈ R+, ϑ, λ ∈ R

+
0 , ω ∈ Ω̃, l ∈ N, E ∈ C0

0 (R; Rd) and �w ∈ Rd with 
‖�w‖Rd = 1,

lim
L→∞

1∣∣Z(ΛL,l)
∣∣ ∑
Z∈Z(ΛL,l)

J(ω,E)
{Z},{Z},{Z} = E

[
J(·,E)
{Λl},{Λl},{Λl}

]
.

Proof. Fix β ∈ R+, ϑ, λ ∈ R
+
0 , ω ∈ Ω, l ∈ N, E ∈ C0

0 (R; Rd) and �w ∈ Rd with ‖�w‖Rd = 1. For any 
Γ ∈ Pf(Zd), let

F
(ω,E)
l (Γ) .=

∑
x∈Γ

J(ω,E)
{Λl+(2l+1)x},{Λl+(2l+1)x},{Λl+(2l+1)x}.

Then, if

Λ(L) ≡ Λ(L,l) .=
{
x ∈ Z

d : (Λl + (2l + 1)x) ⊂ ΛL

}
⊂ ΛL,

observe that ∣∣∣Λ(L)
∣∣∣−1

F
(ω,E)
l

(
Λ(L)

)
= 1∣∣Z(ΛL,l)

∣∣ ∑
Z∈Z(ΛL,l)

J(ω,E)
{Z},{Z},{Z}.

Therefore, since (Λ(L))L∈N is clearly a regular sequence, by Theorem 4.17, for any β ∈ R+, ϑ, λ ∈ R
+
0 , l ∈ N, 

E ∈ C0
0 (R; Rd) and �w ∈ Rd with ‖�w‖Rd = 1, there is a measurable subset Ω̂ ≡ Ω̂(β,ϑ,λ,l,E, �w) ⊂ Ω of full 

measure such that, for all ω ∈ Ω̂,

lim
L→∞

1∣∣Z(ΛL,l)
∣∣ ∑
Z∈Z(ΛL,l)

J(ω,E)
{Z},{Z},{Z} = E

[
J(·,E)
{Λl},{Λl},{Λl}

]
.

Observe that, for any n ∈ N, there is a countable dense set Dn ⊂ C0
0 (R; Rd). Let Sd−1 be a dense countable 

subset of the (d − 1)-dimensional sphere. Hence, by Proposition 4.8, we arrive at the assertion for any 
realization ω ∈ Ω̃ ⊂ Ω, where

Ω̃ .=
⋂

ϑ,λ∈Q∩R
+
0

⋂
β∈Q∩R+

⋂
�w∈Sd−1

⋂
n∈N

⋂
E∈Dn

⋂
l∈N

Ω̂(β,ϑ,λ,l,E, �w) .

[Recall that any countable intersection of measurable sets of full measure has full measure.] �
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Corollary 4.19 (Almost surely existence of generating functions). Let Ω̃ ⊂ Ω be the measurable subset of 
Corollary 4.18. Then, for all β ∈ R+, ϑ, λ ∈ R

+
0 , ω ∈ Ω̃, l ∈ N, E ∈ C0

0 (R; Rd) and �w ∈ Rd with ‖�w‖Rd = 1,

lim
L→∞

1
|ΛL|

E

[
ln �(·)

(
e|ΛL|I(·,E)

ΛL

)]
= lim

Lτ≥L�≥L→∞
J(ω,E)
{ΛL},{ΛL�},{ΛLτ }

.= J(E).

For all n ∈ N, the convergence is uniform w.r.t. β, ϑ, λ in compact sets, ω ∈ Ω̃, �w ∈ Rd with ‖�w‖Rd = 1 and 
E in any bounded set of C0

0 ([−n, n]; Rd).

Proof. By translation invariance of the distribution aΩ,

E

[
J(·,E)
{Λl},{Λl},{Λl}

]
= E

⎡
⎣ 1∣∣Z(ΛL,l)

∣∣ ∑
Z∈Z(ΛL,l)

J(·,E)
{Z},{Z},{Z}

⎤
⎦ .

Hence,
{
E

[
J(·,E)
{Λl},{Λl},{Λl}

]}
l∈N

is a Cauchy sequence, by (53) and (54). By Proposition 4.10 and Corollary 4.18, there is a measurable subset 
Ω̃ ⊂ Ω of full measure such that, for all β ∈ R+, ϑ, λ ∈ R

+
0 , ω ∈ Ω̃, l ∈ N, E ∈ C0

0 (R; Rd) and �w ∈ Rd with 
‖�w‖Rd = 1,

lim
Lτ≥L�≥L→∞

J(ω,E)
{ΛL},{ΛL�},{ΛLτ }

= lim
l→∞

E

[
J(·,E)
{Λl},{Λl},{Λl}

]
.

For all n ∈ N, the convergence is uniform w.r.t. β, ϑ, λ in compact sets, ω ∈ Ω̃, �w ∈ Rd with ‖�w‖Rd = 1 and 
E in any bounded set of C0

0 ([−n, n]; Rd). By (45), the assertion then follows. �
Corollary 4.20 (Differentiability of generating functions). Fix β, λ, ϑ ∈ R+ and �w ∈ Rd with ‖�w‖Rd = 1. For 
any E ∈ C0

0 (R; Rd), the map s �→ J(sE) from R to itself is continuously differentiable, so that

∂sJ(sE) = lim
L→∞

�(ω)
(
I
(ω,E)
ΛL

es|ΛL|I(ω,E)
ΛL

)
�(ω)

(
es|ΛL|I(ω,E)

ΛL

) . (56)

Proof. Take any E ∈ C0
0 (R; Rd) and ω ∈ Ω̃. See Corollary 4.19. Then, for any s ∈ R,

J(sE) = lim
Lτ≥L�≥L→∞

J(ω,sE)
{ΛL},{ΛL�},{ΛLτ }

.

By Proposition 4.9 combined with the mean value theorem and the (Arzelà-) Ascoli theorem [29, Theo-
rem A5], there are three sequences (L(n)

τ )n∈N, (L(n)

 )n∈N, (L(n))n∈N ⊂ R

+
0 , with L(n)

τ ≥ L
(n)

 ≥ L(n), such 

that the maps

s �→ J(ω,sE)
{Λ

L(n)},{Λ
L

(n)
�

},{Λ
L

(n)
τ

} and s �→ ∂sJ(ω,sE)
{Λ

L(n)},{Λ
L

(n)
�

},{Λ
L

(n)
τ

}

converge uniformly for s in any compact set of R. In particular, the map s �→ J(sE) from R to itself is 
continuously differentiable with
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∂sJ(sE) = lim
Lτ≥L�≥L→∞

∂sJ(ω,sE)
{Λ

L(n)},{Λ
L

(n)
�

},{Λ
L

(n)
τ

} = lim
L→∞

�(ω)
(
I
(ω,E)
ΛL

es|ΛL|I(ω,E)
ΛL

)
�(ω)

(
es|ΛL|I(ω,E)

ΛL

) . �
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Appendix A. Combes–Thomas estimates

For any operator h ∈ B(h) and μ ∈ R
+
0 , let

S0(h, μ) .= sup
x∈Zd

∑
y∈Zd

eμ|x−y|
∣∣∣〈ex, hey〉h∣∣∣ ∈ R

+
0 ∪ {∞} . (A.1)

Note that

S0(h1h2, μ) ≤ S0(h1, μ)S0(h2, μ), (A.2)

for any h1, h2 ∈ B(h) and μ ∈ R
+
0 . In particular, for any z ∈ C, h ∈ B(h) and μ ∈ R

+
0 ,

S0(ezh, μ) ≤ eS0(zh,μ) = e|z|S0(h,μ) (A.3)

and hence, ∣∣∣〈ex, ezhey〉h
∣∣∣ ≤ e|z|S0(h,μ)e−μ|x−y|.

The above bound can be sharpened if z = it is imaginary by using the Combes–Thomas estimate, first 
proven in [26]. We give a version of this estimate that is adapted to the present setting: Given a self-adjoint 
operator h = h∗ ∈ B(h) whose spectrum is denoted by spec(h), we define the constants

S(h, μ) .= sup
x∈Zd

∑
y∈Zd

(
eμ|x−y| − 1

) ∣∣∣〈ex, hey〉h∣∣∣ ∈ R
+
0 ∪ {∞} , (A.4)

for μ ∈ R
+
0 , and

Δ(h, z) .= inf {|z − λ| : λ ∈ spec(h)} , z ∈ C,

as being the distance from the point z to the spectrum of h. Since the function x �→ (exr−1)/x is increasing 
on R+ for any fixed r ≥ 0, it follows that

S(h, μ1) ≤
μ1

μ2
S(h, μ2) , μ2 ≥ μ1 ≥ 0. (A.5)

The version of the Combes–Thomas estimate that is most convenient for the current study is the following:
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Theorem A.1 (Combes–Thomas). Let h = h∗ ∈ B(h), μ ∈ R
+
0 and z ∈ C. If Δ(h, z) > S(h, μ) then, for all 

x, y ∈ Zd,

∣∣〈ex, (z − h)−1ey
〉∣∣ ≤ e−μ|x−y|

Δ(h, z) − S(h, μ) .

Proof. This theorem is an instance of the first part of [27, Theorem 10.5] and is proven in the same way. �
The Combes–Thomas estimate yields the following bound [42, Lemma 3]:

Proposition A.2 (Bound on differences of resolvents). Let h = h∗ ∈ B(h), μ ∈ R
+
0 and η ∈ R+ such that 

S(h, μ) ≤ η/2. Then, for all x, y ∈ Zd and u ∈ R,

∣∣∣〈ex, ((h− u)2 + η2)−1ey
〉
h

∣∣∣
≤ 12e−μ|x−y| 〈ex, ((h− u)2 + η2)−1ex

〉1/2
h

〈
ey, ((h− u)2 + η2)−1ey

〉1/2
h

.

We are now in a position to prove the space decay of propagators:

Corollary A.3 (Space decay of propagators – I). For any self-adjoint operator h = h∗ ∈ B(h), η, μ ∈ R+, all 
x, y ∈ Zd and t ∈ R,

∣∣∣〈ex, eithey〉h
∣∣∣ ≤ 36 exp

(
|tη| − μmin

{
1, η

2S(h, μ)

}
|x− y|

)
.

Proof. The proof is a simple adaptation of the one from [42, Theorem 3]: Fix all parameters of the lemma 
and observe that Proposition A.2 combined with Inequality (A.5) yields

∣∣∣〈ex, ((h− u)2 + η2)−1ey
〉
h

∣∣∣ (A.6)

≤ 12e−
μη

2S(h,μ) |x−y| 〈
ex, ((h− u)2 + η2)−1ex

〉1/2
h

〈
ey, ((h− u)2 + η2)−1ey

〉1/2
h

for x, y ∈ Zd, u ∈ R and η ∈ R+. On the other hand, at fixed η ∈ R+, the function defined by G (z) .= eitz
on the stripe

R + iη [−1, 1] ⊂ C

is analytic and uniformly bounded by e|tη|. Using Cauchy’s integral formula and translations by ±iη of the 
integration variable, u, we write the function G as

G (E) = 1
2πi

∫
R

(
G (u− iη)
u− iη −E

− G (u + iη)
u + iη − E

)
du

= η

π

∫
R

G (u− iη) + G (u + iη)
(E − u)2 + η2

du− 2η
π

∫
R

G (u)
(E − u)2 + 4η2

du (A.7)

for all E ∈ R and η ∈ R+. By spectral calculus, together with (A.6)–(A.7) and the Cauchy–Schwarz 
inequality, the assertion follows. �
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Corollary A.4 (Space decay of propagators – II). For any self-adjoint operators h1, h2 ∈ B(h) and all 
x, y ∈ Zd,

∣∣∣∣∣
〈
ex,

1
1 + eh2eh1eh2

ey

〉
h

∣∣∣∣∣ ≤ 2 inf
μ∈R

+
0

exp
(
−μ

2
e−S0(h1,μ)−2S0(h2,μ)|x− y|

)
.

Proof. By (A.1)–(A.4), note that, for any μ ∈ R
+
0 ,

S(eh2eh1eh2 , μ) ≤ S0(eh2eh1eh2 , μ) ≤ eS0(h1,μ)+2S0(h2,μ).

Fix μ ∈ R
+
0 and define

μ1
.= μ

2 e−S0(h1,μ)−2S0(h2,μ).

By (A.5), S(eh2eh1eh2 , μ1) < 1/2. Meanwhile, by using Theorem A.1 with h = eh2eh1eh2 ≥ 0,

∣∣∣∣∣
〈
ex,

1
1 + eh2eh1eh2

ey

〉
h

∣∣∣∣∣ ≤ 2e−μ1|x−y|. �

Appendix B. Large deviation formalism

In probability theory, the large deviation (LD) formalism quantitatively describes, for large n � 1, the 
probability of finding an empirical mean that differs from the expected value, by more than some fixed 
amount. That’s the reason is why we apply it in Section 3 to prove the exponentially fast convergence of mi-
croscopic current densities towards their (classical) macroscopic values. For completeness, in this appendix, 
we present the main result from LD theory used in the current study, namely, the Gärtner–Ellis theorem 
(Theorem B.1 below). For more details, see [23,24]. For a historical review of LD in quantum statistical 
mechanics, see [25, Section 7.1].

Let X denote a topological vector space. A lower semi-continuous function I : X → [0, ∞] is called a good 
rate function if I is not identically ∞ and has compact level sets, i.e., I−1([0, m]) = {x ∈ X : I(x) ≤ m} is 
compact for any m ≥ 0. A sequence (XL)L∈N of X -valued random variables satisfies the LD upper bound
with speed (nL)L∈N ⊂ R+ (a positive, increasing and divergent sequence) and rate function I if, for any 
closed subset F of X ,

lim sup
L→∞

1
nL

lnP(Xl ∈ F ) ≤ − inf
x∈F

I(x), (B.1)

and it satisfies the LD lower bound if, for any open subset G of X ,

lim inf
L→∞

1
nL

lnP(Xl ∈ G) ≥ − inf
x∈G

I (x) . (B.2)

If both, upper and lower bound, are satisfied, one says that (XL)L∈N satisfies an LD principle (LDP). The 
principle is called weak if the upper bound in (B.1) holds only for compact sets F .

A weak LDP can be strengthened to a full one by showing that the sequence (XL)L∈N of distributions is 
exponentially tight, i.e., if for any α ∈ R, there is a compact subset Gα of X such that

lim sup 1 lnP(XL ∈ X\Gα) < −α. (B.3)

L→∞ nL
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If X is a locally compact topological space, i.e., every point possesses a compact neighborhood, then the 
existence of an LDP with a good rate function I for the sequence (XL)L∈N implies its exponential tightness 
[24, Exercise 1.2.19].

A sufficient condition to ensure that a sequence (XL)L∈N of X -valued random variables satisfies an LDP 
is given by the Gärtner–Ellis theorem. It says [24, Corollary 4.5.27] that an exponentially tight sequence 
(XL)L∈N of X -valued random variables on a Banach space X satisfies an LDP with the good rate function

I (x) = sup
s∈X∗

{s (x) − J(s)} , x ∈ X , (B.4)

whenever the so-called limiting logarithmic moment generating function

J(s) .= lim
L→∞

1
nL

lnE

[
enLs(XL)

]
, s ∈ X ∗, (B.5)

exists as a Gateaux differentiable and weak∗ lower semi-continuous (finite-valued) function on the dual 
space X ∗. See also [23, Theorem 2.2.4].

The random variables we study in this paper result from bounded sequences (AL)L∈N ⊂ U of self-adjoint 
elements of the CAR C∗-algebra U along with some fixed state ρ ∈ U∗. In Section 3, we explain how such 
a sequence and state naturally define an exponentially tight sequence of random variables on the real line 
X = R, via the Riesz–Markov theorem and functional calculus (cf. (22)). The following simple version of 
the celebrated Gärtner–Ellis theorem of LD theory is sufficient for our purposes:

Theorem B.1 (Gärtner–Ellis). Take any exponentially tight sequence (XL)L∈N of real-valued random vari-
ables (i.e., X = X ∗ = R) and assume that the limiting logarithmic moment generating function J defined 
by (B.5) exists for all s ∈ R. Then:

(LD1) (XL)L∈N satisfies the LD upper bound (B.1) with rate function I given by (B.4).
(LD2) If, additionally, J is differentiable for all s ∈ R then (XL)L∈N satisfies the LD lower bound (B.2)

with good rate function I given again by (B.4).

Proof. (LD1) and (LD2) are special cases of [43, Theorem V.6.(a) and (c)], respectively. �
Appendix C. Response of quasi-free fermion systems to electric fields

C.1. Linear response current

Recall that (Ω,AΩ) is the measurable space defined in Section 2.1, h 
.= �2(Zd; C) is the one-particle 

Hilbert space with scalar product 〈·, ·〉h and canonical orthonormal basis denoted by {ex}x∈Zd , and the 
one-particle Hamiltonian of the quasi-free fermion system equals (4), i.e.,

h(ω) .= Δω,ϑ + λω1 , ω = (ω1, ω2) ∈ Ω, λ, ϑ ∈ R
+
0 ,

with Δω,ϑ being (up to a minus sign) the random discrete Laplacian. See again Section 2.1. The associate 
(quasi-) free dynamics is thus defined from the (random) unitary group {eith(ω)}t∈R.

Then, apply on the fermion system an electromagnetic field resulting2 from a compactly supported 
time-dependent space-rescaled vector potential ηAL defined by

2 We use the Weyl gauge, also named temporal gauge.
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ηAL(t, x) .= ηA(t, L−1x), t ∈ R, x ∈ R
d, η ∈ R

+
0 , (C.1)

where

A ∈ C∞
0

.=
⋃

l∈R+

C∞
0 (R× [−l, l]d ; (Rd)∗).

Here, (Rd)∗ is the set of one-forms3 on Rd that take values in R. We see any A ∈ C∞
0 (R × [−l, l]d ; (Rd)∗) ⊆

C∞
0 , l ∈ R+, as a function R ×Rd → (Rd)∗ via the convention A(t, x) ≡ 0 for x /∈ [−l, l]d. The main reason 

for not using (the standard choice) C∞
0 (R × Rd; (Rd)∗) instead of C∞

0 as a space of vector potentials, is 
that we need to include (in general non-smooth) functions that are constant for x inside cubes [−l, l]d and 
vanish outside. The time derivative of this vector potential is the (time-dependent) electric field. Since we 
are interested here in the linear response current to electromagnetic fields, we use in (C.1) a real parameter 
η ∈ R

+
0 to also rescale the strength of the vector potential AL.

To simplify notation, we consider, without loss of generality, spinless fermions with negative charge. So, 
such an electromagnetic field leads to a time-dependent Hamiltonian defined by

Δ(ηAL)
ω,ϑ + λω1, t ∈ R,

where Δ(A)
ω,ϑ ≡ Δ(A(t,·))

ω,ϑ ∈ B(�2(L)) is the time-dependent self-adjoint operator defined4 by

〈ex,Δ(A)
ω,ϑey〉h = exp

(
i

∫ 1

0
[A(t, αy + (1 − α)x)] (y − x)dα

)
〈ex,Δω,ϑey〉h (C.2)

for A ∈ C∞
0 , t ∈ R and x, y ∈ Zd. It is (up to a minus sign) the magnetic Laplacian, as explained in [44, 

Section III, in particular Corollary 3.1]. This yields a dynamics, perturbed by the time-dependent vector 
potential ηAL, given by the (well-defined random) two-parameter family {U(ω)

t,t0}t0,t∈R of unitary operators 
on h satisfying the non-autonomous evolution equation

∀t0, t ∈ R : ∂tU(ω)
t,t0 = −i(Δ(ηAL)

ω,ϑ + λω1)U(ω)
t,t0 , U(ω)

t0,t0

.= 1h. (C.3)

In the algebraic formulation, it corresponds to the quasi-free dynamics on the CAR C∗-algebra U , defined 
by the unique two-parameter group {ξ(ω)

t,t0}t0,t∈R of (Bogoliubov) ∗-automorphisms satisfying

ξ
(ω)
t,t0(a(ψ)) = a((U(ω)

t,t0)
∗ψ), t0, t ∈ R, ψ ∈ h. (C.4)

The above procedure for coupling charged lattice fermions to a vector potential is sometimes called “Peierls 
coupling”.

Additionally to the paramagnetic current observable I(ω)
(x,y) (17), the perturbing vector potential A ∈ C∞

0
yields a second type of current observable, defined5 by

Ĩ
(ω)
(x,y)

.= −2�m
((

ei
∫ 1
0 [A(t,αy+(1−α)x)](y−x)dα − 1

)
〈ex,Δω,ϑey〉ha(ex)∗a(ey)

)
(C.5)

3 In a strict sense, one should take the dual space of the tangent spaces T (Rd)x, x ∈ Rd.
4 Observe that the sign of the coupling between A ∈ C∞

0 and the Laplacian is wrong in [18, Eq. (2.8)] for negatively charged 
fermions.
5 Observe that the sign in the exponent in [21, Eq. (50)] and [7, (4.2)] for negatively charged fermions is wrong, with no 

consequence on the corresponding results.



N.J.B. Aza et al. / J. Math. Pures Appl. 125 (2019) 209–246 241
for any ω ∈ Ω, ϑ ∈ R
+
0 , t ∈ R and x, y ∈ Zd, where we recall that �m(A) ∈ U is the imaginary part of A ∈ U , 

see (18). We name it diamagnetic current observable. The derivation of the paramagnetic and diamagnetic 
current observables is explained in detail in Appendix C.2. The decomposition of the full current observable

Ĩ
(ω)
(x,y) + I

(ω)
(x,y) = −2�m

(
〈ex,Δ(ηAL)

ω,ϑ ey〉ha(ex)∗a(ey)
)

.= I(ω,A)
(x,y) (C.6)

in so-called paramagnetic and diamagnetic current observables has a physical relevance. First, it comes 
from the physics literature, see, e.g., [45, Eq. (A2.14)]. Secondly, the paramagnetic current observable is 
intrinsic to the system and related to a heat production, whereas the diamagnetic one is only non-vanishing 
in presence of vector potentials and refers to the ballistic accelerations, induced by electromagnetic fields, 
of charged particles. For more details, see [6,19].

Observe that the time evolution of the KMS state �(ω) ∈ U∗ (see (13)–(14)) is given by �(ω) ◦ ξ
(ω)
t,t0 for 

t, t0 ∈ R. In [6,18–20]6 we perform a detailed study the behavior of current densities when η → 0, uniformly
w.r.t. the volume O

(
Ld
)

of the boxes where the vector potential AL is non-zero. In [7,21,22], these results 
are generalized to lattice-fermion systems in disordered media with very general interactions7 and on passive
states (not necessarily KMS). These mathematically rigorous studies yield an alternative physical picture 
of Ohm and Joule’s laws (at least in the AC-regime), different from usual explanations coming from the 
Drude model or the Landau theory of Fermi liquids.

To shortly present how the linear response current naturally appears, without requiring a thorough 
reading of this series of papers, consider a space homogeneous electric fields in the box ΛL (12) for any 
L ∈ R+. To be more precise, let A ∈ C∞

0 (R; Rd) and set E(t) .= −∂tA(t) for all t ∈ R. Therefore, A is 
defined to be the vector potential such that the electric field is given by E(t) ∈ C∞

0 (R; Rd) at time t ∈ R, 
for all x ∈ [−1, 1]d, and (0, 0, . . . , 0) for t ∈ R and x /∈ [−1, 1]d. It yields a rescaled vector potential ηAL for 
L ∈ R+ and η ∈ R

+
0 .

Then, by (17) and (C.5), the space-averaged response current observable, or response current density 
observable, in the box ΛL and in the direction −→w = (w1, . . . , wd) ∈ Rd (|−→w | = 1), for any ω ∈ Ω, λ, ϑ, η ∈ R

+
0 , 

L ∈ R+, A ∈ C∞
0 and t0, t ∈ R ∈ R, is, by definition, equal to

J
(ω)
L (t, η) .= 1

|ΛL|

d∑
k=1

wk

∑
x∈ΛL

(
ξ
(ω)
t,t0

(
I
(ω)
(x+ek,x) + Ĩ

(ω,ηAL)
(x+ek,x)

)
− I

(ω)
(x+ek,x)

)
(C.7)

with {ek}dk=1 being the canonical orthonormal basis of the Euclidean space Rd.
By using the generalization done in [22] of the celebrated Lieb–Robinson bounds (for commutators) to 

multi-commutators, the full current density observable in the direction −→w ∈ Rd (|−→w | = 1) satisfies

J
(ω)
L (t, η) = ηJ(ω)

L (t) + O
(
η2) (C.8)

in the CAR C∗-algebra U . The correction terms of order O(η2) are uniformly bounded in L ∈ R+, ω ∈ Ω, 
λ, t ∈ R

+
0 and ϑ on compacta. By explicit computations, one checks that the linear part is

J(ω)
L (t) =

d∑
k,q=1

wk

t∫
−∞

{E (α)}q
{
C(ω)
ΛL

(t− α)
}
k,q

dα, (C.9)

which is equal to I(ω,Et)
ΛL

(20) for the electric field defined by (21). See also (19) for the definition of C(ω)
Λ ∈

C1(R; B(Rd; Ud)). This current density observable is therefore the space-averaged linear response current 

6 In all our papers we use smooth electric fields, but the extension to the continuous case is straightforward.
7 Sufficiently strong polynomial decays of interactions are necessary. This includes basically standard models of physics that 

describes interacting fermions in crystal.
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observable (or linear response current density observable) in the direction −→w ∈ Rd we study in all the paper. 
Because of (C.9), C(ω)

ΛL
is called the conductivity observable matrix associated with ΛL. For more details, 

see also [21, Theorem 3.7].
In [6,7,20,22], for any time t ∈ R, we prove the existence of the limit L → ∞ of the random linear 

response current density

�(ω)
(
J(ω)
L (t)

)
, L ∈ R

+,

to a deterministic value, with probability one. At time t = 0 this refers to the following assertion:

x(E) = lim
L→∞

�(ω)
(
J(ω)
L (0)

)
, (C.10)

which is directly related with (23) and (56) at s = 0.

C.2. Discrete continuity equation in the CAR algebra

As is usual, the self-adjoint element

a(ex)∗a(ex) ∈ U

represents the particle number observable at the lattice site x ∈ Zd. Fixing once for all ω ∈ Ω, 
λ, ϑ, η ∈ R

+
0 , L ∈ R+, A ∈ C∞

0 , its time-evolution by the two-parameter group {ξ(ω)
t,t0}t0,t∈R of (Bogoli-

ubov) ∗-automorphisms defined by (C.4) equals

ξ
(ω)
t,t0

(
a (ex)∗ a (ex)

)
= a((U(ω)

t,t0)
∗ex)∗a((U(ω)

t,t0)
∗ex) (C.11)

for any t0, t ∈ R and x ∈ Zd. Observe that (U(ω)
t,t0)

∗ = U(ω)
t0,t for any t0, t ∈ R while

∀t0, t ∈ R : ∂t0U
(ω)
t,t0 = iU(ω)

t,t0(Δ
(ηAL)
ω,ϑ + λω1), U(ω)

t0,t0

.= 1h . (C.12)

From standard properties of the so-called fermionic creation/annihilation operators, the time derivative of 
(C.11) equals

∂t

(
ξ
(ω)
t,t0

(
a (ex)∗ a (ex)

))
= ξ

(ω)
t,t0

((
a(i(Δ(ηAL)

ω,ϑ + λω1)ex)∗a(ex) + a(ex)∗a(i(Δ(ηAL)
ω,ϑ + λω1)ex)

))
.

Recall now that the map ψ �→ a(ψ)∗ from h to U is linear and, by (3) and (C.2), for any x ∈ Zd,

(Δ(ηAL)
ω,ϑ + λω1)ex = λω1 (x) ex +

∑
z∈Zd,|z|=1

〈ex+z,Δ(ηAL)
ω,ϑ ex〉hex+z.

It follows that

∂t

(
ξ
(ω)
t,t0

(
a (ex)∗ a (ex)

))
=

∑
z∈Zd,|z|=1

ξ
(ω)
t,t0

(
−2�m

(
〈ex,Δ(ηAL)

ω,ϑ ex+z〉ha(ex)∗a(ex+z)
))

(C.13)

for any t0, t ∈ R and x ∈ Zd. Another way to prove this equation is to use [21, Theorem 2.1 (ii) with ΨIP = 0]
together with straightforward computations using the CAR (9). Proceeding in this manner, observe that 
the quasi-free property of the dynamics is not needed at all. In particular this derivation easily extends to 
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the interacting case. It is not so for the one-particle picture discussed in the next section, which is much 
more restrictive than the algebraic approach.

Equation (C.13) is interpreted as a discrete continuity equation

∂t

(
ξ
(ω)
t,t0(a(ex)

∗a(ex)
)

=
∑

z∈Zd,|z|=1

ξ
(ω)
t,t0

(
I(ω,ηAL)
(x,x+z)

)

in the CAR C∗-algebra U . The observable I(ω,A)
(x,y) defined by (C.6) is the observable related to the flow 

of particles from the lattice site x to the lattice site y or the current from y to x for negatively charged 
particles. [Positively charged particles can of course be treated in the same way.] In the non-interacting 
case, this definition of current observable is mathematically equivalent to the usual one in the one-particle 
picture, like in [8,10,11]. See Equation (C.19).

C.3. The one-particle picture

When dealing with non-interacting fermions, most of the time, the one-particle picture of such a physical 
system is employed, as for instance in [11]. This is frequently technically convenient. Indeed, note that 
various important estimates in the current study were obtained in this picture and even all the analysis 
performed here could have been done in the one-particle Hilbert space h. However, in many cases, this 
preference is only subjective and motivated by the fact that, by some reason, people feel more comfortable 
in dealing with Hilbert spaces than with C∗-algebras. We stress that the algebraic formulation is, from a 
conceptual point of view, the natural one, as the underlying physical system is many-body. Moreover, it has 
some advantageous technical aspects, both specific (like the possibility of using Bogoliubov-type inequalities 
in important estimates) and general ones (like the very powerful theory of KMS states). For convenience of 
those preferring the one-particle picture of free fermion systems, we establish in the following the precise 
relation of the “second quantized” objects we used here with this picture.

As in the previous subsection, fix once for all ω ∈ Ω, λ, ϑ, η ∈ R
+
0 , L ∈ R+, A ∈ C∞

0 . Recall that the 
corresponding KMS state �(ω) is the gauge-invariant quasi-free state satisfying (14), i.e.,

�(ω)(a∗ (ϕ) a (ψ)) =
〈
ψ,d(ω)ϕ

〉
h
, ϕ, ψ ∈ h, (C.14)

where

d(ω) .= (1 + eβh
(ω)

)−1 ∈ B (h)

and the one-particle Hamiltonian h(ω) = (h(ω))∗ ∈ B (h) is defined by (4). The positive bounded operator 
d(ω) satisfies 0 ≤ d(ω) ≤ 1h and is called the symbol, or one-particle density matrix, of the quasi-free 
state �(ω). See (15)–(16) for the definition of gauge-invariant quasi-free states.

The time-evolution �(ω) by the two-parameter group {ξ(ω)
t,t0}t0,t∈R of (Bogoliubov) ∗-automorphisms de-

fined by (C.4) is �(ω) ◦ ξ(ω)
t,t0 for any t0, t ∈ R. It is again a gauge-invariant quasi-free state and satisfies

�(ω) ◦ ξ(ω)
t,t0 (a∗ (ϕ) a (ψ)) =

〈
ψ,U(ω)

t,t0d
(ω)(U(ω)

t,t0)
∗ϕ
〉
h
, ϕ, ψ ∈ h, (C.15)

for any t0, t ∈ R, by (C.4) and (C.14). Again,

d(ω)
t,t

.= U(ω)
t,t (1 + eβh

(ω)
)−1(U(ω)

t,t )∗ ∈ B (h) (C.16)

0 0 0
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is a positive bounded operator d(ω)
t,t0 satisfying 0 ≤ d(ω)

t,t0 ≤ 1h. It is the symbol, or one-particle density 

matrix, of the quasi-free state �(ω) ◦ ξ
(ω)
t,t0 . Recall that the unitary operators U(ω)

t,t0 ∈ B (h), t0, t ∈ R, are 
uniquely defined by (C.12).

By (C.3), (C.12) and (C.16) together with (U(ω)
t,t0)

∗ = U(ω)
t0,t, the symbol d(ω)

t,t0 is the solution of the Liouville 
equation:

∀t0, t ∈ R : i∂td(ω)
t,t0 =

[(
Δ(ηAL)

ω,ϑ + λω1

)
,d(ω)

t,t0

]
, d(ω)

t0,t0

.= d(ω), (C.17)

as for instance in [11, Eq. (2.5)]. Then, all the study performed in the current paper for second quantized 
currents of non-interacting fermions can be translated into the one-particle picture by using the Liouville 
equation and the fact that the corresponding quasi-free states are completely determined by the one-particle 
density matrices {d(ω)

t,t0}t0,t∈R, solving the above initial value problem.
In this framework, the current observable discussed in Section C.1, and studied along the paper, can be 

represented by self-adjoint operators on the one-particle Hilbert space h. See, e.g., (32). In this perspective, 
note that the full current density observable in a box ΛL in a fixed direction ek, k ∈ {1, . . . , d}, in Rd is the 
so-called second quantization of the operator defined by

I
(ω)
L

.= − 2
|ΛL|

∑
x∈ΛL

�m{〈ex+ek ,Δ
(ηAL)
ω,ϑ ex〉hP{x+ek}sekP{x}}, L ∈ R

+, (C.18)

using the notation (30) for shift operators. See also (31). In other words, by Definition 4.3,

1
|ΛL|

∑
x∈ΛL

I(ω,ηAL)
(x+ek,x) = 〈A, I

(ω)
L A〉 .

The one-particle operator I(ω)
L is directly related with the commonly used current observable in the one-

particle Hilbert space, like in [8,10,11]. To see this, for k ∈ {1, . . . , d}, define the (unbounded) multiplication 
operator on h with the kth component by

Xk(ψ)(x1, . . . , xd)
.= xkψ(x1, . . . , xd),

for ψ within the domain of Xk. For any x ∈ Zd, remark that

Δ(ηAL)
ω,ϑ ex =

∑
z∈Zd,|z|=1

〈ex+z,Δ(ηAL)
ω,ϑ ex〉hex+z

and

−i
[
Δ(ηAL)

ω,ϑ , Xk

]
ex = i

(
〈ex+ek ,Δ

(ηAL)
ω,ϑ ex〉hex+ek − 〈ex−ek ,Δ

(ηAL)
ω,ϑ ex〉hex−ek

)
.

Combining this with (C.18), one checks that

I
(ω)
L = 1

|ΛL|
PL

(
−i
[
Δ(ηAL)

ω,ϑ + λω1, Xk

])
PL + O(L−1) , L ∈ R

+, (C.19)

uniformly in U w.r.t. all parameters, where PL is the orthogonal projection with range lin {ex : x ∈ ΛL}, that 
is, the multiplication operator with the characteristic function of the box ΛL. The term of order O(L−1)
results from the existence of O(Ld−1) points x ∈ ΛL such that x + ek /∈ ΛL.

We recover from (C.19) the usual description for the current observable as a self-adjoint operator on the 
one-particle Hilbert space h, in our case the velocity operator −i[Δ(ηAL) + λω1, Xk]. See, e.g., [8,10,11]. 
ω,ϑ
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Observe additionally that the quantity obtained by applying the state �(ω) ◦ ξ(ω)
t,t0 on the full current density 

observable gives, in the large volume limit (i.e., L → ∞), the density of trace of the product of symbol d(ω)
t,t0

with the velocity operator on the one-particle Hilbert space h, similar to [11, Equation (2.6)].
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