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Abstract
From classical stochastic equations of motion, we derive the quantum Schrödinger equation. The derivation is carried out by 
assuming that the real and imaginary parts of the wave function � are proportional to the coordinates and momenta associ-
ated with the degrees of freedom of an underlying classical system. The wave function � is assumed to be a complex time-
dependent random variable that obeys a stochastic equation of motion that preserves the norm of � . The quantum Liouville 
equation is obtained by considering that the stochastic part of the equation of motion changes the phase of � but not its 
absolute value. The Schrödinger equation follows from the Liouville equation. The wave function � obeying the Schrödinger 
equation is related to the stochastic wave function by ���2 = ⟨���2⟩.
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Schrödinger introduced the quantum wave equation that 
bears his name [1–7] by using an analogy between mechan-
ics and optics. Hamilton had shown that there is a relation 
between the principle of least action of mechanics and the 
geometric optics. Considering that the Hamilton equation 
[8–11] of motion of classical mechanics is analogous to the 
equation of geometric optics, there must be a wave equation, 
the Schrödinger equation, which is the analogous of the light 
wave equation.

As the theories of motion based on the Hamilton equation 
and on the Schrödinger equation describe the same phenom-
ena, they are conflicting theories as they predict different 
results at small scales. However, at large scales, they give 
the same results, and we may say that in this regime, it is 
possible to derive the classical Hamilton equation from the 
Schrödinger equations. The opposite is never true, what 
seems to be in contradiction with the title of this paper. How-
ever, what concerns us here is not the derivation of quantum 
mechanics from classical mechanics, but the derivation of 
the abstract framework of the former from that of the latter.

The derivation is accomplished by representing the 
motion of a quantum particle by the motion of an underly-
ing classical system with many degrees of freedom. The 

coordinate and momentum associated with each degree of 
freedom are considered to be proportional to the real and 
imaginary parts of a dynamic variable � . This relation 
makes the complex variables � and �∗ a pair of canonically 
conjugate variables of the classical underlying system. In 
other words, the states of the underlying system are repre-
sented by a phase space with complex components.

The variable �(x) is considered to depend on a continu-
ous parameter x and is identified as the wave function of the 
quantum system. An observable is represented by a bilinear 
functional of �(x) and �∗(x) , considered to be independent 
variables. This property of the Hamiltonian makes the norm 
of �(x) a constant of the motion. This is an essential property 
of the underlying system which is equivalent to preservation 
of the inner product of a quantum state vector. As the inner 
product is preserved, the complex phase space becomes a 
Hilbert space, and we may say that the motion of the classical 
underlying system is represented in a Hilbert space [12, 13].

The probabilistic character of quantum mechanics is intro-
duced considering the wave function � a stochastic variable 
which means to turn the equation of motion of the underlying 
system into a stochastic equation of motion. This is obtained 
by adding a noise to the Hamilton equation of motion of the 
underlying system which preserves the norm of � so that the 
full stochastic equation of motion preserves the norm.

The present approach is different from previous attempts 
to represent to relate quantum mechanics to classical sto-
chastic dynamics [14, 15]. Usually, in these approaches, the 
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position of the quantum particles is treated as a stochastic 
variable. In our approach, the wave function �(x) itself is a 
random variable or more precisely a complex random field 
variable.

The underlying system that we consider here is a classi-
cal continuous system in one dimension, whose Hamilton 
equations of motion are

where H is the Hamiltonian, which is a functional of the 
coordinate q(x) and the canonical momentum p(x), and we 
are using a � to denote the functional derivative.

Instead of the pair of real canonical variables (q, p), we 
use new variables which are complex variables obtained 
through the transformation � = �q + i�p and �∗ = �q − i�p , 
where � and � are real constants such that �� = 1∕2� , and 
� is some constant. The new pair (�,�∗) constitutes a pair 
of canonically conjugate variables, in terms of which the 
equations of motion become

where � and �∗ are treated as independent variables, and H 
is now considered a functional of �(x) and �∗(x).

Defining the Poisson brackets between two functionals A 
and B of �(x) and �∗(x) by

then the Hamilton equations can also be written in terms of 
Poisson brackets

It is worth pointing out that the canonically conjugate 
variables q and p are related by {q, p} = i�.

The Hamiltonian H of the underlying continuous clas-
sical system is assumed to be a bilinear functional in �(x) 
and �∗(x),

where H(x, x�) = H∗(x�, x) so that H is real. The norm of 
�(x) , defined by

is also understood as a function of �(x) and �∗(x) . It is easily 
seen that H of the form (5) commutes in the Poisson sense 
with N ,
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(5)H = ∫ �∗(x)H(x, x�)�(x�)dxdx�.

(6)N = ∫ �∗(x)�(x)dx,

which means that the norm is a constant of the motion. We 
choose this constant to be equal to the unity.

If we insert the functional (5) into the equation of motion, 
either (2) or (4), we find

From now on, we assume that the wave function � is a a 
stochastic variable, that is, a time-dependent random variable. 
It obeys a stochastic dynamics [16–19], which we assume to be 
the equation of motion (8) supplemented by a stochastic term,

where �(x, t) is the stochastic variable representing the white 
noise.

The stochastic variable � is chosen so that the trajectory in 
the vector space spanned by �(x) preserves the norm (6). To 
set up a noise of this type, we proceed as follows. We discretize 
the time in intervals � and write the Eq. (9) in the discretized 
form

where � is a random variable with zero mean and variance 
equal to the unity, and f, g, and k are functions of x, given by

The increment in the norm due to an increment in � is

The first term vanishes identically, and the second term 
equals

The last term vanishes if we choose K to be related to 
G by

(7){N,H} = 0,
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If we choose G(x�, x) = G∗(x, x�) then �N  vanishes identi-
cally and N  will be invariant along a trajectory in the vec-
tor space in spite of the trajectory being stochastic. If this 
condition is not satisfied, �N  will vanish in the average and 
⟨N⟩ will be constant which we choose to be equal to unity.

Let us determine the increment in �(x)�∗(x�) . Up to terms 
of order � , it is given by

where we are using the indices 1 and 2 to denote functions 
of x and x′ , respectively. Taking the average of this equation, 
the second term proportional to 

√
�  vanishes. Dividing the 

result by � , we find the equation for the time evolution of the 
covariances �(x, x�) = ⟨�(x)�∗(x�)⟩,

Replacing the expressions of f, g, and k in this equation, 
we find

As the norm is preserved in the average, it follows from 
(6) that

The Eq. (19) is a closed equation for the covariances 
�(x, x�) = ⟨�(x)�∗(x�)⟩ because high-order correlations are 
not involved. Equations for these high-order correlations 
could also be obtained. However, this is not necessary if 
we wish to determine the averages of bilinear functionals 
such as

Its average is obtained from �(x�, x) by
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(19)
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−
1

2 ∫ G∗(y�, x)G(y�, y)�(y, x�)dydy�
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1

2 ∫ �(x, y)G∗(y�, y)G(y�, x�)dydy�.

(20)∫ �(x, x)dx = 1.

(21)A = ∫ A(x, x�)�(x�)�∗(x)dxdx�.

(22)⟨A⟩ = ∫ A(x, x�)�(x�, x)dxdx�.

Equation (19) is the fundamental equation that we 
wished to derive. From this fundamental equation, we 
obtain the quantum Liouville equation and the Schrödinger 
equation by choosing a noise that changes the phase of �(x) 
but not its absolute value. This is accomplished by choos-
ing G(x, x�) = ��(x − x�) . In this case, the terms of the Eq. 
(19) involving G vanish, and the equation is reduced to 
the equation

which is the quantum Liouville equation, if we replace � 
by ℏ.

It is easily seen that the quantum Liouville Eq. (23) 
admits solutions of the type

called pure states. If we replace this expression in (23), we 
found that this form is indeed a solution as long as �(x) 
obeys the equation

which is identified as the Schrödinger equation, if replace 
� by ℏ . In other words, the Schrödinger equation is a par-
ticular case of the quantum Liouville Eq. (23) which is 
obtained when the initial condition is of the pure state type 
�0(x, x

�) = �0(x)�
∗
0
(x�) , if this is allowed by the physical con-

ditions. To avoid confusion with the wave function �(x) , 
which is a stochastic variable, we call �(x) the Schrödinger 
wave function.

It is worthwhile writing down the equation that gives the 
time evolution of the average �(x) = ⟨�(x)⟩ of the wave func-
tion �(x) . It is obtained by taking the average of (10), and 
the result is

If the noise changes only the phase of �(x) , then we have 
K(x, x�) = �2�(x − x�) and

We remark that in the long run, � vanishes and cannot 
be identified with the Schrödinger wave function � , which 
obeys the Schrödinger Eq. (25).

We point out that in accordance with the present 
approach the Eq. (19) as well as the quantum Liouville 
Eq. (23) and the Schrödinger Eq. (25) that follows from 
(19) are equations for the covariances �(x, x�) = ⟨�(x)�(x�)⟩ 
of the stochastic wave equation �(x) . In particular, 
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�
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�(x, x) = ⟨��(x)�2⟩ is the variance of the stochastic vari-
able �(x) which in the case of pure states is

and, in view of the normalization (20), obeys the 
normalization

In accordance with the present approach, the variable x 
is a continuous parameter of the wave function, and |�(x)|2 
is the covariance of the wave function. The variable x is 
not properly a random variable. However, in view of the 
normalization (29), |�(x)|2 is understood in the usual inter-
pretation of quantum mechanics as the probability density 
distribution of x.

The equations that we have derived can be written in a 
more compact and familiar form by defining the operators 
associated with a bilinear function such as that given by 
(21). We define the operator Â acting on the vector space by

so that the bilinear functional A is

In terms of the operators Ĥ  , 𝜌̂ and Ĝ associated with 
H(x, x�) , �(x, x�) , and G(x, x�) , the Eq. (19) acquires the form

which has the form of the Lindblad equation for open quan-
tum systems [20, 21]. We point out that Tr𝜌̂ = 1 , which fol-
lows from (20), and that ⟨A⟩ = TrÂ𝜌̂ , which follows from 
(22). The quantum Liouville Eq. (23) and the Schrödinger 
Eq. (25) acquire the familiar forms

and

In the case of pure states, that are solutions of the 
Schrödinger equation, the average ⟨A⟩ is reduced to

(28)��(x)�2 = ⟨��(x)�2⟩

(29)∫ |�(x)|2dx = 1.

(30)Â𝜙(x) = ∫ A(x, x�)𝜙(x�)dx�.

(31)A = ∫ 𝜙∗(x)Â𝜙(x)dx
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1

2
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2
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(34)i�
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(35)⟨A⟩ = ∫ 𝜓∗(x)Â𝜓(x)dx

which is the familiar form for the quantum average of an 
observable.

The Schrödinger Eq. (25) is formally identical to the Eq. 
(8), and thus, the Schrödinger wave function �(x) can be 
understood as related to the coordinate and momentum of the 
underlying classical system described by the classical Hamil-
tonian (5) which is now written in terms of � as

The question that now arises is how to describe the posi-
tion and momentum of the quantum particle in terms of the 
coordinates and momenta of the underlying classical system, 
which are the real part and imaginary parts of � , respectively.

We start by assuming that the position X  of the quantum 
particles is given by

In accordance with (31), the corresponding operator x̂ is 
such that x̂𝜓(x) = x𝜓(x) . Also, in accordance with (31), the 
momentum P is of the form

To determine the momentum P , we regard it as the canoni-
cal conjugate to the position X  and should then be related 
by the Poisson commutation of the type {q, p} = i� , that is, 
{X,P} = i� . Replacing X  and P given by (37) and (38) in the 
expression (3) for the Poisson brackets, we find

Therefore, the following expression

should be fulfilled for an arbitrary function �(x) . This is 
accomplished if we choose p̂ to be the differential operator

The Hamiltonian H = K + V  is a sum of the kinetic 
energy K plus the potential energy V , which is expressed by

To find the expression for the kinetic energy, we used the 
relation {X,K} = P∕m , where m is the mass of the quantum 
particle, from which follows that the respective operators are 

(36)H = ∫ �∗(x)H(x, x�)�(x�)dxdx�.

(37)X = ∫ �∗(x)x�(x)dx.

(38)P = ∫ 𝜓∗(x)p̂𝜓(x)dx.

(39){X,P} = ∫ 𝜓∗(x)[x̂, p̂]𝜓(x)dx.

(40)∫ (𝜓∗(x)xp̂𝜓(x) − 𝜓∗(x)p̂x𝜓(x)dx = i𝜇

(41)p̂𝜓(x) = −i𝜇
𝜕

𝜕x
𝜓(x).

(42)V = ∫ �∗(x)V(x)�(x)dx.
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related by [x̂, K̂] = p̂∕m . Therefore, we may conclude that 
K̂ = p̂2∕2m and that

Replacing this result in (34) and taking into account that 
p̂ is given by (41), we reach the equation

which is the original equation introduced by Schrödinger.
In summary, we have derived the Schrödinger equation 

from the equations of motion of a classical underlying sys-
tem with many degrees of freedom. The classical system is 
represented in a complex phase space whose components 
which are the dynamic variables are identified as the wave 
function �(x) . This complex phase space turns out to be a 
Hilbert space since the motion of the underlying classical 
system preserves the norm of �(x) . The probabilistic charac-
ter of quantum mechanics is introduced by turning the wave 
function � a stochastic variable, which is accomplished by 
adding a noise the the Hamilton equations, that preserves 
the the norm of �(x).

From these assumptions, we derived a general equa-
tion for the covariances �(x, x�) of �(x) that turns out 
to be of the Lindblad form. When the noise changes 
the phase of �(x) but not its absolute value, this equa-
tion turns out to be the quantum Liouville equation for 
�(x, x�) . A special type of solution of the quantum Liou-
ville equation is of the type �(x, x�) = �(x�)∗�(x) . When 
this happens, �(x) obeys an equation which turns out to 
be the Schrödinger equation.

The present approach to the Schrödinger equation does 
not reduce the science of quantum mechanics into the sci-
ence of classical mechanics as the underlying classical sys-
tem is not an observable. But the present approach allows 
for an interpretation of the wave function different from the 
standard interpretation [22–24]. Taking into account that 
the classical underlying system is a collection of interact-
ing harmonic oscillator, the motion of the system can be 
understood as a wave motion, fitting the de Broglie ideas 
about quantum motion [25]. As the trajectory in the Hilbert 
space is stochastic, enabling several trajectories, it may 
also fit the consistent historical interpretation of quantum 
mechanics [6].

(43)Ĥ =
p̂2

2m
+ V .

(44)i�
��

�t
= −

�2

2m

�2�

�x2
+ V� ,
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