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Abstract. In this article we classify the conformally flat Euclidean
hypersurfaces of dimension three with three distinct principal curva-
tures of R%, S3 x R and H? x R with the property that the tangent
component of the vector field 9/0¢ is a principal direction at any
point. Here /0t stands for either a constant unit vector field in R*
or the unit vector field tangent to the factor R in the product spaces
S? x R and H? x R, respectively. Then we use this result to give a
simple proof of an alternative classification of the cyclic conformally
flat hypersurfaces of R*, that is, the conformally flat hypersurfaces of
R* with three distinct principal curvatures such that the curvature
lines correspondent to one of its principal curvatures are extrinsic cir-
cles. We also characterize the cyclic conformally flat hypersurfaces
of R* as those conformally flat hypersurfaces of dimension three with
three distinct principal curvatures for which there exists a conformal
Killing vector field of R* whose tangent component is an eigenvector
field correspondent to one of its principal curvatures.
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1 Introduction

E. Cartan proved in [Ca] that if f: M™ — R*"! is an isometric im-
mersion of a Riemannian manifold M™ of dimension n > 4, then M" is
conformally flat if and only if f has a principal curvature of multiplicity
at least n — 1. Recall that a Riemannian manifold M" is conformally flat
if each point of M™ has an open neighborhood that is conformally diffeo-
morphic to an open subset of Fuclidean space R™. Cartan also proved that
any hypersurface f: M? — R* with a principal curvature of multiplicity
greater than one is conformally flat, and realized that the converse is no
longer true in this case. Thus, generic conformally flat Euclidean hyper-
surfaces of dimension n > 4 are envelopes of one-parameter families of
hyperspheres, but in dimension n = 3 there appears an interesting further
class of conformally flat hypersurfaces which have three distinct principal
curvatures.

Cartan’s investigations were taken up by Hertrich-Jeromin [H-J]|, who
showed that any conformally flat Euclidean hypersurface of dimension
three with three distinct principal curvatures carries local principal coor-
dinates w1, us, ug with respect to which the induced metric can be written

as
3

ds® = Z v?du%,
i=1

with the Lamé coefficients v;, 1 < ¢ < 3, satisfying the Guichard condition,
say, v3 = v? +v2. Then he used the conformal invariance of this condition
to associate with each such hypersurface a Guichard net in R3, that is, a
conformally flat metric on an open subset of R? satisfying the Guichard
condition, which is unique up to a Moebius transformation. He also proved
in [H-J| (see also Section 2.4.6 in [H-J;]|) that each conformally flat 3-
metric satisfying the Guichard condition gives rise to a unique (up to
a Moebius transformation) conformally flat hypersurface in R* (see also
[CT4]).

Improving earlier work by Suyama (see [Sul|, [Su2|), Hertrich—Jeromin
and Suyama [H-JS| gave a classification of conformally flat hypersurfaces
whose associated Guichard nets in R? are cyclic, that is, one of their co-
ordinate line families consists of circular arcs. These include the so-called
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conformal product conformally flat hypersurfaces, which are the images
under Moebius transformations of R* of either cylinders over umbilic-free
surfaces of constant Gauss curvature in R?, cones over umbilic-free surfaces
of constant Gauss curvature in S? or rotation hypersurfaces over umbilic-
free surfaces in a half-space Ri of R3, regarded as the half-space model of
H?3, which have constant Gauss curvature with respect to the metric in-
duced from the hyperbolic metric on Ri. Conformal product conformally
flat hypersurfaces in R* have been characterized in [DT1| as those confor-
mally flat hypersurfaces with three distinct principal curvatures in R* such
that the curvature lines correspondent to one of its principal curvatures
are arcs of circles or straight lines in R?.

A class of noncyclic conformally flat hypersurfaces was subsequently
studied in [H-JSs|, whose associated Guichard systems are of Bianchi-
type, that is, its coordinate surfaces have constant Gauss curvature. How-
ever, until not very long ago, all the known explicit examples of conformally
flat hypersurfaces of R* with three distinct principal curvatures belonged
to the class of cyclic conformally flat hypersurfaces. More recently, a Rib-
aucour transformation for the class of conformally flat hypersurfaces of
R* with three distinct principal curvatures, based on the characterization
of such hypersurfaces obtained in [CT;|, was developed in [CTs|, which
allowed to construct explicit noncyclic examples (see also [H-JSUY]| and
[STY).

One of the goals of this article is to give a simple proof of an alterna-
tive description of cyclic conformally flat hypersurfaces of R*. This will
be derived as a consequence of a classification of independent interest of
the conformally flat hypersurfaces of dimension three with three distinct
principal curvatures of R%, S3 x R and H? x R with the property that the
tangent component of /0t is a principal direction at any point. Here 0/0t
stands for either a constant unit vector field in R* or the unit vector field
tangent to the factor R in S* x R and H? x R.

First recall that there exists a conformal diffeomorphism ®: S*~! x
R — R™\ {0} given by (z,t) ~ e'z. Similarly, there is a conformal
diffeomorphism

U:H" x S ¢RI x R? —» R\ R
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onto the complement of a subspace R”~! ¢ R™*! given as follows. Choose
a pseudo-orthonormal basis eg,eq,...,en_1,e, of the Lorentzian space
R with (eg,e0) = 0 = (en,en), {eo,en) = —1/2 and (e;,e;) = 6ij
for1<i<n—1and 0<j<n. Then

1
U(zoeg + ... + Tpen, (Y1,y2)) = ;0(1:1, e Tp—1, Y1, Y2).

Composing ¥ with the isometric covering map
m:H' x R — H" x St : (z,t) = (, (cost,sint))
produces a conformal covering map ®: H"” x R — R?*1\ R"~! given by

1
O(zoeo + ...+ zpep,t) = m—(xl, ey Tp_1,c081,sint). (1.1)
0

In what follows, Q3 C R5! denotes S if € = 1, R3 if ¢ = 0 and H3 if
e=—1,withpy=0ife=00ore=1,and p=1if e = —1. Given a surface
h: M? — Q3 let hy: M? — Q3 C Riﬂe‘ be the the family of its parallel
surfaces, that is,

hs(z) = Ce(s)h(x) + Se(s)N(z),

where N is a unit normal vector field to A and the functions C, and S, are

given by
coss, ife=1 sins, ife=1
Ce(s)=<% 1, ife=0 and  Sc(s)=1 s, ife=0
coshs, if e =—1 sinhs, if e = —1.

The classification of the conformally flat hypersurfaces of dimension
three with three distinct principal curvatures of R%, S3 xR and H3 xR with
the property that the tangent component of 9/0t is a principal direction
at any point is as follows.

Theorem 1. Let h: M? — Q2 be an umbilic-free linear Weingarten sur-
face, i.e., the extrinsic curvature Kepe and the mean curvature H of h
satisfy

PKepi +QH =R (1.2)
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for some P, Q, RER. Set P=P+¢eR, Q=Q, R=P —cR+4 and
A =2(e2 = 1)R, let I C R be an open interval where

0 < r(s) = %(FCE(ZS) +0S.(25) + AS2(s) + ) < 1

and let a: I — R be the smooth function on I given by

B S 1 —=r(s) . s
a(s)—/sowr(s) ds, spe€l. (1.3)

Then the map f: M?> x I — Q3 xR C ]Rﬁﬂel given by
f(z,8) = hs(z) + a(s)0/0t, (1.4)

where 0/0t denotes a unit vector field tangent to R, defines, on the open
subset M> C M? x I of its reqular points, a conformally flat hypersurface
with three distinct principal curvatures such that the tangent component of
0/0t is a principal direction of f at any point.

Conversely, any conformally flat hypersurface f: M3 — Q2 x R C
R;‘f'e' with these properties is given locally either in this way or as a vertical
cylinder over an umbilic-free surface h: M? — Q3 with constant Gauss
curvature Ko # €, in which case M? splits as a Riemannian product M3 =
M? x I, where I C R is an open interval, and f is given by

f(z,s) = h(x)+s0/0t. (1.5)

Regarding h as an isometric immersion into Rff'e', its normal space at
each point © € M? is a vector space whose dimension is 2 if € = 0 and
3 otherwise, and which is either Lorentzian or Riemannian, according to
whether ;= 1 or u = 0, respectively. If € = 0, it is spanned by the position
vector h(x), the normal vector N(x) to h in Q2 at x and the constant
vector field 0/0t. If € = 0, it is spanned by last two vectors. Notice that
these give rise to parallel vector fields along h with respect to its normal
connection. For a fixed # € M2, for € # 0 (respectively, ¢ = 0), we can
regard s — f(x,s) = Ce(s)h(z) + Se(s)N(z) + a(s)0/0t (respectively,
s — f(x,s) = sN(x) + a(s)0/0t) as a curve in the normal space of h
at z, which is contained in a cylinder Q! x R in that normal space when
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e # 0. Thus f(M) is generated by parallel transporting such curve along
h with respect to its normal connection. In case f is a vertical cylinder
over h, then f(M) is generated by parallel transporting the straight line
s+ s0/0t along h with respect to its normal connection.

We derive from Theorem 1 the following alternative classification of
cyclic conformally flat hypersurfaces of R%. In the next statement, the
map ® denotes either the conformal diffeomorphism ®: Q2 x R — R*\ {0}
if ¢ = 1, the conformal covering map ®: Q2 x R — R*\ R? if e = —1 or
the isometry ®: Q3 x R — R* if ¢ = 0.

Theorem 2. Let f: M3 — Q2 x R be either a vertical cylinder over an
umbilic-free surface h: M? — Q3 with constant Gauss curvature Ko # e,
or a hypersurface as in the direct statement of Theorem 1. Then F =
Zo®of: M3 — R*, where T is either the identity map or an inversion with
respect to a hypersphere in R4, is a cyclic conformally flat hypersurface.

Conversely, any cyclic conformally flat hypersurface of R* is locally
given in one of these ways.

In the classification of cyclic conformally flat hypersurfaces given in
[H-JS|, the authors deal with hypersurfaces in the sphere $*, taking into
account the invariance of the conditions involved under conformal dif-
feomorphisms between the ambient space forms. Then they use a Moe-
bius geometric technology to show that any such hypersurface can be pro-
duced, up to such a conformal diffeomorphism, from a hypersurface in some
space form that is given in terms of a family of parallel linear Weingarten
surfaces and a solution of a certain pendulum-type ordinary differential
equation. Our approach is somewhat more elementary in nature, and the
parametrization of cyclic conformally flat hypersurfaces f: M3 — R* pro-
vided by Theorems (1) and (2) only requires a single integration.

Theorem 2 also yields the following characterization of cyclic confor-
mally flat hypersurfaces. Let x1,..., 2,41 denote the standard coordinates
in R**! and let Oz, be a unit vector field tangent to the z;-coordinate curve,
1 <i<n+1. It is well known that the Lie algebra of conformal Killing
vector fields in R™™! has dimension 3(n + 2)(n + 3) and is generated by
the constant vector fields 0, 1 < i < n + 1, the Killing vector fields
Kij = 2i0x; — xj02,, 1 < i # j < n+ 1, generating rotations around the
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linear subspaces R"~! of R**! given by z; = 0 = xj, by the radial vector
n+1

field R = Z x;0z,, and by the vector fields
i=1

1 )
Co= (@ =3 o)+ ) w0, 1<i<n+1.
J#i J#i

Corollary 3. A conformally flat hypersurface f: M3 — R* with three
distinct principal curvatures is cyclic if and only if the tangent component
of one of the above conformal Killing vector fields is an eigenvector field
correspondent to one of its principal curvatures.

Remark 4. According to Theorem 2, any cyclic conformally flat hyper-
surface f: M3 — R* is given, by the construction of Theorem 1, as an
evolution of a one-parameter family of surfaces, with respect to the pa-
rameter s of the curvature lines correspondent to one of the principal
curvatures, issuing from a linear Weingarten surface in Q2 at a fixed value
of s. As pointed out to us by one of the anonymous referees, it was shown
in [BH-JS] and [Su3| that any generic conformally flat hypersurface can
also be produced in a suitable way as an evolution of surfaces with respect

to the parameter s issuing from certain analytic surfaces in S3.

2 Proof of Theorem 1

It is well known that a three-dimensional Riemannian manifold M3 is
conformally flat if and only if its Schouten tensor L = T'— (3/2)sI satisfies
the Codazzi equation

(VxL)Y = (VyL)X (2.1)

for all X, Y € X(M) (see, e.g, [DT3|, p. 545), where (VxL)Y = VxLY —
L(VxY). Here T is the endomorphism associated with the Ricci tensor
and s is the scalar curvature.

Assume that M3 carries local coordinates x1, 2,3 with respect to

which its Riemannian metric can be written as

272,232 | 27 2
g = vidx] + vydz; + vidas,
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where v1, v9 and vg are smooth functions. In the sequel, we denote by
1; the partial derivative of a function v with respect to x; and by 1;; its
second order partial derivative 0,0, jzp. Denote

¢9 =10 1 <istj<s, (2.2)

%

where v;; denotes the derivative of v; with respect to x;. Let 01, 02,05 be
the coordinate vector fields and set X = U];l@k, 1 < k < 3. Then the
curvature tensor R of g satisfies (see [DT9|, p. 20)

R(9:,0) Xk = ((67); = "167) X; = ((6); = 6507 )Xo, (23)
for1<i#j#k#1<3, and
—viv;Kij = = (R(93,0)) X, Xi) = (¢)i + (&7"); + 69,

for 1 <i¢# j#k#1i <3, where K;;, 1 < i # j < 3, is the sectional
curvature along the plane spanned by 0; and 0;. Now suppose further that

v=¢" vy=¢” and v3=1
for some smooth functions a and 3 satisfying
agg +ag(a— )3 =0 and pi3— Pfi(a—F)3 =0. (2.4)
Notice that the preceding equations are equivalent to (¢*)3 = 0 for 1 <
i # j < 2. Then Eq. (2.3) implies that R(0s,0;)X; =0 for 1 <i# j <2,
and it follows that L9; = ¢;0;, 1 < i < 3, where

201 = K19+ Ki13—Ka3, 20y = K12+Ko3—Ki3 and 203 = K13+ Ko3— K.

Define 9; = f;v;, 1 < ¢ < 3. Then L satisfies the Codazzi equation
(2.1) if and only if

hig =y, 1<i#j<3.

Using this, a straightforward computation yields the following lemma.
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Lemma 5. The metric
g = *dx} + ¥ drd + da?, (2.5)

with the smooth functions a and B satisfying (2.4), is conformally flat if
and only o and B satisfy the partial differential equations

(e72P(aoe + (a2)? — a2fa))2 + (€72 (Bi1 + (B1)? — 1 B1))2

(2.6)
—(aiz3 + (a3)? + B3z + (B3)? — asBs)2 = 0,

(672 (g2 + (a2)? — a2B2))1 + (e72*(B1 + (B1)* — i)

2.7
—(as3 + (a3)? + Bsg + (B3)? — asBs)1 =0 @7)

and

e 2P (a2 + (a2)? — aafa)s + (e72*(B11 + (B1)? — a1B1))s
+(a3Bs + Bz + (B3)* — ass — (as)?)s (2.8)
= 2(as3 + (a3)? — a3fBs) B3 — 2e72%(B11 + (B1)? — a1 81) Bs.

Proof of Theorem 1: First notice that if f: M? x I — Q2 x R is a vertical
cylinder over h: M? — Q2, then the metric induced by f is the Rieman-
nian product metric do? = g 4 ds?, where ¢ is the metric induced by h.
It is well-known that such a metric is conformally flat if and only if g has
constant Gauss curvature K. Since 9/0; is a principal direction with prin-
cipal curvature identically zero, f has three distinct principal curvatures if
and only if h is a surface with nowhere vanishing extrinsic curvature, i.e.,
Ky # e

Now, by Theorem 1 in [Tos|, if f: M? x I — Q3 x R is given by
(1.4) in terms of an arbitrary surface h: M? — Q32 and a smooth function
a: I — R with positive derivative, then the tangent component of 9/0t
is a principal direction at any point of the restriction of f to the subset
M3 C M? x I of its regular points. Conversely, any hypersurface f: M3 —
Q2 x R with this property, and such that d/9t is nowhere tangent to f(M),
is given in this way. Therefore, Theorem 1 will be proved once we show
that such a hypersurface f has three distinct principal curvatures and the
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metric it induces on M? is conformally flat if and only if h and a are as in
the statement.
The metric induced by f on M?3 is

do® = b*(s)ds® + gs,

where b(s) = /14 (a/(s))? and g5 is the metric induced by hs.
For some of the computations that follow, it is convenient to have in
mind the following relations between the functions C, and S.:

C%(s) + 652(3)
Cc(2s) = C?(s) — 652( ) and Sc(2s) = 2C:(s)Sc(s),
Cl(s) = —€Sc(s) and S/(s) = Ce(s).

Let N be a unit normal vector field along h and let Ny be the unit
normal vector field along hs given by Ng(z) = CcN(z) — eSch(x). Then

les) = =GN @) + 550

defines a unit normal vector field along f, and the shape operators A of
f at (z,s) and A% of hs at = with respect to n and Nj, respectively, are
related by

a’(s) . 2 a//(s)
AX = — A’X, if X € T,M*, and Ad, =
b(s) . < o b3(s)

where Js is a unit vector field tangent to I. Thus f has three distinct

0, (2.9)

principal curvatures at (x,s) if and only if z is not an umbilic point for
hs, and hence for h.

Under the assumption that h has no umbilic points, there exist locally
principal coordinates x1,xs on My with respect to which the first and
second fundamental forms of h are

I = vida? +vides and IT = Vivyde? + Vavodal,

respectively. Therefore the first fundamental form of hg and its second
fundamental form with respect to N, are given, respectively, by

I8 = (v)%da? 4+ (v5)2%dz and II° = Vivida? + Vvida?,
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where
v = Cev; — S V; and V® =eSev; + CV; = —vf’3, 1<i<2.

Notice that for all s € I we have

Ve . .
=B 1<i#j<2, (2.10)

S

vV ‘ .

and that k] = —, 1 < i < 2, are the principal curvatures of hs. It follows
Ui

easily that the extrinsic curvature and mean curvature

1 s s
eact = k1k2 Vl ‘/2 and H® = 5 <Vv1 + ‘/2> (211)
vs

S S
Vi3 U1 Vg

of hg are related to the extrinsic curvature K., and the mean curvature

H of h by

s = 252(3) + €Se(28)H + C%(8) Keut
et T 02(s) — Se(28)H + S2(5) Keut
Se(25) 4+ 2C:(2s)H — Sc(28) Kext

H = ool — S BT SR

Since 0y is a principal direction of f by the second equation in (2.9),
then x1, 9,23 := s are local principal coordinates for f with respect to
which its induced metric is given by 5?3, where § has the form (2.5) with

Ui v5

a__ Y1 B _ Y2
== d = =, 2.12
e , oand e b (2.12)

It follows from (2.10) that the functions ¢%, associated with the metric
g by means of (2.2), satisfy (¢¥)3 =0 for 1 < i # j < 2. Thus (2.4) holds
for e and . We now investigate when a and f§ also satisfy (2.6), (2.7)
and (2.8).

In terms of the function p defined by

p = e Pamn+ (a2)? — azf) + e 2*(Bi1 + (B1)* — a1 B),

) . , (2.13)
(a3 + (a3)? 4 B3z + (B3)* — asfs) ,
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Egs. (2.6), (2.7) and (2.8) are equivalent to

pi = 0,1<4i<2,
ps = —2B3p—2B3(Bss + B2) — 2(Bss + (83)?)3

Differentiating (2.12) we obtain

(2.14)

az = ¢?1ef 7 and By = ¢!,
hence
B+ B1(B —a) = o2 and am + as(a — B)2 = ¢3'e” . (2.15)

Therefore, the sum of the first two terms on the right hand-side of (2.13)
is

(atB) (421, 412 b*
e (¢ +¢1):_v5v

S(VPVS + evfug) = —b* (Kl + ),
172

where the first equality follows from the Gauss equation of hg, bearing in
mind that ¢¥ = ¢¥ for 1 <i # j < 2.
On the other hand, setting B = logb we have

Vls b/
— _ 4 _ — _ k.s BI
as < ’Uf + b> ( 1 + )7
Vs 2 % b 2
= o (L) () v
v} b b
Vs Y (2.16)
g — 72 — — k;S B/
B3 ( ,US + b> ( 2 + )’

s\ 2 1" /N 2
P33 = —<e+<‘:§> +bb—<?)> ):—(e+(k§)2+B”).

It follows from (2.16) that
agz+(as)®+ a3+ (83)° — Baos = 2B'H® — K3, —2e—2B"+(B')*. (2.17)

From (2.13), (2.15) and (2.17) we obtain p = 2B” — (B’)? — ee?5 4+ 2¢ — ¢,
where
p(x1,22,23) 1= (P — 1) K¢

ext

+2B'H". (2.18)
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Using the last two equations in (2.16), the equations in (2.14) are equiva-

lent to )
o = 0l=1=2 (2.19)
o3 = 2k30+2B'(c+ ),
where
0 =ece?®+ B —e+yp—2B)~ (2.20)

We have shown so far that, for a hypersurface f: M?x1 — Q3 xR given
by (1.4) in terms of an umbilic-free surface h: M? — Q2 and a smooth
function a: I — R, the metric induced by f on the subset M3 C M? x I of
its regular points is conformally flat if and only if the preceding equations
are satisfied. We now show that this is the case if and only if h and a are
as in the statement.

Suppose first that Egs. (2.19) hold. The first two equations imply that
i depends only on x3 = s. Let us compute the derivative of ¢ with respect
to 3. Differentiating (2.11) with respect to 3, and using that v 3 = —V;*
and Vs =ev;, 1 <1 <2, gives

(KZ,.)s =2H®(e+ K

e ext

) and (H®)3 =e+2(H*)? - K2,
The preceding relations yield
03 = 2H®0 + 2B'(e + ). (2.21)

Comparing (2.19) and (2.21) gives 0 = (k§ — k5)0. Since kj # k5 at any
point, we conclude that 6 is identically zero. Therefore, the functions ¢
and B satisfy the system of ordinary differential equations

¢ —=2B'(e+¢) = 0,
2.22
{ €+2(B)? —e*B-B"—p = 0. (222)

The first equation of (2.22) implies that
o= —¢ (2.23)
for some A € R. Substituting this formula into the second one, it becomes

(6_23)” +dee 2P = 2(e+ N),
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whose general solution is

e 2B(3) — 01 0L (213) + 25 (223) + (1 — )AS2(x3) + e+ )

(2.24)

for some c1,ca € R. Since B = logb, the above equation is equivalent to

e(e+ )

(1+ (a7 = ¢1Cc(223) + 28 (223) + (1 — )AS? (23) + 5

. (2.25)
Evaluating (2.18) at 23 = 0 by using (2.23) and (2.24) implies that
[e(e + A) + 2c1 — 2] Kear + (de2) H = (e + A) + 2ecy — 2.

Set
P=¢le+N)+2c1—2, Q=4c; and R=e*(e+ )+ 2ec; — 2.

Since c1, co and A € R are arbitrary, we see that also P,Q, R € R are
arbitrary, and now (2.25) implies that a is given as in the statement.

Conversely, let h: M? — Q2 be an umbilic-free linear Weingarten
surface, let a: I — R be a smooth function on the open interval I C R
as in the statement and let f be given by (1.4). We must show that the
function ¢, defined by (2.18) on the open subset M3 C M? x I of regular
points of f, with B = logh and b = (1 4 (a/)?)'/?, satisfies the three
equations in (2.19).

In view of (2.11), Eq. (2.18) is equivalent to

P(&) Keur + Q) H = R(x), (2.26)
where © = (21,22, 23 = s) and
P(z) = (2P —1)C2(s) — B'Sc(2s) — p(x)SE(s),
Q(z) = €(e?B —1)8(25) + 2B'Cc(2s) + ¢(x)Se(25), (2.27)
R(z) = o(x)C?(s) — 2(e*P —1)S82(s) — eB'S.(25).

€

4e72B() = PC.(25) + QSc(2s) + AS%(s) + R,
4B'(s)e 2B6) = €PS.(2s5) — QC.(25) — ASc(s)Ce(s),



202 Joao Paulo dos Santos and Ruy Tojeiro

with P=P+¢eR, Q=Q, A =2(¢? —1)R and R = P — eR + 4, we have
4e2BE p(g) = —2P — S%(s) (6(46—%(8) +4-2R)— A+ 46—2B<S>¢(x)> ,
4e72BG)Q(x) = —2Q + S.(2s) <€(26_4B(8) +4—-2R)— A+ 4e_2B(s)cp(x)> ,
4e72BOR(z) = —2R + C2(s) (6(26_43(8) +4-2R)— A+ 46—219(8)@(9;)) .
The above equations, together with Eqgs. (1.2) and (2.26), imply that
(e(4e™2BE) 44 2R)— A+de 2P () (S?(5) Kewt—Se(25) H+C2(s)) = 0.
We claim that the function

€(4e728) 14— 2R) — A + 4 2BG)p(2)

is identically zero. Let us suppose, by contradiction, that there is a point
xp where such function is nonzero. Then S?(s)Key — Sc(25)H + C2(s) is
identically zero in an open neighbourhood €2 of x(, hence in 2 we have

Sz(s)Ke:Et —S(2s)H = _052(5)7
PK...+QH = R.

Since Ky and H depend only on (x1,z2), the determinant QS?(s) +
PSc(2s) must be identically zero in €2, which is a contradiction. Therefore
A62B(s)

4

o(z) = % ((E— 2)e2B() _ 2) +

for all z € M3. We conclude that ¢; = 0, 1 < i < 2, and @3 = (R —
2)e?B()B/(5). On the other hand, the function @ introduced in (2.20)
satisfies

27280 = 2¢(1 — e728) + 2¢7 2B + 2e72B(B" — 2(B')?),

— A
=2(1—e2B)—¢2e 2B +2-R) + 3~ (e 2B,
—2B —-2B = A g = A
=2e(1 —e ") —€(2e —|—2—R)—|—§—|—(4ee _ER_§)’
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Therefore, § = 0. Since

o Ae2B
2B (e+¢) = B’<26+6((R—2)623—2)+ 5 ),
Ae?BB’
5
the third equation in (2.19) is satisfied. O

= ¢(R—2)e*PB +

3 Cyclic conformally flat hypersurfaces

Let F: M3 — R* be a conformally flat hypersurface with three dis-
tinct principal curvatures A1, A9, A3 and corresponding unit principal vec-
tor fields ej, ez and es, respectively. E. Cartan proved (see |[La|, p. 84)
that the conformal flatness of M? is equivalent to the relations

(Veej ex) =0 (3.1)
and
(/\j —Ap)ei( i) + (N — )\k)ei(/\j) + ()\j —Xi)ei(Ag) =0, (3.2)

for all 1 < i # j # k # 1 < 3. It follows from Codazzi’s equation and (3.1)
that

Veei =Y (A — ) lej(Ne. (3.3)
J#
Proposition 6. The following assertions are equivalent:

(i) The integral curves of e1 are extrinsic circles;

(ii) The functions p; = ijl(:\)l\i, 2 < j <3, satisfy ex(p;) = 0.

(1ii) The relation
(A1 = Aj)ejer(Ar) = 2e1(Ar)e;j (A1)
holds for 2 < 7 < 3.

(iv) The image by F of each integral curve o of e1 is contained in a
two-dimensional sphere whose normal spaces in R* along F(o) are
spanned by (the restrictions to F(o) of) the vector fields Fyes and
F*eg.
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(v) The image by F of each leaf of the distribution spanned by es and es
is contained in a hypersphere (or affine hyperplane) of R4;

Proof. The integral curves of e; are extrinsic circles if and only if
<Velv61€1,€j> = O, 2 S j S 3.
Using (3.1) and (3.3) we obtain

<V61v61617 ej> = € <V61617 ej> - <V61617 v€16j>
= e(pj), 2<j<3,

hence (i) and (i7) are equivalent. The equation e;(p;) = 0 can be written

er(A —Aj)ej(A1) = (A1 — Aj)erej(M), 2<j <3
We have
ejer(A1) = eiej(Ar) + [ej, ex](Ar)
erej(A1) + (Ve e1) (M) — (Veye5) (A1)
= erej(M) +(Veser ) €j(M) = (Verej,en) e1(M)
= eej(M\) — )\€]1<—)\J)\)1 ej(A1) + ;f(_)\l)\)j€1()\1).

Thus, for 2 < j < 3, the equation e;(p;) = 0 reduces to the relation in
itern (44).
Now, for 2 < j < 3, using (3.3) we obtain

Ve Frej = F.Ve e = — (Ve,e1,¢5) Fuer = —pjFyer = — (Fuej, €) Fuen,

where £ = poFies + p3Fies. The equivalence between the assertions in
items (7i) and (iv) follows.

Finally, we prove the equivalence between the assertions in items (i)
and (v). First notice that the normal spaces of the restriction f, of f
to a leaf o of the distribution spanned by ey and eg are spanned by the
restrictions to f(o) of f.e; and the unit normal vector field N to F. Since
e1,e9 and eg are principal directions of F', and in view of (3.1), it follows
that F, has flat normal bundle, with the restrictions of e and eg to o as
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an orthonormal diagonalizing tangent frame and corresponding principal
normal vector fields

n, = <Vej€j,€1>F*€1+)\jN

)\.
_ aly) Foe1 + AN, 2<j<3.
X — A1

Using (3.2) we obtain

pom o (200800 Y g

A=A As— N
= (A2 —As)(pFier + N),

where

o 61(>\1)
P e =2 —n)

Thus
( = Fie; — uN (3.4)

is an umbilical normal vector field to F|,, for it is orthogonal to 7y — ns,
and the assertion in item (v) is equivalent to ¢ being parallel with respect
to the normal connection of F|,. The latter is, in turn, equivalent to

ea(p) = 0 = e3(p).
Notice that e;(p) = 0, for 2 < j < 3, is equivalent to

(Aj=A1)(Ak—Ar)ejer(Ar) = er(Ar)(ej (A —A1) (Ae—A1)+ej (Ae—A1)(Aj—A1)),

for 2 < k # j < 3. Using (3.2), the expression between brackets on the
right-hand-side is equal to

(A = Aw)ej(Ar) = e (A1) (A + A5 — 2A1) = 2¢;(A1) (A — Ag)-
Hence, the equation e;(p) =0, 2 < j < 3, reduces to the relation in item
(id). 0
4 Proof of Theorem 2 and Corollary 3

To prove Theorem 2, first notice that if f: M2 x I - Q3 xR C RﬁHe'
is a vertical cylinder over a surface h: M? — Q2 with constant Gauss
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curvature, then ® o f: M3 — R* is either a cylinder, a cone or a rotation
hypersurface over h, according to whether ¢ = 0, 1 or —1, respectively. In
other words, the compositions of ® o f with Moebius transformations of R*
are precisely the conformal product hypersurfaces referred to at the third
paragraph of the introduction.

Now let f: M2 x T — Q2 xR C R;‘}Hd be given by (1.4) in terms of
an umbilic-free linear Weingarten surface h: M? — Q2 and the function
a: I — R given by (1.3). By Theorem 1, the metric induced by f on the
subset M3 C M? x I of its regular points is conformally flat and f is a
hypersurface with three distinct principal curvatures such that the tangent
component of 9/0t is a principal direction of f at any point.

To complete the proof of the direct statement, it suffices to argue that
do f: M2 — R*is a cyclic conformally flat hypersurface, for the compo-
sition with an inversion in R?* clearly preserves both properties.

We must thus prove that, for each € M?, the curve v: I — M?3 given
by v(s) = (x, s) is a curvature line of ®o f, as well as an extrinsic circle, or
a geodesic, of M3. First notice that if : I — Q2 x R is given by ¥ = fo~,
then 4(I) is contained in the vertical cylinder S(R) x R in Q3 x R over
the geodesic 8 of Q3 normal to g at z, which intersects f(M) orthogonally
along v(I).

We argue separately for the cases e = 1, e = —1 and e = 0. If € =
1, then the image of the vertical cylinder S(R) x R under @ is a two-
dimensional subspace of R* that intersects ®(f(M)) orthogonally along
®(5(I)), for @ is conformal. Thus + is a curvature line of ® o f and also a
geodesic of M3 (see Proposition 9 of [To]).

If ¢ = —1, then the image of the vertical cylinder S(R) x R under
®: H? x R — R*\ R? is a two-dimensional sphere centered at the subspace
R? C R*, which intersects ®(f(M)) orthogonally along ®(¥(I)). There-
fore, in this case the curve = is a curvature line of ® o f that is an extrinsic
circle of M? (see again Proposition 9 of [To;]). The case € = 0 is similar
and easier.

To prove the converse statement, let F': M3 — R* be a cyclic con-
formally flat hypersurface. By Proposition 6, since the integral curves of
e1 are extrinsic circles, one has a family F of hyperspheres (or affine hy-
perplanes) that contain the images by F' of the leaves of the distribution
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spanned by eg and es, and a family G of two-dimensional spheres (or affine
subspaces) that contain the images by F' of the integral curves of e;, with
the property that each element of the former is orthogonal to every ele-
ment of the latter, and conversely. By Lemma 6 of [To;|, there exists an
inversion Z in R* that takes the families F and G, respectively, into fam-
ilies of hyperspheres (or affine hyperplanes) and two-dimensional spheres
(or affine subspaces) of one of the following types:

(i) a family of parallel affine hyperplanes and a family of orthogonal
affine subspaces;

(ii) a family of concentric hyperspheres and a family of affine subspaces
through their common center;

(iii) a family of affine hyperplanes intersecting along a two-dimensional
affine subspace and a family of two-dimensional spheres centered at
that affine subspace;

(iv) a family of hyperspheres whose centers lie in a straight line and a
family of two-dimensional affine subspaces intersecting along that
straight line;

(v) a family of affine hyperplanes intersecting along a straight line and
a family of two-dimensional spheres centered at that straight line.

Let ¢ be the vector field given by (3.4). In case (7), the vector field
7.( is collinear with the constant unit vector field e4 normal to the family
Z(F) of affine hyperplanes, thus the tangent component of e4 is collinear
with Z, Fye1, and hence is a principal direction of f =Zo F. In terms of
the orthogonal decomposition R* = R3 x R, with e4 spanning the factor
R, we Canwritefzéof, and hence F =T o ®o f, where ®: R3 x R —
R* is the standard isometry and f: M3 — R3? x R is a conformally flat
hypersurface with three distinct principal curvatures, having the property
that the tangent component of the vector field 9/0t = e4 is a principal
direction at any point.

In case (i), the vector field Z,( is collinear with the radial vector field R
along f = ZoF, thus the tangent component of R along f is collinear with
Z. f«e1, and hence is a principal direction of f . In other words, F =T o f ,
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where f: M3 — R* is a conformally flat hypersurface with three distinct
principal curvatures having the property that the tangent component of
the radial vector field R along f, that is, of the position vector field of
f, is a principal direction of f It follows that f ® o f, and hence
F=Tod®o f, where ®: S* x R — R*\ {0} is the conformal diffeomor-
phism given by W(x,t) = e’z and f: M3 — S3 x R is a conformally flat
hypersurface with three distinct principal curvatures having the property
that the tangent component of the unit vector field % is a principal di-
rection at any point, for the vector fields % and R are ®-related, that is,
D, (z,t) 2 = R(®(z,1)).

In case (iii) we assume that the affine subspace in the intersection of all
affine hyperplanes of the family Z(F) is, say, the subspace {(vo, y1, y2,¥3) :
yo = 0 = y1}. Then the vector field Z.( is collinear along f =7 o F with
the Killing vector field K in R* given by K(yo,y1,y2,y3) = (0, —ys3,%2).
Thus the tangent component of K along f is collinear with f*el =7.F.eq,
and hence is a principal direction of f. Now notice that K and the unit
vector field 3/0t tangent to the factor R in H? x R are ®-related, where
$:H? x R — ]R4 \ R? be the conformal covering map given by (1.1),
that is, ®,(z,t)2 5 = K(®(z,t)). It follows that f = ®o f, and hence
F = To®of, where f: M3 — H3 xR is a conformally flat hypersurface with
three distinct principal curvatures having the property that the tangent
component of the unit vector field % is a principal direction at any point.

In all three cases above, it follows from Theorem 1 that f: M3 — QxR
is either given by (1.4) in terms of a linear Weingarten surface h: M? — Q32
and a smooth function a: I — R given by (1.3), or it is a vertical cylinder
over a surface h: M? — Q2 with constant Gauss curvature Kg # e.

We now argue that cases (iv) and (v) can not occur. Let (yi,...,ya4)
be standard coordinates on R* and let ¥: R*\ R — H? x S? C R} x R3 be
the conformal diffeomorphism, with R = {(y1,...,y1) € R* : yo = y3 =
ys = 0}, given by

4
1
(Y1, Y2, Y3, Y1) = ———— | eg + y1e1 + v? | ea, (2,3, 94) |
V3 + 43 + i ; '

where eg, €1, €2 is a pseudo-orthonormal basis of R‘;’ with (eg,eq) = 0 =
<€2,62>, <€0,62> = —1/2 and <€1,€j> = (Slj, 0 S] < 2.
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If either (iv) or (v) holds, then f = WoZo F: M3 — H? x S? maps
each integral curve of e; into a slice H? x {z} or {z} x S? of H? x §?,
respectively. In the former case, f(z,s) = (a(s), h(zx,s)) for some smooth
maps a: I — R and h: M3 — S2. Since f,0; is orthogonal to f,X for any
X € T, M?, it follows that h does not depend on s. But then ®of =ZoF
would be a rotation hypersurface over the plane curve s — ®(a(s),h(z)),
for a fixed x € M?. Therefore Z o F, and hence also F, would have only
two distinct principal curvatures, a contradiction. Arguing in a similar
way also rules out case (v). O

Proof of Corollary 3: If F: M3 — R* is a cyclic conformally flat hy-
persurface, by Theorem 2 it is given by F = To ® o f: M3 — R* in
terms of a hypersurface f: M3 — Q3 x R as in the converse statement
of Theorem 1, where Z is either the identity map or an inversion with
respect to a hypersphere in R* and ® denotes the conformal diffeomor-
phism ®: Q2 x R — R*\ {0} if ¢ = 1, the conformal covering map
d: Q3 xR — R*\R? if € = —1 or the isometry ®: Q3 x R — R* if
e=0.

Since @ is a conformal diffeomorphism, the tangent component of 9/0t
is a principal direction of f at any point and 9/0t is ®-related to either
a constant vector field J,,, the radial vector field R or one of the Killing
vector fields KC;; in R*, according to whether € = 0, e = 1 or € = —1,
respectively, then the tangent component of one of those vector fields is a
principal direction of f = ® o f at any point. Finally, if Z is an inversion
with respect to a hypersphere in R*, then (a multiple of) the vector field
Oy, is Z-related to C;, whereas R is Z-related to (a multiple of) itself.
Therefore, the tangent component of either C; or R is a principal direction
of F=Zo®o f at any point.

Conversely, assume that F': M3 — R* is a conformally flat hypersur-
face with three distinct principal curvatures such that the tangent com-
ponent of one of the conformal Killing vector fields 0,,, R, K;; or C; is a
principal direction of f = ® o f at any point. We argue for C;, the other
cases being similar. Since (a multiple of) the vector field 0, is Z-related to
Ci, it follows that the tangent component of 0., is a principal direction of
f =7ZoF at any point. Let ®: R3 x R — R* be the isometry given by the
orthogonal decomposition of R* determined by d,,. Then F = Zo ®o f,
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where f: M3 — R? x R has the property that the tangent component of
the unit vector field /0t tangent to R is a principal direction of f at any
point. Thus F' is a cyclic conformally flat hypersurface by Theorem 2. [
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