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Abstract

Agquaculture aims to produce sufficient quality and quantity of food under UN sustainable development guidelines to
reduce malnutrition and hunger globally. It also provides nutritious food to the growing population. Modern
technologies, such as microbial synthesis and bioengineering, allow for cost-effective achievement of these goals.
Biotransformation of plant protein can enhance the nutritional value of fish, shellfish, and arthropods. Aquaculture
relies on microbial-origin unsaturated fatty acids and valuable vitamins. Long-term goals include meeting the demand
for gourmet food products, with the high-end food market being the most promising. Probiotics play a significant role
in improving aquaculture animals' health, productivity, taste, and environmental conditions. Biological science
advancements help transition from mass production to luxury aquaculture products, promoting organic practices and
reducing environmental impact. This shift will reduce environmental impact, eliminate excessive chemical use, and
promote organic practices. Probiotics will enhance the taste and quality of aquaculture products while improving the
ecological health of aquaculture environments. All this can be achieved within the framework of the new horizons for
aquaculture, established in the UN directive as a goal for sustainable food production.
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Introduction

The history of human society evolution as it is seen
through a prism of technological and economic
advances, shows, that the development of
productive forces is a very turbulent process, which
is characterized by numerous sharp changes in
directions, the rapid extinction of some branches
with the accelerated growth of others, the
emergence of various kinds of “black swans”, etc.
For the development of any revolutionary
technology setups and large enterprises, to be
harmonious and not accompanied by destructive
crises, a constant objective analysis of what is
happening, both in this industry and in related
industries, is necessary. An essential element of
such an analysis should be the identification of
development trends, which, in turn, requires
constant adjustment of goals. In turn, the correction
of objectives, which, as a rule, are few, should lead
to the correction of a whole cloud of tasks
determined by these goals. Only in this way,
focusing on the right ambitions can lead to years of
successful development.

FDA (Food and Drugs Administration) of the USA
defined aquaculture as the farming of aquatic
organisms, such as fish, shellfish (bivalves and
crustaceans), amphibians, reptiles, turtles and
aquatic plants. Aquaculture is described as farming
because of interventions with breeding and the
growing process, improving aquatic animal health
and production (FDA 2024). Similarly, Naylor et al.
(2021) provided an interpretation of the term
aquaculture and reviewed the developments from
the global perspective of aquaculture from 1997 to
2017. The authors attempted to integrate the various
sub-sectors of the aquaculture industry and focus on
the integration of aquaculture into the world food
system (Naylor et al. 2021).

Most professionals from this field tacitly agree that
the main goal of fish (and other aquaculture sectors)
farming is to provide the growing population of
humans and other carnivores with nutritious food.
This position is reflected in the documents of the
FAO (Food and Agriculture Organization of the
United Nations) (2024). However, within this
overview, we will try to demonstrate that the
obviousness in this case is apparent, and the goal
outlined above needs some correction (Fig. 1).
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Figure 1. Traditional (conventional and new) and
alternative sources of food commodities

As primary point in the production of aquaculture is
to supply consumers with nutritionally complete
food.

Aquaculture is considered one of the fastest-
growing protein supply sectors, combining natural
resources and farming techniques to increase yields
while preserving the environment. The farming of
aquatic organisms, including fish, shellfish, and
algae, has emerged as a critical component in
addressing global demand for food supplies. The
growth of the world population inevitably leads to
an increase in the demand for protein-rich food
sources, which, in turn, dictates the need to find
alternative sources of protein. It should be noted that
aquaculture proteins are a promising option (Arshad
et al. 2022). One of the primary reasons for
exploring aquaculture proteins is associated with
their high nutritional value. Aquaculture products
are essential for providing high-quality protein and
are also important sources of omega-3 fatty acids,
vitamins, and minerals (Arshad et al. 2022). In
addition, aquaculture products contain nutrients that
are widely recognized as critical to human health,
particularly due to their ability to promote muscle
growth, brain function, and overall well-being.
According to the FAO, aquatic resources represent
17% of the total amino acids supplied for dietary
consumption (FAO 2024c; Boyd et al. 2022), where
half of the global fish production is fact was
contributed by the aquaculture industry (Arshad et
al. 2022).
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Moreover, aquaculture offers a sustainable solution
to meet the growing protein demand. Traditional
livestock farming has significant environmental
impacts, including greenhouse gas emissions,
deforestation, and water usage (Arshad et al. 2022).
In contrast, aquaculture can be considered to have a
lower environmental footprint and can be integrated
into existing agricultural systems, such as rice-fish
farming, to enhance productivity and sustainability.

It was suggested that aquaculture proteins have also
the potential to improve food security in regions
with limited access to traditional protein sources.
Agquaculture can provide a reliable source of protein
in areas where overfishing has depleted wild fish
stocks and where terrestrial livestock farming is not
feasible due to land constraints (Arshad et al. 2022).
This is particularly important for low-income
countries, where malnutrition and food insecurity
are prevalent. However, there are challenges
associated with aquaculture that need to be
addressed to fully realize its potential as a protein
source for human nutrition. One of the main
challenges is the presence of contaminants in
aquaculture products, such as heavy metals,
endocrine-disruption compounds, and antimicrobial
drug residues (Arshad et al. 2022; Zimmermann et
al. 2024). These contaminants can pose health risks
to consumers and must be carefully managed
through proper feed formulation, water quality
control, and regulatory measures. In addition,
reliance on fishmeal and fish oil in aquaculture
feeds can create additional and highly challenging
environmental problems. If these ingredients are
predominantly derived from wild-caught fish, this
can lead to overfishing and disruption of marine
ecosystems (Boyd et al. 2022). To reduce this
dependency, researchers are exploring alternative
feed ingredients, such as plant-based proteins,
insect meal, and microbial proteins. These
alternatives can provide the necessary nutrients for
aquaculture  species  while  reducing the
environmental impact of feed production (Boyd et
al. 2022).

Exploring aquaculture proteins as a source of
human nutrition is essential for addressing global
food security and nutrition challenges. Aquaculture
offers a sustainable and nutritious alternative to
traditional protein sources, with the potential to
improve food security in regions with limited access
to protein (Arshad et al. 2022). The importance of

addressing the challenges associated with
aquaculture, such as pollution and feed dependency,
cannot be underestimated and is critical to realizing
its full potential. Continued research and innovation
in aquaculture practices and feed formulations will
be key to achieving these goals (Boyd et al. 2022).

Marine alternative proteins, different from
“conventional fish proteins” are gaining attention as
sustainable and nutritious options for aquaculture
feeds. These proteins are derived from marine
sources other than traditional fishmeal and fish oil,
providing a more environmentally friendly and
cost-effective  solution.  Microbial  proteins,
including those derived from microalgae and
bacteria, are a promising alternative to traditional
fishmeal. Microalgae such as Spirulina platensis
and Schizochytrium sp. are excellent sources of
proteins and essential fatty acids, making them
suitable for aquaculture feeds and for improving
fish farming. In addition, microbial proteins can be
produced using renewable resources and thus have
a lower environmental impact compared to
traditional fishmeal, which is important for ensuring
sustainable food production (Jester et al. 2022;
Pereira et al. 2024). Seaweed proteins are another
viable alternative. Seaweeds such as macroalgae
contain essential amino acids, vitamins, minerals,
and antioxidants. Their protein content ranges from
11% to 32% of dry weight, making them valuable
for diverse dietary preferences, including vegetarian
and vegan diets. Seaweed -cultivation requires
minimal resources, mitigating environmental issues
like ocean acidification. Seaweed proteins can be
used in various food products, including plant-
based meats, dairy alternatives, and nutritional
supplements (Biris-Dorhoi et al. 2020). Marine
invertebrates such as mollusks and crustaceans can
also serve as alternative protein sources. These
organisms are rich in protein and can be processed
into feed or protein extracts for aquaculture feeds.
Utilizing marine invertebrates helps reduce waste
and promotes a circular economy by utilizing by-
products from seafood processing (Khan and Liu
2019; Pereira et al. 2024).

While marine alternative proteins offer substantial
benefits, some challenges need to be addressed to
fully integrate them into aquaculture practices.
Species-specific responses to alternative feeds
necessitate tailored formulations to ensure optimal
growth and health outcomes. Additionally,
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the economic feasibility of producing and
incorporating alternative proteins on a large scale
must be evaluated. Future research should focus on
optimizing these alternative ingredients, assessing
long-term effects, and developing cost-effective
production methods.

However, definitions of food in an overwhelming
number of sources, note that food contains a set of
substances necessary to maintain life, in our case, of
Homo sapiens (Temple 2022). And if we get into
more specific terms like functional foods, healthy
foods, and medicinal foods, we can clearly state that
this is a complex issue. Moreover, at the same time,
there is a consensus regarding key substances, the
deficiency of which threatens to lead to poor
nutrition. Let us consider the main groups of such
substances, taking into account the prospects for
their production both from aquaculture and
alternative sources.

Quest for protein: animals, plants, or
aquaculture?

Agquaculture can be considered as a source of
supplying food markets with aquatic animals
(including vertebrates, non-vertebrates, and plants),
and as a source of full-fledged protein (Gémez et al.
2019; Al Khawli et al. 2020; Yaghubi et al. 2021).

However, a simple comparison of the available data
(summarized in Table 1) shows that aguaculture-
related food products do not have any uniqueness in
this regard. Considering the quality of the protein,
which has physiological significance and reflects
the proportion of protein available to the body for
plastic needs, the content of amino acids can vary
significantly. The amino acid score is a measure of
the ratio of a specific essential amino acid in a
protein to the same amino acid in an ideal protein -

Table 1. Nutritional quality of protein of different origins

Protein source

Protein digestibility-corrected
amino acid score (PDCAAS)

References

Egg 1.00
Beef 1.00
Chicken breast 1.00
Cod 0.96
Tuna 0.97
Salmon 1.00
Rainbow trout 1.00
Northern shrimp 0.99
Kamchatka crab 0.55
Karakatitsa Japanese 0.70
Oysters 0.96
gfsesd(;ﬁgops of artificial 0.70
Soy 1.00
Beans 0.07
Lentils 0.52
Peas 0.78
Hemp seeds 0.97

(Hoffman and Falvo 2004; Marinangeli and
House 2027)

(Hoffman and Falvo 2004; Marinangeli and
House 2027)

(Marinangeli and House 2027)
(Sarwar et al. 1989)
(Sarwar et al. 1989)
(Usydus et al. 2009)

(El' and Kavas 1996)

(Dayal et al. 2013)
(Venugopal and Gopakumar 2017)
(Tahergorabi et al. 2011; Petricorena 2015)
(Tahergorabi et al. 2011; Petricorena 2015)

(Tahergorabi et al. 2011; Petricorena 2015)

(Hughes et al. 2011)
(Sarwar et al. 1989)
(Sarwar et al. 1989)
(Ertl et al. 2016)
(House et al. 2010)
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a theoretical protein that is ideally balanced in
amino acid composition (Boutrif 1991; Schaafsma
2000) and is a factor for the consideration of specific
protein as relevant for human consumption. The
protein scores of fish and clams are indeed very
close to the standard beef scores. However, proteins
from cultivated plants, in particular hemp and
soybean, are also characterized by similar
parameters (Dimina et al. 2021; Sui et al. 2021; Day
et al. 2022; Qin et al. 2022). Soy proteins contain
well-balanced essential amino acids except for
sulfur-containing amino acids such as methionine
(Qin et al. 2022), in addition, the values of the
protein digestibility-adjusted amino acid score
(PDCAAS) and the digestibility of essential amino
acids (DIAAS) are relatively high, so they are
considered as good quality proteins (Azizi et al.
2024). In addition, food science trends are directed
towards combining plant proteins to obtain amino
acid profiles adapted to different nutritional
objectives (Dimina et al. 2021). Moreover, the
modern biotechnological/microbiological industry
allows not only to effectively solve the problems of
enriching plant proteins with essential amino acid
supplements but even to solve special problems by
modifying the soy protein structure (Sui et al. 2021;
Song et al. 2024).

It is important to keep in mind that both the
economic and environmental costs associated with
obtaining plant protein are immeasurably lower than
the costs of obtaining protein from aquaculture.
Based on publicly available data, we analyzed and
compared the cost of aquatic and plant protein in
terms of dry pure protein, and the data are presented
in Table 2.

Comparative analysis shows that the availability of
plant protein is significantly higher. This is
determined by the essential differences between
autotrophic and heterotrophic organisms, which, in
turn, are determined by the laws of
thermodynamics; in the classical food pyramid
consisting of three trophic levels, plants, as primary
producers, transfer energy to the organic matters,
providing them to the consumers (Lindeman 1942).

The value of available protein from commercial
wild fish is considerably less than that from
artificially farmed fish. In agreement with the
above, we undertake to argue that such a large gap
in the cost-effectiveness of obtaining protein from

aquatic organisms and plants is unlikely to be
bridged by technological innovation. Moreover, we
undertake to assert that such a significant gap in
economic efficiency between obtaining protein
from aquatic organisms and plants can hardly be
overcome through technological innovation.
However, commercialization must also consider the
fact that wild fish have significant environmental
importance, and this must be carefully considered.

Fatty acids: go green or go fish?

The correct ratio of fat components, especially
polyunsaturated fatty acids or omega 3-6-9, is
required for the full functioning of the human body.
Omega-3 fatty acids are crucial in preventing
cardiovascular diseases as they serve as an anti-
arrhythmic, anti-inflammatory, anti-thrombotic,
anti-atherosclerotic, anti-fibrotic, and endothelial
relaxant. Additionally, they can improve in regards
to the prevention and treatment of various
conditions  such as  hypertriglyceridemia,
hypertension, rheumatoid arthritis, asthma, lupus
erythematosus, diabetes, migraines, nephritis, and
psoriasis (Abbas et al. 2023). The mention of
aquatic organisms as a source of unsaturated fatty
acids has become commonplace in recent decades
(Vyncke et al. 2012; Chen et al. 2022; Meyer et al.
2003; FAO/WHO 2024). Indeed, fish, mollusks,
and arthropods are rich in these compounds and
contain omega-3 and omega-6 fatty acids in the
optimal ratio for human nutrition (Abd Aziz et al.
2013; Tan et al. 2020; Shao et al. 2023). Most of
these essential substances for balanced nutrition can
be provided to humans from plants (Monika and
Anna 2019) or algae (Breuer et al. 2013; Sandgruber
et al. 2021) origin food products. The biology of
Chlorella sp. is developing intensively, this object
has been perfectly developed technologically
(Barkia et al. 2019; Bito et al. 2020; Je and
Yamaoka 2022). It can be argued that there are no
obstacles to launching powerful biosynthetic
production of unsaturated fatty acids necessary for
humans from Chlorella sp. The economics of
microbial biosynthesis technologies, especially
considering that in the case of Chlorella,
autotrophic organisms are used, are comparable to
those for crop production and, again, for
thermodynamic reasons, are unattainable for
aquaculture. In addition, the food industry is
intensively developing technologies for producing
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Table 2. The cost per unit of dry pure protein from aquatic organisms and plants

Product/  Priceof Protein Pure protein
Protein  product, content, price, References
source  USD.kg? g¢.100g* USD.kg®
Skipjack tuna  1.70 28.00 6.10 FAOQ (2024a)
FAO (2024b);
Salmon 7.50 23.00 32.60 Tradingeconomics home page (2024)
Pangasius 3.00 17.20 17.40 FAOQ (2024c)
Tilapia 1,29 20.00 6,45 FAO (2024d)
Shrimp 5.00 30.00 16.60 Mordorintelligence home page (2024)
Soybeans 0.43 40.00 1.10 Tradingeconomics home page (2024)
Soy flour 0.48 49,00 0.98 Tridge - Global Food Sourcing & Data Hub home
page (2024)
Soy isolate 2.21 90.00 2.40 Chemanalyst home page (2024)

new vegetable oils for mass consumption, such as
flaxseed (Singh et al. 2011), which is increasingly
used in feed for aquatic animals (Turchini et al.
2009).Until recently, it was considered that teleost
fish, in particular, Atlantic cod (Gadus morhua L.),
contain a unique complex of enzymes for the
biosynthesis of these substances (Tocher et al. 2006;
Xie et al. 2021). However, it turned out that several
microorganisms, in  particular  microalgae
Nannochloropsis sp. and  Thraustochytrids
(intermediate eukaryotic forms between algae and
fungi), as well as fungi and bacteria also have
similar metabolic pathways. Thus, the entire pool of
unsaturated fatty acids can be obtained by industrial
microbiology methods (Abbas et al. 2023).

Vitamins and vitamin-like compounds

The term "hydrobionts" refers to any organisms that
live primarily in water. This includes a wide range
of aquatic life forms, from microscopic algae and
bacteria to larger plants and animals. Hydrobionts
of different types in general are considered rich in
vitamins of different classes (Mafra et al. 2023).
However, the biotechnological industry has long
mastered vitamin production, including some
chemical identical or similar structures. In addition,
the vitamin content in some aquacultures does not
fully correspond to human nutritional needs.

In terms of water-soluble vitamins, aquatic animals
are inferior to plants (Waagbe 2021); in addition,

mass-consumed aquaculture products, as a rule,
require heat treatment, which negatively affects the
content of some key vitamins. At the same time, the
most valuable carotenoids for the consumer are not
synthesized by hydrobionts but enter the food chain
from their microbial links (Meléndez-Martinez et
al. 2022). It is well-known that the attractive red
color of salmon meat is determined by the presence
of carotenoid astaxanthin, which is synthesized by
microscopic algae and fungi (Langi et al. 2018;
Kumar et al. 2022). The deficiency of carotenoids
in aquaculture salmon feeds has led to the practice
of coloring salmon and other fish with synthetic and
natural-derived dyes. Technologies for microbial
synthesis of astaxanthin and other carotenoids are
being intensively developed. This will lead to the
improved cost-effectiveness of the existing
products and the emergence of fundamentally new
ones (Basiony et al. 2022). Thus, we can confidently
predict the development of biotechnology of
Deinococcus radiodurans, a bacterium that
produces the carotenoid antioxidant deinoxanthin,
which is more “powerful” than astaxanthin
(Lysenko et al. 2011; Jeong et al. 2020; Sadowska-
Bartosz and Bartosz 2023). Additionally, yeasts
should be considered as biotechnological factories
for the production of antioxidants that can be used
as fish feed additives to improve the quality of fish
meat (Barredo et al. 2017).
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Probiotics "from farm to fork""

Over the past few decades, a lot of data has
accumulated on research, in vivo testing and the
introduction of probiotics into aquaculture practice
(Sumon et al. 2022; Yousuf et al. 2023). However,
efforts are aimed at solving the following problems:
a) increasing the survival rate of fry, b) modulating
the immune system, c¢) improving growth
performance, and d) using probiotics as an
alternative to antibiotics in the treatment and
prevention of aquaculture diseases (Van Doan et al.
2019). Similar work is being carried out
successfully in the areas of research and the use of
probiotics for livestock and poultry farming. At the
same time, studies are emerging aimed at a new
direction in research, namely the use of probiotics
to improve the quality of muscle tissues for the end
consumer. For instance, it has been shown, that the
use of pediococci probiotics in poultry may lead to
higher short shain fatty acids (SCFA) meat content
and improvement of the flavor (Wang et al. 2017).
Similar results with higher SCFA meat content were
achieved in poultry fed with bacilli probiotics
(Neijat et al. 2019). Another study with the probiotic
Bacillus subtilis in chicken reported achieving a
combination of quality factors that improved meat
parameters, such as lower cholesterol levels,
improved water holding capacity and reduced
cooking losses (Yang et al. 2016). Finally, studies
conducted with a different strain of bacillary
probiotic in chickens showed improvements in both
quality and sensory parameters: an increase in
protein and free amino acids, as well as a decrease
in fat content; and improvement of color, taste,
juiciness, and flavor (Liu et al. 2012). Regarding
aquaculture, some studies indicate that, despite
improvements in vital signs, there was no
gualitative dietary improvement in the muscle tissue
of fish (Ozorio et al. 2015). However, some authors
have noted an increase in total protein in carcasses
of fish fed with probiotic-containing feed (Azarin et
al. 2014; Reda and Selim 2014). Finally, isolated
publications indicate a possible improvement in the
guality of muscle tissue of fish treated with
probiotic strains, namely a decrease in oxidation and
an increase in the amount of polyunsaturated fatty
acids in the enzymatically processed product
(Marzia et al. 2018). Antioxidant production by
probiotic strains is known to perform a protective
role by preventing the oxidation of lipids

(Prazdnova et al. 2015; Zolotukhin et al. 2017;
Mazanko et al. 2022; Prazdnova et al. 2022). Lipid
oxidation can cause deterioration in fish quality,
resulting in off-flavors, discoloration, negative
changes in meat texture, etc. (Wu et al. 2022). In
conclusion, although probiotics are now being
seriously considered as nutritionally important
components of fish feed and as a hew generation of
nutraceuticals for fish (Wuertz et al. 2021), very
little has been reported on the possible role of
probiotics in improving the quality characteristics of
aquaculture products when it comes to modulating
human health. Therefore, we can confidently say
that new research is needed aimed at studying the
capabilities of probiotics in improving the quality
characteristics of fish products for the end
consumer.

Modern biological science has made noticeable
progress in understanding complex and important
issues related to the organoleptic qualitative
characteristics of food (Thavarajah and Thavarajah
2012). The prominent Japanese chemist Kikunae
Ikeda discovered in 1908 that the chemical basis of

meat taste (umami) is the presence of monosodium
glutamate in food (Nakamura 2011). Since then,
“flavor chemistry” excelled dramatically. It has
become clear that the attractiveness of animal food
to humans is determined, as a rule, by peptides,
amino acids, and Maillard reaction products
(Fogliano 2016). At the same time, it is not
necessary to introduce synthetic compounds into the
product to create taste.

Properly organized fermentation, in the case of
Japanese miso, for example, allows to “cut
peptides from soy protein that mimic both meat and
fish taste (Inoue et al. 2016; Li et al. 2020). Of
course, the discerning taste of caviar and oyster
sommeliers is unlikely to be deceived by
fermentation products, but the mass consumer,
given the overpopulation of the Earth and a general
food shortage, will apparently be satisfied.

e}

Thus, the goal of providing nutrition to growing
humanity is much easier to achieve, both
economically and ecologically, through the
development of crop production in combination
with food biotechnology and microbial synthesis.
Consequently, the corresponding goal for
aquaculture is somewhat questionable, and
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competition with an obviously stronger opponent is
fraught with failure.

In economic terms, the transition from the
production of large volumes of mass aquaculture
products to the production of luxury products
intended for “special occasion consumption” will
not be troublesome if it is carried out consistently
and planned. The realistic and achievable goal of the
aquaculture industry should be to satisfy the need
for gourmet food, that is, to provide people with a
festive mood, and not a set of proteins,
carbohydrates and vitamins. The cost of these
products must correspond to their luxury quality.
Reducing the production volumes of aquaculture
facilities will reduce the load on the ecosystems
involved in this technology, abandon unnecessary
“chemicalization”, and introduce a wide range of
biological products, i.e. make aquaculture products
truly organic. The use of probiotic preparations can
significantly help in moving towards this goal. They
will help improve the taste of fish and invertebrate
meat, significantly reduce the use of synthetic
preparations and improve the environmental
condition of reservoirs used for aquaculture.

Conclusion
The evolution of human society, driven by
technological and economic advancements,

highlights the dynamic and often unpredictable
nature of progress. To ensure harmonious
development and avoid crises, continuous and
objective analysis of trends in various industries,
including aquaculture, is essential. Aquaculture, as
defined by the FDA, involves the farming of aquatic
organisms with interventions to improve health and
production. It plays a crucial role in providing
nutritious food for the growing global population
and addressing food security. Aquaculture is a
rapidly growing sector of protein supply, combining
natural resources and farming practices to enhance
yields and environmental sustainability. It offers
high-quality protein, polyunsaturated fatty acids,
omega-3, omega-6, and omega-9 fatty acids,
vitamins, and minerals, which are vital for human
health. Where the correct ratio of all elements is
crucial for the proper functioning of the human
body. Aquatic organisms, such as fish, mollusks and
algae, are rich in essential fatty acids and provide
them with optimal ratios for human nutrition.
Biotechnological advancements in microbial

biosynthesis, using some aquaculture, particularly
Chlorella sp. or other microalgae or bacterial
species in processes for biosynthesizing these
essential fatty acids, make industrial microbiology a
viable method for producing them. These methods
are economically comparable to traditional crop
production and have the potential to meet human
nutritional needs without relying on aquaculture.
Agquaculture can be considered the next frontier to
provide a sustainable solution to meet the rising
protein demand while having a lower environmental
impact compared to traditional livestock farming .
Moreover, aquaculture proteins are particularly
important in regions with limited access to
traditional protein sources, improving food security
and addressing malnutrition. However, challenges
such as contaminants in aquaculture products and
dependency on fishmeal and fish oil must be
addressed to fully realize its potential, where
researchers are exploring alternative feed
ingredients to reduce environmental impact and
ensure sustainable production takes an important
part. Overall, exploring aquaculture proteins is
crucial for global food security and nutrition.
Continued research and innovation in aquaculture
practices and feed formulations will be key to
achieving these goals and providing a reliable
source of high-quality protein for the global
population.
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