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We discuss a model of nonperturbative decay of dark energy. We suggest the possibility that this model
can provide a mechanism from the field theory to realize the energy transfer from dark energy into dark
matter, which is the requirement to alleviate the coincidence problem. The advantage of the model is
the fact that it accommodates a mean life compatible with the age of the universe. We also argue that
supersymmetry is a natural set up, though not essential.
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1. Introduction

It is a rather accepted fact that our universe contains about
70% dark energy (DE), 25% cold dark matter (DM) and a remaining
fraction of baryonic matter [1]. In the concordance model the cos-
mological constant is the easiest explanation for the DE. However,
it is difficult to understand the cosmological constant in terms of
fundamental physics. Its observed value is too small, a fact referred
to as the cosmological constant problem. The fact that the amount
of DE and of DM are of the same order of magnitude today is nei-
ther easy to comprehend, as we know that in the past they differed
by several orders of magnitude. This is known as the coincidence
problem.

An interaction in the dark sector leads to a mechanism to alle-
viate the coincidence problem [2]. Moreover, in the framework of
field theory, it is inevitable to consider an interaction between DM
and DE, given that they are fundamental fields of the theory [3].
The dark sector interaction has been widely discussed in the lit-
erature [4-12]. Extensive analysis using the WMAP, SNIa, BAO and
SDSS data, etc. has been performed in Refs. [5], as well as the use
of the late ISW effect to probe the coupling between dark sec-
tors [6].

A change in the growth index was found in Refs. [8,9] as a
consequence of the interaction, as well as further consequences
concerning the growth of cosmic structure [8-12]. More recently,
the interaction has been seen as an external potential leading to
observable corrections to the Layser Irvine equation [11,12]. As
a consequence, a small positive coupling has been tightly con-
strained [12] in agreement with the results given in [6] from CMB.
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The small positive coupling indicates that there is energy trans-
fer from DE to DM, which helps alleviate the coincidence problem
[6,7].

Another possible explanation for the universe acceleration is
achieved in finding alternatives to the Einstein gravity. An exam-
ple is the f(R) gravity, constructed based on a Lagrangian density
given by an arbitrary function f(R) depending on the curvature
scalar [13]. f(R) gravity is considered as the simplest modifica-
tion to Einstein’s general relativity. The f(R) gravity turns out to
be conformally equivalent to an interaction model between DE
and DM [14]. In the Einstein frame, the model does not pos-
sess a standard matter-dominated epoch as in the Jordan frame,
but contains the coupling between the canonical scalar field to
the non-relativistic matter. It was found that the condition that
f(R) gravity avoids a short-timescale instability and maintains the
agreement with CMB is exactly equivalent to the requirement of
an energy flow from DE to DM in the interaction model, which
ensures the alleviation of the coincidence problem in the Einstein
frame [15].

2. The interacting model

When there is an energy exchange between dark energy and
dark matter, none of them is separately conserved. In such a case
the conservation equations are written as

ppg +3Hppe(1 4+ wpr) = Qp, 1)
Ppm + 3Hppm (1 + wpym) = Qpw, (2)

where prime denotes the derivative with respect to conformal
time, w = p/p and Q is the interaction factor. We can see, through
Eq. (1), that we can define an effective w for the dark energy as

— QpE ; ; ;
Weff = W — 37500, Which accounts for the interaction.
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Supposing a decay from dark energy into dark matter, it is nat-
ural to expect that phenomenologically Q is proportional to the
energy density of dark energy and to the decay rate I,

Qpm =—Qpe = I ppE, (3)

where I > 0 indicates an energy flow from DE to DM. By defining
I' we can find Qpg. We can also write the coupling term in the
form of Qpg = —y Hppg, where y = I'/H. Integrating Eq. (1) we
get the evolution for the dark energy density

opE = ppEoa > HWer) (4)

where wegr =w 4+ y /3.

We know that the lifetime of the dark energy must be of the
order of the age of the universe. If it was much more the effect
of the interaction would be negligible, and on the other hand, if it
was much less, the value of the dark energy density should have
been much higher in the past, and the coupling term Qpg, in this
case, might not have the small value predicted by the observations.
Moreover, as it’s well known, the standard ACDM model fits very
well the various observational results available, so it would be nice
to have a model whose dynamics could approach the dynamics of
the standard model, in this case we expect a dark energy density
not much higher than 104’ GeV* even in the past.

We can see through Eq. (1) that, with a coupling, each compo-
nent does not conserve separately anymore, they evolve correlated.
That's why it becomes possible to reproduce a scaling solution of
the kind [16]

ODE = Ppma® , (5)

where & = —3w.

For the cosmological constant case, being ppr a constant, we
have & = 3, which suffers the coincidence problem. When & =0,
the ratio pppy/ppe = const and there is no coincidence problem
[17]. If there is energy decay from dark energy to dark matter,
we can have & < 3, which can accommodate longer period for the
energy densities of dark energy and dark matter to be comparable
so that to alleviate the coincidence problem.

3. Amodel for the decay

Here we propose a further model for the interaction. Suppose
that a positive cosmological constant (e.g. de Sitter like cosmol-
ogy) is modeled by a nonzero scalar vacuum energy, and that such
a nonzero vacuum energy density is very small, Vo ~ 10~47 GeV*.
We suppose a scalar with doubly degenerated energy minima and
a small breaking term to provide such a small energy difference.
This is indeed very rare and generally unnatural except for a well
known case, that is if there is a symmetry forcing the vacua to be
equal and a nonperturbative break of that symmetry. There actu-
ally exists such a theoretical model. The Wess-Zumino model [18]
has a set of degenerated bosonic vacua as a consequence of super-
symmetry which presumably is broken only nonperturbatively. We
thus suppose this is the case and consider a bosonic potential

V($) = 2m¢ —326%" + Q) = U(@) + Q (&), (6)

where ¢ = ¢ + iB is a complex scalar of mass m and coupling
M. The first term, U(¢), corresponds to the bosonic sector of the
Wess-Zumino Lagrangian and Q (¢) is a supersymmetry breaking
term of power law type. The term Q (¢) is adjusted so that we
have the cosmological constant value at the metastable minimum.
The exact form of the breaking term, however, is not needed for
the computations.

This potential has a set of zeros, in ¢ =0, and at ¢ = 5,
B = 0. Let us suppose that we have only one (uncharged) bosonic

2m if

Fig. 1. The potential of the field ¢.

field, so B = 0. There is an interaction with a fermion which for
our calculations here is irrelevant. It should become here clear that
supersymmetry is not a requirement for the present work, its just
a motivation for a potential with such a form. The potential for
this model is illustrated in Fig. 1.

The physical mechanism is supposed to run as follows. The field
at the false vacuum represents the dark energy. We know, however,
that there can be a decay from the false to the true vacuum. Af-
ter the field passes the potential barrier its equation of state is no
longer that of a dark energy, and there is a non-negligible kinetic
energy. As happens in the old inflationary scenario, the transi-
tion to the true vacuum occurs through the formation of bubbles
of new vacuum. After these bubbles are nucleated, they begin to
expand very fast, as the energy of the transition accelerates the
bubble wall [19]. At some moment, however, the walls of these
bubbles, which carries the energy of the transition, begin to col-
lide. Through this process, in the end, the energy released in the
conversion of the false vacuum into the true vacuum can produce
a kind of new component.

Since our field has negligible couplings to the baryons (which
is a reasonable supposition since we have never detected such in-
teraction), we expect that the final product of the transition must
correspond to the dark sector. However, we are considering a su-
persymmetric potential, so we still have an interaction term gy
(where g is a coupling constant), which describes the talk between
the scalar field and the fermionic field. So this new component
produced can be pressureless fermionic cold dark matter. However
since the decay time from the metastable vacuum to the stable
vacuum of the scalar potential is of the order of the lifetime of the
universe, the dark matter produced in ¢ decay is not the dominant
dark matter in the universe. In order for the standard cosmology
to be recaptured, there has to be another dominant component of
dark matter that was around high redshift, z ~ 1000.

In the following we will compute the decay from the metastable
vacuum to the stable vacuum of the scalar potential during the
lifetime of the universe. For certain values of the parameters, the
barrier has the exact height needed for a decay occurring during
this time.

4. Computation of the decay rate
The decay rate (per unit volume) from the metastable to the

stable minimum of the potential V (¢) is given, according to the
semiclassical method, by [19]

Nl—

I _SE@) oposy (et Coudu +V @)\
1% 2m h)? det(—8,9, + V" (¢4))

(7)
where ¢ is the value of the field at the false vacuum. ¢(p) corre-
sponds, in analogy with the case of particles, to the classical path

in Euclidean space crossing the potential —V (¢) with the bound-
ary conditions @initigl = @final = ¢+~ The Euclidean action Sg in the
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above expression corresponds, in this analogy, to the action of a
particle in this oscillating trajectory, and it is evaluated in relation
to the action of a particle at the false vacuum, S,4. The determi-
nant is defined as a ratio with respect to the determinant at the
false vacuum, which has the effect of a normalization.

The calculation of the decay rate is complicated but standard,
a task usually without any analytic solution. We use here the so
called thin wall approximation [19], in which the energy difference
between the two minima, given by the parameter ¢, is small, and
we can make the calculations perturbatively in €, thus leading to
an analytical solution.

The classical equation of motion, in the Euclidean space, of the
field ¢ described by the potential V (¢), is obtained by minimizing
the action

%Z(X)) = (—0u0u9(x) + V'(@)) =0.

This is exactly the equation of motion of a scalar field in a po-
tential —V (¢) in Minkowski space.
We suppose the boundary condition

lim @& 1)=g;. (8)
T—>=+00

Due to the symmetry of the problem we can assume the solu-
tion to be Euclidean invariant, thus, ¢ (%, T) — @((|x|* + 72)7). For
convenience we can define the variable p = (|X|% + rz)%. In this
case the equation of motion becomes

3
S+ e V(@) =0. (9)

This equation of motion for the field ¢ is analog to the equation
of motion of a particle at position ¢, moving in a time p, subject
to a potential —V (¢). The second term has a form analogous to
a friction term. Observing the symmetry of the problem it is easy
to see that the decay occurs by the formation of bubbles of true
vacuum surrounded by the false vacuum outside. The term g—j‘j is
different from zero only at the bubble wall, since the field is at
rest inside and outside. If this wall is thin we can consider p =
R in this region (R denotes de radius of the bubble). When R is
very large, as occurs when the energy difference € is small, we
can neglect the friction term, as it is multiplied by 1/p that is
equal to 1/R in the wall. So the equation of motion becomes

3¢

— =V'(p). 10

007 (@) (10)
The calculation of the action can be separated in three regions:

outside the bubble, at the thin wall and inside the bubble. In each

of these regions the corresponding value of the field is

¢ =2m/3x, if0<p <R,
¢=¢, ifp~R,
¢=0, ifp>R.

The exact form of ¢ is not needed here for our purposes. So, the
expression for the action can be calculated as

R—A
Sp—Sa~2m? / dp p*(—€)
0
R+A

1/d@\>
272 | dpp3 == U
wo [a0r(5(5) )

R—A

oo

+ 27?2 / dp p>(0), (11)
R+A

where A represents the width of the wall. After integrating we
obtain the action

4 R+A e
SE—S ——aneR—+2n2R3/d 1(d¢ +U)+0
Emoa= 4 P\2\ap

1
:—§n2R4e+2an3S1, (12)

where we defined (51 = lffAA dp (%(%)2 + U)). From now on we
call Sg — S, simply as S. We can find R by minimizing the action
ds
R = —2m%R% + 672R?S1 =0, (13)
and so we obtain R =351/€. We can see that R — oo if € — 0.
This is the reason why in our approximation we neglected the fric-
tion term when € is very small.

Integrating Eq. (10), considering € small, we obtain the relation
%(p =4/2U, allowing to get for S the expression

P+
S =«/§fd<p¢ﬁ. (14)
[

Substituting the expression of the Wess-Zumino supersymmet-
ric potential into the expression of S; we get

4m3
S1=v2{—1. 15
| {mz } (15)

Using above expression in Eq. (12) we can see that the action
will have the form

m]2
S &

o (16)

Since the exponential term in the decay rate dominates when-
ever we are within the validity of the semiclassical limit, the
pre-exponential term will change the result so insignificantly on
the scale we are working, that a simple estimate of it’s order of
magnitude is enough. We know that the dimension of the pre-
exponential term is of m* and it’s value is determined by the
parameters of the theory with dimension of mass. Therefore we
can estimate that for the energy scale we are dealing with, the
decay rate per unit volume can be written as [21]

r_ mie—m"/(P€) (17)
Vv
We will simply estimate the pre-exponential terms as 1 GeV*
in order to facilitate the calculations and give the correct units we
are dealing with. Its easy to show that it will not affect our results.
So, by substituting the value of € and A, we obtain for the decay
rate (per volume)

r 156 12
— =e_10 (Gmw)
1%

Inverting the expression of the decay rate we then obtain the de-
cay time (times the volume) of a particle. Due to the symmetry of
our problem we can simply take the fourth root of the result in
order to obtain the following decay time

124y 2
_ m 1
tdecay = 10 25{exp<10156<@) )} s. (19)

GeV*. (18)
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If we equate this decay time to the age of the universe, (107 s)
we obtain for the mass the value

m~10"13 GeV. (20)

Having this result its easy to calculate that the value of R (the
radius of the bubbles in the moment they are formed) is about
1073 cm. After the tunneling the field evolves according to the
classical field equation, which is simply the analytic continuation
of the Euclidean field equation (9) back to real time.

Similar results are obtained when using other potential with

similar characteristics, as for example U = %(qﬁz — ’"TZ)Z plus a term
that generates a metastable minimum with the energy density of
the cosmological constant. Using other potential of this kind we
obtain as result approximately the same order of magnitude for
the mass.

If we consider in our calculations the gravitational effect we
must consider the following action

- 1 R
S :/d4x\/—_g<§g’“}8m08v(p —V(p) — m) (21)

It is possible to show that using the thin wall approximation
we get the following relation between the action including gravity
and the one we have calculated before [20],

So
Roy2y2’
T+ (29
where Sy is the expression for the action obtained in the previous
case, Ro is the radius of the bubble formed in that case, S the
new action considering gravity and A is the Schwarzschild radius
associated to the bubble of new vacuum.

In the case that gravity is included the thin wall approximation
is a good approximation for all cases of our interest. It's possible
to show that in this case we can neglect the friction term and also
the expansion of the universe.

The energy released in the conversion of false into true vac-
uum is proportional to the volume of the bubble of new vacuum
formed. There is therefore a Schwarzschild radius associated to this
energy. We can see by the equation above that if the radius of the
bubble of true vacuum is comparable to its Schwarzschild radius
then it is important to include gravity in our calculation [20], oth-
erwise we recover our previous result. Equating the radius R of
our bubble to the expression of the Schwarzschild radius it’s easy
to show that, for the scale of the energies we are working with,
we really could have simply neglected the gravitational effects.

Let us briefly discuss the symmetry breaking that generates the
false vacuum energy density. As ¢ ~ % at this point, we can see
that terms such as

S= (22)

Q(p) =mPp?, ame3, 279", (23)

breaks the symmetry and causes this vacuum to have the energy
density corresponding to the cosmological constant.

5. Conclusion

We calculated the decay of a particle of dark energy, with mass
of the order m ~ 10~'3 GeV, described by the potential V (¢) =
[2me —31¢?%|?> 4+ Q (), from the metastable to the stable minimum
of the potential. The timescale of such a process is compatible with
the order of magnitude of the age of the universe. We suggest that
such a kind of quintessence model can provide a mechanism, from
field theory, to explain the decay of dark energy into dark matter,
alleviating the coincidence problem of the concordance model of
cosmology.

We think that, in a future work, a further analysis of the evolu-
tion of the bubbles of new vacuum after its formation, could give
us previsions for the size and configuration of these bubbles, which
could be a potentially testable signal of this model.

In view of the arguments in [15], our model can be equivalent
to an f(R) gravity, with a calculable function f(R). We also think
it is interesting to investigate the f(R) gravity based on the pro-
posed field theory model.
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