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Abstract. In this article we classify the conformally flat Euclidean
hypersurfaces of dimension three with three distinct principal curva-
tures of R4, S3 × R and H3 × R with the property that the tangent
component of the vector field ∂/∂t is a principal direction at any
point. Here ∂/∂t stands for either a constant unit vector field in R4

or the unit vector field tangent to the factor R in the product spaces
S3 × R and H3 × R, respectively. Then we use this result to give a
simple proof of an alternative classification of the cyclic conformally
flat hypersurfaces of R4, that is, the conformally flat hypersurfaces of
R4 with three distinct principal curvatures such that the curvature
lines correspondent to one of its principal curvatures are extrinsic cir-
cles. We also characterize the cyclic conformally flat hypersurfaces
of R4 as those conformally flat hypersurfaces of dimension three with
three distinct principal curvatures for which there exists a conformal
Killing vector field of R4 whose tangent component is an eigenvector
field correspondent to one of its principal curvatures.
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1 Introduction

E. Cartan proved in [Ca] that if f : Mn → Rn+1 is an isometric im-
mersion of a Riemannian manifold Mn of dimension n ≥ 4, then Mn is
conformally flat if and only if f has a principal curvature of multiplicity
at least n− 1. Recall that a Riemannian manifold Mn is conformally flat
if each point of Mn has an open neighborhood that is conformally diffeo-
morphic to an open subset of Euclidean space Rn. Cartan also proved that
any hypersurface f : M3 → R4 with a principal curvature of multiplicity
greater than one is conformally flat, and realized that the converse is no
longer true in this case. Thus, generic conformally flat Euclidean hyper-
surfaces of dimension n ≥ 4 are envelopes of one-parameter families of
hyperspheres, but in dimension n = 3 there appears an interesting further
class of conformally flat hypersurfaces which have three distinct principal
curvatures.

Cartan’s investigations were taken up by Hertrich-Jeromin [H-J], who
showed that any conformally flat Euclidean hypersurface of dimension
three with three distinct principal curvatures carries local principal coor-
dinates u1, u2, u3 with respect to which the induced metric can be written
as

ds2 =
3∑

i=1

v2i du
2
i ,

with the Lamé coefficients vi, 1 ≤ i ≤ 3, satisfying the Guichard condition,
say, v22 = v21 + v

2
3. Then he used the conformal invariance of this condition

to associate with each such hypersurface a Guichard net in R3, that is, a
conformally flat metric on an open subset of R3 satisfying the Guichard
condition, which is unique up to a Moebius transformation. He also proved
in [H-J] (see also Section 2.4.6 in [H-J2]) that each conformally flat 3-
metric satisfying the Guichard condition gives rise to a unique (up to
a Moebius transformation) conformally flat hypersurface in R4 (see also
[CT1]).

Improving earlier work by Suyama (see [Su1], [Su2]), Hertrich–Jeromin
and Suyama [H-JS] gave a classification of conformally flat hypersurfaces
whose associated Guichard nets in R3 are cyclic, that is, one of their co-
ordinate line families consists of circular arcs. These include the so-called
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conformal product conformally flat hypersurfaces, which are the images
under Moebius transformations of R4 of either cylinders over umbilic-free
surfaces of constant Gauss curvature in R3, cones over umbilic-free surfaces
of constant Gauss curvature in S3 or rotation hypersurfaces over umbilic-
free surfaces in a half-space R3

+ of R3, regarded as the half-space model of
H3, which have constant Gauss curvature with respect to the metric in-
duced from the hyperbolic metric on R3

+. Conformal product conformally
flat hypersurfaces in R4 have been characterized in [DT1] as those confor-
mally flat hypersurfaces with three distinct principal curvatures in R4 such
that the curvature lines correspondent to one of its principal curvatures
are arcs of circles or straight lines in R4.

A class of noncyclic conformally flat hypersurfaces was subsequently
studied in [H-JS2], whose associated Guichard systems are of Bianchi-
type, that is, its coordinate surfaces have constant Gauss curvature. How-
ever, until not very long ago, all the known explicit examples of conformally
flat hypersurfaces of R4 with three distinct principal curvatures belonged
to the class of cyclic conformally flat hypersurfaces. More recently, a Rib-
aucour transformation for the class of conformally flat hypersurfaces of
R4 with three distinct principal curvatures, based on the characterization
of such hypersurfaces obtained in [CT1], was developed in [CT2], which
allowed to construct explicit noncyclic examples (see also [H-JSUY] and
[ST]).

One of the goals of this article is to give a simple proof of an alterna-
tive description of cyclic conformally flat hypersurfaces of R4. This will
be derived as a consequence of a classification of independent interest of
the conformally flat hypersurfaces of dimension three with three distinct
principal curvatures of R4, S3 ×R and H3 ×R with the property that the
tangent component of ∂/∂t is a principal direction at any point. Here ∂/∂t
stands for either a constant unit vector field in R4 or the unit vector field
tangent to the factor R in S3 × R and H3 × R.

First recall that there exists a conformal diffeomorphism Φ: Sn−1 ×
R → Rn \ {0} given by (x, t) 7→ etx. Similarly, there is a conformal
diffeomorphism

Ψ: Hn × S1 ⊂ Rn+1
1 × R2 → Rn+1 \ Rn−1
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onto the complement of a subspace Rn−1 ⊂ Rn+1 given as follows. Choose
a pseudo-orthonormal basis e0, e1, . . . , en−1, en of the Lorentzian space
Rn+1
1 with ⟨e0, e0⟩ = 0 = ⟨en, en⟩, ⟨e0, en⟩ = −1/2 and ⟨ei, ej⟩ = δij

for 1 ≤ i ≤ n− 1 and 0 ≤ j ≤ n. Then

Ψ(x0e0 + . . .+ xnen, (y1, y2)) =
1

x0
(x1, . . . , xn−1, y1, y2).

Composing Ψ with the isometric covering map

π : Hn × R → Hn × S1 : (x, t) 7→ (x, (cos t, sin t))

produces a conformal covering map Φ: Hn × R → Rn+1 \ Rn−1 given by

Φ(x0e0 + . . .+ xnen, t) =
1

x0
(x1, . . . , xn−1, cos t, sin t). (1.1)

In what follows, Q3
ϵ ⊂ R3+|ϵ|

µ denotes S3 if ϵ = 1, R3 if ϵ = 0 and H3 if
ϵ = −1, with µ = 0 if ϵ = 0 or ϵ = 1, and µ = 1 if ϵ = −1. Given a surface
h : M2 → Q3

ϵ , let hs : M2 → Q3
ϵ ⊂ R3+|ϵ|

µ be the the family of its parallel
surfaces, that is,

hs(x) = Cϵ(s)h(x) + Sϵ(s)N(x),

where N is a unit normal vector field to h and the functions Cϵ and Sϵ are
given by

Cϵ(s) =


cos s, if ϵ = 1

1, if ϵ = 0

cosh s, if ϵ = −1

and Sϵ(s) =


sin s, if ϵ = 1

s, if ϵ = 0

sinh s, if ϵ = −1.

The classification of the conformally flat hypersurfaces of dimension
three with three distinct principal curvatures of R4, S3×R and H3×R with
the property that the tangent component of ∂/∂t is a principal direction
at any point is as follows.

Theorem 1. Let h : M2 → Q3
ϵ be an umbilic-free linear Weingarten sur-

face, i.e., the extrinsic curvature Kext and the mean curvature H of h
satisfy

PKext +QH = R (1.2)
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for some P , Q, R ∈ R. Set P = P + ϵR, Q = Q, R = P − ϵR + 4 and
Λ = 2(ϵ2 − 1)R, let I ⊂ R be an open interval where

0 < r(s) :=
1

4
(PCϵ(2s) +QSϵ(2s) + ΛS2

ϵ (s) +R) < 1

and let a : I → R be the smooth function on I given by

a(s) =

∫ s

s0

√
1− r(s)

r(s)
ds, s0 ∈ I. (1.3)

Then the map f : M2 × I → Q3
ϵ × R ⊂ R4+|ϵ|

µ given by

f(x, s) = hs(x) + a(s)∂/∂t, (1.4)

where ∂/∂t denotes a unit vector field tangent to R, defines, on the open
subset M3 ⊂ M2 × I of its regular points, a conformally flat hypersurface
with three distinct principal curvatures such that the tangent component of
∂/∂t is a principal direction of f at any point.

Conversely, any conformally flat hypersurface f : M3 → Q3
ϵ × R ⊂

R4+|ϵ|
µ with these properties is given locally either in this way or as a vertical

cylinder over an umbilic-free surface h : M2 → Q3
ϵ with constant Gauss

curvature K0 ̸= ϵ, in which case M3 splits as a Riemannian product M3 =

M2 × I, where I ⊂ R is an open interval, and f is given by

f(x, s) = h(x) + s ∂/∂t. (1.5)

Regarding h as an isometric immersion into R4+|ϵ|
µ , its normal space at

each point x ∈ M2 is a vector space whose dimension is 2 if ϵ = 0 and
3 otherwise, and which is either Lorentzian or Riemannian, according to
whether µ = 1 or µ = 0, respectively. If ϵ ̸= 0, it is spanned by the position
vector h(x), the normal vector N(x) to h in Q3

ϵ at x and the constant
vector field ∂/∂t. If ϵ = 0, it is spanned by last two vectors. Notice that
these give rise to parallel vector fields along h with respect to its normal
connection. For a fixed x ∈ M2, for ϵ ̸= 0 (respectively, ϵ = 0), we can
regard s 7→ f(x, s) = Cϵ(s)h(x) + Sϵ(s)N(x) + a(s)∂/∂t (respectively,
s 7→ f(x, s) = sN(x) + a(s)∂/∂t) as a curve in the normal space of h
at x, which is contained in a cylinder Q1

ϵ × R in that normal space when
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ϵ ̸= 0. Thus f(M) is generated by parallel transporting such curve along
h with respect to its normal connection. In case f is a vertical cylinder
over h, then f(M) is generated by parallel transporting the straight line
s 7→ s ∂/∂t along h with respect to its normal connection.

We derive from Theorem 1 the following alternative classification of
cyclic conformally flat hypersurfaces of R4. In the next statement, the
map Φ denotes either the conformal diffeomorphism Φ: Q3

ϵ ×R → R4 \{0}
if ϵ = 1, the conformal covering map Φ: Q3

ϵ × R → R4 \ R2 if ϵ = −1 or
the isometry Φ: Q3

ϵ × R → R4 if ϵ = 0.

Theorem 2. Let f : M3 → Q3
ϵ × R be either a vertical cylinder over an

umbilic-free surface h : M2 → Q3
ϵ with constant Gauss curvature K0 ̸= ϵ,

or a hypersurface as in the direct statement of Theorem 1. Then F =

I◦Φ◦f : M3 → R4, where I is either the identity map or an inversion with
respect to a hypersphere in R4, is a cyclic conformally flat hypersurface.

Conversely, any cyclic conformally flat hypersurface of R4 is locally
given in one of these ways.

In the classification of cyclic conformally flat hypersurfaces given in
[H-JS], the authors deal with hypersurfaces in the sphere S4, taking into
account the invariance of the conditions involved under conformal dif-
feomorphisms between the ambient space forms. Then they use a Moe-
bius geometric technology to show that any such hypersurface can be pro-
duced, up to such a conformal diffeomorphism, from a hypersurface in some
space form that is given in terms of a family of parallel linear Weingarten
surfaces and a solution of a certain pendulum-type ordinary differential
equation. Our approach is somewhat more elementary in nature, and the
parametrization of cyclic conformally flat hypersurfaces f : M3 → R4 pro-
vided by Theorems (1) and (2) only requires a single integration.

Theorem 2 also yields the following characterization of cyclic confor-
mally flat hypersurfaces. Let x1, . . . , xn+1 denote the standard coordinates
in Rn+1 and let ∂xi be a unit vector field tangent to the xi-coordinate curve,
1 ≤ i ≤ n + 1. It is well known that the Lie algebra of conformal Killing
vector fields in Rn+1 has dimension 1

2(n + 2)(n + 3) and is generated by
the constant vector fields ∂xi , 1 ≤ i ≤ n + 1, the Killing vector fields
Kij = xi∂xj − xj∂xi , 1 ≤ i ̸= j ≤ n + 1, generating rotations around the
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linear subspaces Rn−1 of Rn+1 given by xi = 0 = xj , by the radial vector

field R =
n+1∑
i=1

xi∂xi , and by the vector fields

Ci =
1

2
(x2i −

∑
j ̸=i

x2j )∂xi + xi
∑
j ̸=i

xj∂xj , 1 ≤ i ≤ n+ 1.

Corollary 3. A conformally flat hypersurface f : M3 → R4 with three
distinct principal curvatures is cyclic if and only if the tangent component
of one of the above conformal Killing vector fields is an eigenvector field
correspondent to one of its principal curvatures.

Remark 4. According to Theorem 2, any cyclic conformally flat hyper-
surface f : M3 → R4 is given, by the construction of Theorem 1, as an
evolution of a one-parameter family of surfaces, with respect to the pa-
rameter s of the curvature lines correspondent to one of the principal
curvatures, issuing from a linear Weingarten surface in Q3

c at a fixed value
of s. As pointed out to us by one of the anonymous referees, it was shown
in [BH-JS] and [Su3] that any generic conformally flat hypersurface can
also be produced in a suitable way as an evolution of surfaces with respect
to the parameter s issuing from certain analytic surfaces in S3.

2 Proof of Theorem 1

It is well known that a three-dimensional Riemannian manifold M3 is
conformally flat if and only if its Schouten tensor L = T − (3/2)sI satisfies
the Codazzi equation

(∇XL)Y = (∇Y L)X (2.1)

for all X,Y ∈ X(M) (see, e.g, [DT2], p. 545), where (∇XL)Y = ∇XLY −
L(∇XY ). Here T is the endomorphism associated with the Ricci tensor
and s is the scalar curvature.

Assume that M3 carries local coordinates x1, x2, x3 with respect to
which its Riemannian metric can be written as

g = v21dx
2
1 + v22dx

2
2 + v23dx

2
3,
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where v1, v2 and v3 are smooth functions. In the sequel, we denote by
ψi the partial derivative of a function ψ with respect to xi and by ψij its
second order partial derivative ∂xi∂xjψ. Denote

ϕij =
vj,i
vi
, 1 ≤ i ̸= j ≤ 3, (2.2)

where vj,i denotes the derivative of vj with respect to xi. Let ∂1, ∂2, ∂3 be
the coordinate vector fields and set Xk = v−1

k ∂k, 1 ≤ k ≤ 3. Then the
curvature tensor R of g satisfies (see [DT2], p. 20)

R(∂i, ∂j)Xk =
(
(ϕkj)i − ϕkiϕij

)
Xj −

(
(ϕki)j − ϕkjϕji

)
Xi, (2.3)

for 1 ≤ i ̸= j ̸= k ̸= i ≤ 3, and

−vivjKij = −⟨R(∂i, ∂j)Xj , Xi⟩ = (ϕij)i + (ϕji)j + ϕkiϕkj ,

for 1 ≤ i ̸= j ̸= k ̸= i ≤ 3, where Kij , 1 ≤ i ̸= j ≤ 3, is the sectional
curvature along the plane spanned by ∂i and ∂j . Now suppose further that

v1 = eα, v2 = eβ and v3 ≡ 1

for some smooth functions α and β satisfying

α23 + α2(α− β)3 = 0 and β13 − β1(α− β)3 = 0. (2.4)

Notice that the preceding equations are equivalent to (ϕij)3 = 0 for 1 ≤
i ̸= j ≤ 2. Then Eq. (2.3) implies that R(∂3, ∂i)Xj = 0 for 1 ≤ i ̸= j ≤ 2,
and it follows that L∂i = ℓi∂i, 1 ≤ i ≤ 3, where

2ℓ1 = K12+K13−K23, 2ℓ2 = K12+K23−K13 and 2ℓ3 = K13+K23−K12.

Define ψi = ℓivi, 1 ≤ i ≤ 3. Then L satisfies the Codazzi equation
(2.1) if and only if

ψi,j = ϕjiψj , 1 ≤ i ̸= j ≤ 3.

Using this, a straightforward computation yields the following lemma.
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Lemma 5. The metric

g̃ = e2αdx21 + e2βdx22 + dx23, (2.5)

with the smooth functions α and β satisfying (2.4), is conformally flat if
and only α and β satisfy the partial differential equations

(e−2β(α22 + (α2)
2 − α2β2))2 + (e−2α(β11 + (β1)

2 − α1β1))2

−(α33 + (α3)
2 + β33 + (β3)

2 − α3β3)2 = 0,
(2.6)

(e−2β(α22 + (α2)
2 − α2β2))1 + (e−2α(β11 + (β1)

2 − α1β1))1

−(α33 + (α3)
2 + β33 + (β3)

2 − α3β3)1 = 0
(2.7)

and

e−2β(α22 + (α2)
2 − α2β2)3 + (e−2α(β11 + (β1)

2 − α1β1))3

+(α3β3 + β33 + (β3)
2 − α33 − (α3)

2)3

= 2(α33 + (α3)
2 − α3β3)β3 − 2e−2α(β11 + (β1)

2 − α1β1)β3.

(2.8)

Proof of Theorem 1: First notice that if f : M2 × I → Q3
ϵ ×R is a vertical

cylinder over h : M2 → Q3
ϵ , then the metric induced by f is the Rieman-

nian product metric dσ2 = g + ds2, where g is the metric induced by h.
It is well-known that such a metric is conformally flat if and only if g has
constant Gauss curvature K0. Since ∂/∂s is a principal direction with prin-
cipal curvature identically zero, f has three distinct principal curvatures if
and only if h is a surface with nowhere vanishing extrinsic curvature, i.e.,
K0 ̸= ϵ.

Now, by Theorem 1 in [To2], if f : M2 × I → Q3
ϵ × R is given by

(1.4) in terms of an arbitrary surface h : M2 → Q3
ϵ and a smooth function

a : I → R with positive derivative, then the tangent component of ∂/∂t
is a principal direction at any point of the restriction of f to the subset
M3 ⊂M2×I of its regular points. Conversely, any hypersurface f : M3 →
Q3

ϵ×R with this property, and such that ∂/∂t is nowhere tangent to f(M),
is given in this way. Therefore, Theorem 1 will be proved once we show
that such a hypersurface f has three distinct principal curvatures and the
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metric it induces on M3 is conformally flat if and only if h and a are as in
the statement.

The metric induced by f on M3 is

dσ2 = b2(s)ds2 + gs,

where b(s) =
√

1 + (a′(s))2 and gs is the metric induced by hs.
For some of the computations that follow, it is convenient to have in

mind the following relations between the functions Cϵ and Sϵ:

C2
ϵ (s) + ϵS2

ϵ (s) = 1,

Cϵ(2s) = C2
ϵ (s)− ϵS2

ϵ (s) and Sϵ(2s) = 2Cϵ(s)Sϵ(s),

C ′
ϵ(s) = −ϵSϵ(s) and S′

ϵ(s) = Cϵ(s).

Let N be a unit normal vector field along h and let Ns be the unit
normal vector field along hs given by Ns(x) = CϵN(x)− ϵSϵh(x). Then

η(x, s) = −a
′(s)

b(s
Ns(x) +

1

b(s)

∂

∂t

defines a unit normal vector field along f , and the shape operators A of
f at (x, s) and As of hs at x with respect to η and Ns, respectively, are
related by

AX = −a
′(s)

b(s)
AsX, if X ∈ TxM

2, and A∂s =
a′′(s)

b3(s)
∂s, (2.9)

where ∂s is a unit vector field tangent to I. Thus f has three distinct
principal curvatures at (x, s) if and only if x is not an umbilic point for
hs, and hence for h.

Under the assumption that h has no umbilic points, there exist locally
principal coordinates x1, x2 on M2 with respect to which the first and
second fundamental forms of h are

I = v21dx
2
1 + v22dx

2
2 and II = V1v1dx

2
1 + V2v2dx

2
2,

respectively. Therefore the first fundamental form of hs and its second
fundamental form with respect to Ns are given, respectively, by

Is = (vs1)
2dx21 + (vs2)

2dx22 and IIs = V s
1 v

s
1dx

2
1 + V s

2 v
s
2dx

2
2,
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where

vsi = Cϵvi − SϵVi and V s
i = ϵSϵvi + CϵVi = −vsi,3, 1 ≤ i ≤ 2.

Notice that for all s ∈ I we have

vsj,i
vsi

=
vj,i
vi
, 1 ≤ i ̸= j ≤ 2, (2.10)

and that ksi =
V s
i

vsi
, 1 ≤ i ≤ 2, are the principal curvatures of hs. It follows

easily that the extrinsic curvature and mean curvature

Ks
ext = ks1k

s
2 =

V s
1 V

s
2

vs1v
s
2

and Hs =
1

2

(
V s
1

vs1
+
V s
2

vs2

)
(2.11)

of hs are related to the extrinsic curvature Kext and the mean curvature
H of h by

Ks
ext =

ϵ2S2
ϵ (s) + ϵSϵ(2s)H + C2

ϵ (s)Kext

C2
ϵ (s)− Sϵ(2s)H + S2

ϵ (s)Kext
,

Hs =
ϵSϵ(2s) + 2Cϵ(2s)H − Sϵ(2s)Kext

2 (C2
ϵ (s)− Sϵ(2s)H + S2

ϵ (s)Kext)
.

Since ∂s is a principal direction of f by the second equation in (2.9),
then x1, x2, x3 := s are local principal coordinates for f with respect to
which its induced metric is given by b2g̃, where g̃ has the form (2.5) with

eα =
vs1
b

and eβ =
vs2
b
. (2.12)

It follows from (2.10) that the functions ϕij , associated with the metric
g̃ by means of (2.2), satisfy (ϕij)3 = 0 for 1 ≤ i ̸= j ≤ 2. Thus (2.4) holds
for α and β. We now investigate when α and β also satisfy (2.6), (2.7)
and (2.8).

In terms of the function ρ defined by

ρ := e−2β(α22 + (α2)
2 − α2β2) + e−2α(β11 + (β1)

2 − α1β1),

−
(
α33 + (α3)

2 + β33 + (β3)
2 − α3β3

)
,

(2.13)
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Eqs. (2.6), (2.7) and (2.8) are equivalent to

ρi = 0, 1 ≤ i ≤ 2,

ρ3 = −2β3ρ− 2β3(β33 + β23)− 2(β33 + (β3)
2)3

(2.14)

Differentiating (2.12) we obtain

α2 = ϕ21eβ−α and β1 = ϕ12eα−β,

hence

β11 + β1(β − α)1 = ϕ121 e
α−β and α22 + α2(α− β)2 = ϕ212 e

β−α. (2.15)

Therefore, the sum of the first two terms on the right hand-side of (2.13)
is

e−(α+β)
(
ϕ212 + ϕ121

)
= − b2

vs1v
s
2

(V s
1 V

s
2 + ϵvs1v

s
2) = −b2(Ks

ext + ϵ),

where the first equality follows from the Gauss equation of hs, bearing in
mind that ϕij = ϕijs for 1 ≤ i ̸= j ≤ 2.

On the other hand, setting B = log b we have

α3 = −
(
V s
1

vs1
+
b′

b

)
= −(ks1 +B′),

α33 = −

(
ϵ+

(
V s
1

vs1

)2

+
b′′

b
−
(
b′

b

)2
)

= −(ϵ+ (ks1)
2 +B′′),

β3 = −
(
V s
2

vs2
+
b′

b

)
= −(ks2 +B′),

β33 = −

(
ϵ+

(
V s
2

vs2

)2

+
b′′

b
−
(
b′

b

)2
)

= −(ϵ+ (ks2)
2 +B′′).

(2.16)

It follows from (2.16) that

α33+(α3)
2+β33+(β3)

2−β3α3 = 2B′Hs−Ks
ext−2ϵ−2B′′+(B′)2. (2.17)

From (2.13), (2.15) and (2.17) we obtain ρ = 2B′′− (B′)2− ϵe2B +2ε−φ,

where
φ(x1, x2, x3) :=

(
e2B − 1

)
Ks

ext + 2B′Hs. (2.18)
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Using the last two equations in (2.16), the equations in (2.14) are equiva-
lent to

φi = 0, 1 ≤ i ≤ 2,

φ3 = 2ks2θ + 2B′(ϵ+ φ),
(2.19)

where
θ = ϵe2B +B′′ − ϵ+ φ− 2(B′)2. (2.20)

We have shown so far that, for a hypersurface f : M2×I → Q3
ϵ×R given

by (1.4) in terms of an umbilic-free surface h : M2 → Q3
ϵ and a smooth

function a : I → R, the metric induced by f on the subset M3 ⊂M2×I of
its regular points is conformally flat if and only if the preceding equations
are satisfied. We now show that this is the case if and only if h and a are
as in the statement.

Suppose first that Eqs. (2.19) hold. The first two equations imply that
φ depends only on x3 = s. Let us compute the derivative of φ with respect
to x3. Differentiating (2.11) with respect to x3, and using that vsi,3 = −V s

i

and V s
i,3 = ϵvi, 1 ≤ i ≤ 2, gives

(Ks
ext)3 = 2Hs(ϵ+Ks

ext) and (Hs)3 = ϵ+ 2(Hs)2 −Ks
ext.

The preceding relations yield

φ3 = 2Hsθ + 2B′(ϵ+ φ). (2.21)

Comparing (2.19) and (2.21) gives 0 = (ks1 − ks2)θ. Since ks1 ̸= ks2 at any
point, we conclude that θ is identically zero. Therefore, the functions φ
and B satisfy the system of ordinary differential equations{

φ′ − 2B′(ϵ+ φ) = 0,

ϵ+ 2(B′)2 − ϵe2B −B′′ − φ = 0.
(2.22)

The first equation of (2.22) implies that

φ = λe2B − ϵ (2.23)

for some λ ∈ R. Substituting this formula into the second one, it becomes

(e−2B)′′ + 4ϵe−2B = 2(ϵ+ λ),
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whose general solution is

e−2B(x3) = c1Cϵ(2x3) + c2Sϵ(2x3) + (1− ϵ2)λS2
ϵ (x3) +

ϵ(ϵ+ λ)

2
(2.24)

for some c1, c2 ∈ R. Since B = log b, the above equation is equivalent to

(1+(a′)2)−1 = c1Cϵ(2x3)+c2Sϵ(2x3)+(1−ϵ2)λS2
ϵ (x3)+

ϵ(ϵ+ λ)

2
. (2.25)

Evaluating (2.18) at x3 = 0 by using (2.23) and (2.24) implies that

[ϵ(ϵ+ λ) + 2c1 − 2]Kext + (4c2)H = ϵ2(ϵ+ λ) + 2ϵc1 − 2λ.

Set

P = ϵ(ϵ+ λ) + 2c1 − 2, Q = 4c2 and R = ϵ2(ϵ+ λ) + 2ϵc1 − 2λ.

Since c1, c2 and λ ∈ R are arbitrary, we see that also P,Q,R ∈ R are
arbitrary, and now (2.25) implies that a is given as in the statement.

Conversely, let h : M2 → Q3
ϵ be an umbilic-free linear Weingarten

surface, let a : I → R be a smooth function on the open interval I ⊂ R
as in the statement and let f be given by (1.4). We must show that the
function φ, defined by (2.18) on the open subset M3 ⊂M2 × I of regular
points of f , with B = log b and b = (1 + (a′)2)1/2, satisfies the three
equations in (2.19).

In view of (2.11), Eq. (2.18) is equivalent to

P (x)Kext +Q(x)H = R(x), (2.26)

where x = (x1, x2, x3 = s) and

P (x) = (e2B − 1)C2
ϵ (s)−B′Sϵ(2s)− φ(x)S2

ϵ (s),

Q(x) = ϵ(e2B − 1)Sϵ(2s) + 2B′Cϵ(2s) + φ(x)Sϵ(2s),

R(x) = φ(x)C2
ϵ (s)− ϵ2(e2B − 1)S2

ϵ (s)− ϵB′Sϵ(2s).

(2.27)

Since

4e−2B(s) = PCϵ(2s) +QSϵ(2s) + ΛS2
ϵ (s) +R,

4B′(s)e−2B(s) = ϵPSϵ(2s)−QCϵ(2s)− ΛSϵ(s)Cϵ(s),
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with P = P + ϵR, Q = Q, Λ = 2(ϵ2 − 1)R and R = P − ϵR+ 4, we have

4e−2B(s)P (x) = −2P − S2
ϵ (s)

(
ϵ(4e−2B(s) + 4− 2R)− Λ + 4e−2B(s)φ(x)

)
,

4e−2B(s)Q(x) = −2Q+ Sϵ(2s)
(
ϵ(2e−4B(s) + 4− 2R)− Λ + 4e−2B(s)φ(x)

)
,

4e−2B(s)R(x) = −2R+ C2
ϵ (s)

(
ϵ(2e−4B(s) + 4− 2R)− Λ + 4e−2B(s)φ(x)

)
.

The above equations, together with Eqs. (1.2) and (2.26), imply that(
ϵ(4e−2B(s)+4−2R)−Λ+4e−2B(s)φ(x)

)(
S2
ϵ (s)Kext−Sϵ(2s)H+C2

ϵ (s)
)
= 0.

We claim that the function

ϵ(4e−2B(s) + 4− 2R)− Λ + 4e−2B(s)φ(x)

is identically zero. Let us suppose, by contradiction, that there is a point
x0 where such function is nonzero. Then S2

ϵ (s)Kext − Sϵ(2s)H + C2
ϵ (s) is

identically zero in an open neighbourhood Ω of x0, hence in Ω we have{
S2
ϵ (s)Kext − Sϵ(2s)H = −C2

ϵ (s),

PKext +QH = R.

Since Kext and H depend only on (x1, x2), the determinant QS2
ϵ (s) +

PSϵ(2s) must be identically zero in Ω, which is a contradiction. Therefore

φ(x) =
ϵ

2

(
(R− 2)e2B(s) − 2

)
+

Λe2B(s)

4

for all x ∈ M3. We conclude that φi = 0, 1 ≤ i ≤ 2, and φ3 = ϵ(R −
2)e2B(s)B′(s). On the other hand, the function θ introduced in (2.20)
satisfies

2e−2Bθ = 2ϵ(1− e−2B) + 2e−2Bφ+ 2e−2B(B′′ − 2(B′)2),

= 2ϵ(1− e−2B)− ϵ(2e−2B + 2−R) +
Λ

2
− (e−2B)′′,

= 2ϵ(1− e−2B)− ϵ(2e−2B + 2−R) +
Λ

2
+
(
4ϵe−2B − ϵR− Λ

2

)
,

= 0.
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Therefore, θ = 0. Since

2B′(ϵ+ φ) = B′
(
2ϵ+ ϵ

(
(R− 2)e2B − 2

)
+

Λe2B

2

)
,

= ϵ(R− 2)e2BB′ +
Λe2BB′

2
,

the third equation in (2.19) is satisfied.

3 Cyclic conformally flat hypersurfaces

Let F : M3 → R4 be a conformally flat hypersurface with three dis-
tinct principal curvatures λ1, λ2, λ3 and corresponding unit principal vec-
tor fields e1, e2 and e3, respectively. E. Cartan proved (see [La], p. 84)
that the conformal flatness of M3 is equivalent to the relations

⟨∇eiej , ek⟩ = 0 (3.1)

and

(λj − λk)ei(λi) + (λi − λk)ei(λj) + (λj − λi)ei(λk) = 0, (3.2)

for all 1 ≤ i ̸= j ̸= k ̸= i ≤ 3. It follows from Codazzi’s equation and (3.1)
that

∇eiei =
∑
j ̸=i

(λi − λj)
−1ej(λi)ej . (3.3)

Proposition 6. The following assertions are equivalent:

(i) The integral curves of e1 are extrinsic circles;

(ii) The functions ρj =
ej(λ1)
λ1−λj

, 2 ≤ j ≤ 3, satisfy e1(ρj) = 0.

(iii) The relation
(λ1 − λj)eje1(λ1) = 2e1(λ1)ej(λ1)

holds for 2 ≤ j ≤ 3.

(iv) The image by F of each integral curve σ of e1 is contained in a
two-dimensional sphere whose normal spaces in R4 along F (σ) are
spanned by (the restrictions to F (σ) of) the vector fields F∗e2 and
F∗e3.
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(v) The image by F of each leaf of the distribution spanned by e2 and e3
is contained in a hypersphere (or affine hyperplane) of R4;

Proof. The integral curves of e1 are extrinsic circles if and only if

⟨∇e1∇e1e1, ej⟩ = 0, 2 ≤ j ≤ 3.

Using (3.1) and (3.3) we obtain

⟨∇e1∇e1e1, ej⟩ = e1 ⟨∇e1e1, ej⟩ − ⟨∇e1e1,∇e1ej⟩
= e1(ρj), 2 ≤ j ≤ 3,

hence (i) and (ii) are equivalent. The equation e1(ρj) = 0 can be written
as

e1(λ1 − λj)ej(λ1) = (λ1 − λj)e1ej(λ1), 2 ≤ j ≤ 3.

We have

eje1(λ1) = e1ej(λ1) + [ej , e1](λ1)

= e1ej(λ1) + (∇eje1)(λ1)− (∇e1ej)(λ1)

= e1ej(λ1) +
〈
∇eje1, ej

〉
ej(λ1)− ⟨∇e1ej , e1⟩ e1(λ1)

= e1ej(λ1)−
e1(λj)

λj − λ1
ej(λ1) +

ej(λ1)

λ1 − λj
e1(λ1).

Thus, for 2 ≤ j ≤ 3, the equation e1(ρj) = 0 reduces to the relation in
item (iii).

Now, for 2 ≤ j ≤ 3, using (3.3) we obtain

∇̃e1F∗ej = F∗∇e1ej = −⟨∇e1e1, ej⟩F∗e1 = −ρjF∗e1 = −⟨F∗ej , ξ⟩F∗e1,

where ξ = ρ2F∗e2 + ρ3F∗e3. The equivalence between the assertions in
items (ii) and (iv) follows.

Finally, we prove the equivalence between the assertions in items (iii)

and (v). First notice that the normal spaces of the restriction fσ of f
to a leaf σ of the distribution spanned by e2 and e3 are spanned by the
restrictions to f(σ) of f∗e1 and the unit normal vector field N to F . Since
e1, e2 and e3 are principal directions of F , and in view of (3.1), it follows
that Fσ has flat normal bundle, with the restrictions of e2 and e3 to σ as
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an orthonormal diagonalizing tangent frame and corresponding principal
normal vector fields

ηj =
〈
∇ejej , e1

〉
F∗e1 + λjN

=
e1(λj)

λj − λ1
F∗e1 + λjN, 2 ≤ j ≤ 3.

Using (3.2) we obtain

η2 − η3 =

(
e1(λ2)

λ2 − λ1
− e1(λ3)

λ3 − λ1

)
F∗e1 + (λ2 − λ3)N

= (λ2 − λ3)(µF∗e1 +N),

where
µ =

e1(λ1)

(λ2 − λ1)(λ3 − λ1)
.

Thus
ζ = F∗e1 − µN (3.4)

is an umbilical normal vector field to F |σ, for it is orthogonal to η2 − η3,
and the assertion in item (v) is equivalent to ζ being parallel with respect
to the normal connection of F |σ. The latter is, in turn, equivalent to
e2(µ) = 0 = e3(µ).

Notice that ej(µ) = 0, for 2 ≤ j ≤ 3, is equivalent to

(λj−λ1)(λk−λ1)eje1(λ1) = e1(λ1)(ej(λj−λ1)(λk−λ1)+ej(λk−λ1)(λj−λ1)),

for 2 ≤ k ̸= j ≤ 3. Using (3.2), the expression between brackets on the
right-hand-side is equal to

(λj − λk)ej(λ1)− ej(λ1)(λk + λj − 2λ1) = 2ej(λ1)(λ1 − λk).

Hence, the equation ej(µ) = 0, 2 ≤ j ≤ 3, reduces to the relation in item
(iii).

4 Proof of Theorem 2 and Corollary 3

To prove Theorem 2, first notice that if f : M2 × I → Q3
ϵ ×R ⊂ R4+|ϵ|

µ

is a vertical cylinder over a surface h : M2 → Q3
ϵ with constant Gauss
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curvature, then Φ ◦ f : M3 → R4 is either a cylinder, a cone or a rotation
hypersurface over h, according to whether ϵ = 0, 1 or −1, respectively. In
other words, the compositions of Φ◦f with Moebius transformations of R4

are precisely the conformal product hypersurfaces referred to at the third
paragraph of the introduction.

Now let f : M2 × I → Q3
ϵ × R ⊂ R4+|ϵ|

µ be given by (1.4) in terms of
an umbilic-free linear Weingarten surface h : M2 → Q3

ϵ and the function
a : I → R given by (1.3). By Theorem 1, the metric induced by f on the
subset M3 ⊂ M2 × I of its regular points is conformally flat and f is a
hypersurface with three distinct principal curvatures such that the tangent
component of ∂/∂t is a principal direction of f at any point.

To complete the proof of the direct statement, it suffices to argue that
Φ ◦ f : M3 → R4 is a cyclic conformally flat hypersurface, for the compo-
sition with an inversion in R4 clearly preserves both properties.

We must thus prove that, for each x ∈M2, the curve γ : I →M3 given
by γ(s) = (x, s) is a curvature line of Φ◦f , as well as an extrinsic circle, or
a geodesic, of M3. First notice that if γ̄ : I → Q3

ϵ ×R is given by γ̄ = f ◦γ,
then γ̄(I) is contained in the vertical cylinder β(R) × R in Q3

ϵ × R over
the geodesic β of Q3

ϵ normal to g at x, which intersects f(M) orthogonally
along γ̄(I).

We argue separately for the cases ϵ = 1, ϵ = −1 and ϵ = 0. If ϵ =

1, then the image of the vertical cylinder β(R) × R under Φ is a two-
dimensional subspace of R4 that intersects Φ(f(M)) orthogonally along
Φ(γ̄(I)), for Φ is conformal. Thus γ is a curvature line of Φ ◦ f and also a
geodesic of M3 (see Proposition 9 of [To1]).

If ϵ = −1, then the image of the vertical cylinder β(R) × R under
Φ: H3×R → R4 \R2 is a two-dimensional sphere centered at the subspace
R2 ⊂ R4, which intersects Φ(f(M)) orthogonally along Φ(γ̄(I)). There-
fore, in this case the curve γ is a curvature line of Φ◦f that is an extrinsic
circle of M3 (see again Proposition 9 of [To1]). The case ϵ = 0 is similar
and easier.

To prove the converse statement, let F : M3 → R4 be a cyclic con-
formally flat hypersurface. By Proposition 6, since the integral curves of
e1 are extrinsic circles, one has a family F of hyperspheres (or affine hy-
perplanes) that contain the images by F of the leaves of the distribution
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spanned by e2 and e3, and a family G of two-dimensional spheres (or affine
subspaces) that contain the images by F of the integral curves of e1, with
the property that each element of the former is orthogonal to every ele-
ment of the latter, and conversely. By Lemma 6 of [To1], there exists an
inversion I in R4 that takes the families F and G, respectively, into fam-
ilies of hyperspheres (or affine hyperplanes) and two-dimensional spheres
(or affine subspaces) of one of the following types:

(i) a family of parallel affine hyperplanes and a family of orthogonal
affine subspaces;

(ii) a family of concentric hyperspheres and a family of affine subspaces
through their common center;

(iii) a family of affine hyperplanes intersecting along a two-dimensional
affine subspace and a family of two-dimensional spheres centered at
that affine subspace;

(iv) a family of hyperspheres whose centers lie in a straight line and a
family of two-dimensional affine subspaces intersecting along that
straight line;

(v) a family of affine hyperplanes intersecting along a straight line and
a family of two-dimensional spheres centered at that straight line.

Let ζ be the vector field given by (3.4). In case (i), the vector field
I∗ζ is collinear with the constant unit vector field e4 normal to the family
I(F) of affine hyperplanes, thus the tangent component of e4 is collinear
with I∗F∗e1, and hence is a principal direction of f̃ = I ◦ F . In terms of
the orthogonal decomposition R4 = R3 × R, with e4 spanning the factor
R, we can write f̃ = Φ ◦ f , and hence F = I ◦ Φ ◦ f , where Φ: R3 × R →
R4 is the standard isometry and f : M3 → R3 × R is a conformally flat
hypersurface with three distinct principal curvatures, having the property
that the tangent component of the vector field ∂/∂t = e4 is a principal
direction at any point.

In case (ii), the vector field I∗ζ is collinear with the radial vector field R
along f̃ = I ◦F , thus the tangent component of R along f̃ is collinear with
I∗f∗e1, and hence is a principal direction of f̃ . In other words, F = I ◦ f̃ ,
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where f̃ : M3 → R4 is a conformally flat hypersurface with three distinct
principal curvatures having the property that the tangent component of
the radial vector field R along f̃ , that is, of the position vector field of
f̃ , is a principal direction of f̃ . It follows that f̃ = Φ ◦ f , and hence
F = I ◦ Φ ◦ f , where Φ: S3 × R → R4 \ {0} is the conformal diffeomor-
phism given by Ψ(x, t) = etx and f : M3 → S3 × R is a conformally flat
hypersurface with three distinct principal curvatures having the property
that the tangent component of the unit vector field ∂

∂t is a principal di-
rection at any point, for the vector fields ∂

∂t and R are Φ-related, that is,
Φ∗(x, t)

∂
∂t = R(Φ(x, t)).

In case (iii) we assume that the affine subspace in the intersection of all
affine hyperplanes of the family I(F) is, say, the subspace {(y0, y1, y2, y3) :

y0 = 0 = y1}. Then the vector field I∗ζ is collinear along f̃ = I ◦ F with
the Killing vector field K in R4 given by K(y0, y1, y2, y3) = (0,−y3, y2).
Thus the tangent component of K along f̃ is collinear with f̃∗e1 = I∗F∗e1,
and hence is a principal direction of f̃ . Now notice that K and the unit
vector field ∂/∂t tangent to the factor R in H3 × R are Φ-related, where
Φ: H3 × R → R4 \ R2 be the conformal covering map given by (1.1),
that is, Φ∗(x, t)

∂
∂t = K(Φ(x, t)). It follows that f̃ = Φ ◦ f , and hence

F = I◦Φ◦f , where f : M3 → H3×R is a conformally flat hypersurface with
three distinct principal curvatures having the property that the tangent
component of the unit vector field ∂

∂t is a principal direction at any point.
In all three cases above, it follows from Theorem 1 that f : M3 → Qϵ×R

is either given by (1.4) in terms of a linear Weingarten surface h : M2 → Q3
ϵ

and a smooth function a : I → R given by (1.3), or it is a vertical cylinder
over a surface h : M2 → Q3

ϵ with constant Gauss curvature K0 ̸= ϵ.
We now argue that cases (iv) and (v) can not occur. Let (y1, . . . , y4)

be standard coordinates on R4 and let Ψ: R4 \R → H2×S2 ⊂ R3
1×R3 be

the conformal diffeomorphism, with R = {(y1, . . . , y4) ∈ R4 : y2 = y3 =

y4 = 0}, given by

Ψ(y1, y2, y3, y4) =
1√

y22 + y23 + y24

(
e0 + y1e1 +

(
4∑

i=1

y2i

)
e2, (y2, y3, y4)

)
,

where e0, e1, e2 is a pseudo-orthonormal basis of R3
1 with ⟨e0, e0⟩ = 0 =

⟨e2, e2⟩, ⟨e0, e2⟩ = −1/2 and ⟨e1, ej⟩ = δ1j , 0 ≤ j ≤ 2.
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If either (iv) or (v) holds, then f = Ψ ◦ I ◦ F : M3 → H2 × S2 maps
each integral curve of e1 into a slice H2 × {x} or {x} × S2 of H2 × S2,
respectively. In the former case, f(x, s) = (a(s), h(x, s)) for some smooth
maps a : I → R and h : M3 → S2. Since f∗∂s is orthogonal to f∗X for any
X ∈ TxM

2, it follows that h does not depend on s. But then Φ◦f = I ◦F
would be a rotation hypersurface over the plane curve s 7→ Φ(a(s), h(x)),
for a fixed x ∈ M2. Therefore I ◦ F , and hence also F , would have only
two distinct principal curvatures, a contradiction. Arguing in a similar
way also rules out case (v).

Proof of Corollary 3: If F : M3 → R4 is a cyclic conformally flat hy-
persurface, by Theorem 2 it is given by F = I ◦ Φ ◦ f : M3 → R4 in
terms of a hypersurface f : M3 → Q3

ϵ × R as in the converse statement
of Theorem 1, where I is either the identity map or an inversion with
respect to a hypersphere in R4 and Φ denotes the conformal diffeomor-
phism Φ: Q3

ϵ × R → R4 \ {0} if ϵ = 1, the conformal covering map
Φ: Q3

ϵ × R → R4 \ R2 if ϵ = −1 or the isometry Φ: Q3
ϵ × R → R4 if

ϵ = 0.
Since Φ is a conformal diffeomorphism, the tangent component of ∂/∂t

is a principal direction of f at any point and ∂/∂t is Φ-related to either
a constant vector field ∂xi , the radial vector field R or one of the Killing
vector fields Kij in R4, according to whether ϵ = 0, ϵ = 1 or ϵ = −1,
respectively, then the tangent component of one of those vector fields is a
principal direction of f̃ = Φ ◦ f at any point. Finally, if I is an inversion
with respect to a hypersphere in R4, then (a multiple of) the vector field
∂xi is I-related to Ci, whereas R is I-related to (a multiple of) itself.
Therefore, the tangent component of either Ci or R is a principal direction
of F = I ◦ Φ ◦ f at any point.

Conversely, assume that F : M3 → R4 is a conformally flat hypersur-
face with three distinct principal curvatures such that the tangent com-
ponent of one of the conformal Killing vector fields ∂xi , R, Kij or Ci is a
principal direction of f̃ = Φ ◦ f at any point. We argue for Ci, the other
cases being similar. Since (a multiple of) the vector field ∂xi is I-related to
Ci, it follows that the tangent component of ∂xi is a principal direction of
f̃ = I ◦F at any point. Let Φ: R3×R → R4 be the isometry given by the
orthogonal decomposition of R4 determined by ∂xi . Then F = I ◦ Φ ◦ f ,
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where f : M3 → R3 × R has the property that the tangent component of
the unit vector field ∂/∂t tangent to R is a principal direction of f at any
point. Thus F is a cyclic conformally flat hypersurface by Theorem 2.
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