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Abstract For the main quantum interference term of coher-
ent electronic transport, we study the effect of temperature,
perpendicular and/or parallel magnetic fields, spin-orbit
coupling and tunneling rates in both metallic grains and
mesoscopic heterostructures. We show that the Zeeman
effects determines a crucial way to characterize the quan-
tum interference phenomena of the noise for anisotropic
systems (mesoscopic heterostructures), qualitatively dis-
tinct from those observed in isotropic structures (metallic
grains).
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1 Introduction

A two-dimensional electron gas can provide a myriad of
possibilities for manipulating electronic degrees of freedom.
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Recent advances show that it is possible to control its spin,
orbital and charge degrees of freedom through magnetic
fields, and crystal asymmetries of two-dimensional quan-
tum dot (QD) structures [1–3]. Experimental realizations of
the QD can be metallic grains or mesoscopic heterostruc-
tures of various kinds. The statistical properties of the elec-
tronic transport in ballistic open QDs have been intensively
studied over the last decades [4, 5]. In such systems, the
conductance can be described by the Landauer formula and,
for QDs containing a large number of electrons, the ran-
dom matrix theory (RMT) provides an excellent statistical
description of the underlying chaotic electronic dynamics at
the Fermi energy [5, 6]. Such a control of the QD permits
studying confinement effects just as the quantum interfer-
ence between injected electrons [7]. External parameters
govern these quantum interferences, which is essentially
affected by the time-reversal (TRS) and spin-rotation (SRS)
symmetries of the universal quantum transport [8]. There
are three Wigner-Dyson universal ensembles, namely circu-
lar orthogonal ensemble (COE), which is characterized by
the presence of TRS and SRS (β = 1), circular unitary
ensemble (CUE), which has the TRS broken by external
magnetic field (β = 2), and circular symplectic ensemble
(CSE), which is characterized by both TRS and SRS bro-
ken by a spin-orbit interaction (β = 4). The finite fields
and/or finite spin-orbit coupling can generate a crossover
(intermediate case) between the universal classes of
Wigner-Dyson.

It is widely known in the literature that a perpendicu-
lar magnetic field breaks time reversal symmetry, leading
the QD from orthogonal to unitary ensembles. On the other
hand, the spin-orbit coupling breaks the spin rotational sym-
metry, making the crossover to the symplectic ensemble.
One of the main signatures of the spin-orbit coupling is the
presence of an anti-localization term in the conductance,
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i.e., an amplification of the signal in addition to semiclassi-
cal term [9, 10]. A magnetic field suppresses this quantum
interference correction and, in particular, the localization
signal [11]. In other studies, it was shown that the scat-
tering mechanisms with the combined effect of spin-orbit
coupling and Zeeman effect (caused by a magnetic field
parallel to the two-dimensional electron gas) can generate
a rich class of crossovers between regimes of localiza-
tion and anti-localization [12–14]. Therefore, the Zeeman
effect plays a role similar to a perpendicular magnetic
field [15].

Fluctuation properties of the nonequilibrium current
injected in QD indicate that just the average charge con-
ductance are not enough for a complete description of the
full quantum transport [2, 3]. In the limit of high temper-
atures, Johnson-Nyquist noise provides information on the
thermal fluctuations, a fingerprint of dissipative systems. On
the other hand, experimental measurements of noise at low
temperatures, also known as shot-noise, use tunneling rate
in the nonideal quantum transport [1], yielding important
information about the discrete process of charge transmis-
sion [16]. In mesoscopic systems, both noise sources are
present.

In the presence of only perpendicular magnetic field and
spin-orbit coupling, both the conductance and the shot-noise
power of a metallic grain and a GaAs-type heterostructure
are indistinguishable [11], i.e., have the same qualitative
behavior in its two main cumulants of the full counting
statistics, conductance, and noise. A metallic grain has a
spin-orbit coupling a (defined below) determined at the
atomic level. On the other hand, heterostructures have spin-
orbit coupling determined by its band structures (such as
in GaAs) or by a nonsymmetric confinement (such as in
GaAs/AlGaAs interfaces), depending on the parameters a

and a⊥ defined below.

Physical effects almost identical in seemingly different
systems invite one to raise questions concerning interfer-
ence phenomena in conductante and quantum noise for
anisotropic systems (mesoscopic heterostructures), qualita-
tively different from those observed in isotropic structures
(metallic grains). As we analytically show, the Zeeman
effect induced by a parallel magnetic field can estab-
lish such separation criterion. More specifically, the phe-
nomenological signal that distinguishes the two alluded
systems appears more strongly in the noise, and very weakly
in the conductance, only in the presence of the Zeeman par-
allel magnetic field. Another mechanism that can establish
the criterion, together with the Zeeman field, is the ther-
mal crossover proposed in [25] to suppress the depletion-
amplification effect in the interference correction of the
noise. The depletion-amplification effect is a change in the
signal (positive or negative) of the weak-localization term
in the noise determined essentially by barriers (tunneling
rates). With the combined effects, the two classes of systems
become distinguishable as the plots in Figs. 1, 2, 3, 4 and 5
will show.

The system to be studied is depicted in Fig. 1. It con-
sists of a chaotic quantum dot connected to two electron
reservoirs via ideal leads with a number of open channels.
The electron reservoirs have temperature T and electro-
chemical potentials μ1 and μ2 generating a potential dif-
ference eV . The entrance and exit tunneling rates through
the barriers are �1 and �2, respectively. The QD can
couple the spin and orbital degrees of freedom through
relativistic corrections owing to the band structure and/or
asymmetries in interfaces of heterostrutures and through a
parallel magnetic field in the two-dimensional gas. Mean-
while, for metallic grains, only atomic relativistic cor-
rections can couple spin and orbital degrees of freedom.
Quantum interference effects are considered for a QD of

Fig. 1 The figure exhibits a
quantum dot (QD) connected to
reservoirs (source and drain) of
electrons at a finite temperature.
To the quantum dot is applied
parallel and perpendicular
magnetic fields. The effect of all
fields generates an effective
amplification of the phase space
within the QD and can be
incorporated through a fictitious
stub connected to the QD
geometry
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Fig. 2 Ratio pwl/gwl between
“weak localization” (WL) terms
for noise and conductance as a
function of symmetric contacts

both types and, as we shall show, this differences is of
crucial importance for the noise, which exhibits interesting
Zeeman effects.

2 Scattering Theory of Quantum Transport

We consider the system depicted in Fig. 1, the standard set-
ting of a two-probe open quantum dot coupled by leads to
a source and to a drain electronic reservoir. We also assume
that the source (drain) reservoir is coupled to the quantum
dot by a lead that has N1 (N2) open modes (resulting from
perpendicular Schrödinger quantization on the leads). The
scattering matrix S describing the electron flow is given
by [5]

S =
(
r t

t ′ r ′
)
, (1)

here r (r ′) is the N1 × N1 (N2 × N2) matrix containing
the reflection amplitudes of scattering processes involving
channels at the source (drain)-coupled leads, while t (t ′) is
the N1 × N2 (N2 × N1) matrix built by the transmission
amplitudes connecting channels that belong to the source-
coupled lead to the modes at the drain-coupled lead (and
vice versa).

Fig. 3 Weak localization (WL) correction to shot-noise power term as
a function of perpendicular magnetic field

In the chaotic regime, the mean free path l and the linear
size of the dot L satisfy the relation l << L. The char-
acteristic time scale in this regime is τD , the time for the
electron to diffuse along the dot, also called dwell time. The
corresponding energy scale is known as Thouless energy
ET = �/τD . In the universal regime, we assume all the time
scales to be much greater than Ehrenfest time, that is, the
QD is sufficiently large to ensure the semiclassical regime.
In the universal regime, we calculate the conductance at zero
temperature and the noise at finite temperature. Firstly, at
zero temperature, the linear conductance G of an open QD
is given by the Landauer formula

G = 2e2

h
T with g = Tr

(
t†t

)
, (2)

where the factor 2 accounts for spin degeneracy and g is
the dimensionless conductance or transmission coefficient
of the electron with charge e, which depends on N1, N2, the
quantum dot geometry (see Fig. 1), the external fields, the
QD impurities, etc. We assume also the linear regime on the
Landauer approach, that is, we assume the validity of the
relation eV/(kBT ) << 1, i.e., the linear response regime.

We start [16] by considering the time-dependent current
Îγ (t) at lead γ , for γ = 1, 2. Within the framework of the
scattering theory for quantum transport, the current-current
correlation function can be written in the form [16]

〈δÎα(t)δÎβ (0)〉 =
∫

dw

2π
e−iwtSαβ(ω), (3)

where δÎα(t) ≡ Îα(t) + 〈Îα(t)〉 is the current fluctuation
around the mean value 〈Îα(t)〉. The Fourier transform of the
current-current correlation function, (3), namely Sαβ(ω), is
the noise, which for only a DC current can be written as
follows:

Sγ α(0) =
∑
ν,ρ

e2

h

∫
dε Tr

[
Aργ (ε)Aνα(ε)

]

× {
fν(ε)

[
1 − fρ(ε)

] + fρ(ε) [1 − fν(ε)]
}

(4)
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Fig. 4 Interference correction
for the noise as a function of
perpendicular magnetic field for
finite b

The matrix Aνα(ε) = 1α1ν − 1νS†(ε)1αS(ε) is the cur-
rent matrix, where S(ε) is the scattering matrix and fγ (ε)

represents the Fermi distribution function.
The scattering matrix S(ε) used to describe the meso-

scopic system is uniformly distributed over the orthogonal
ensemble, if the system has both time-reversal and spin
rotation symmetry, over the unitary ensemble, if only time-
reversal symmetry is broken by a intense external magnetic
field, or over the symplectic ensemble, if the spin rotation
symmetry is broken by a intense spin-orbit interaction [17].
We are interested in the correlation function for the currents
in leads 1 and 2 together. The scattering matrix is uniform
within an energy window in the vicinity of Fermi level.
Henceforth, we will calculate the noise for this correlation
function, i.e., the function S ≡ S12.

For kBT � eV , the current fluctuations are domi-
nated by the thermal Johnson-Nyquist noise resulting in
S = 4kBTG0Tr

(
tt†

)
, where G0 = e2/h is the quan-

tum conductance. On the other hand, for temperature much
lower than the bias tension, eV � kBT , the current fluc-
tuations are dominated by the shot-noise power, S =
G0

[
Tr

(
tt†

) − Tr
(
tt†

)2
]
. At finite temperature, both the

thermal noise and the shot-noise power contribute to the

fluctuations. The thermal crossover between the two kind of
noise can be obtained [18, 19] from (4)

S (kBT , eV )

4kBT G0
=Tr

(
tt†

)2+F(θ)

[
Tr

(
tt†

)
− Tr

(
tt†

)2
]
,

(5)

where t is the transmission block of S matrix and

F(θ) = θ coth (θ) , θ ≡ eV

2kBT
. (6)

Equation (5) is general and valid at any temperature in the
linear regime of quantum transport, including both the shot-
noise power and thermal noise. Equation (5) for the noise
S comprises all the scattering phenomena and is valid for
any S-matrix. In particular, we will consider ballistic chaotic
system, i.e., QDs for which the edges are random and
geometry becomes statistically irrelevant to the main cumu-
lants of the universal phenomena of quantum transport. In
the situation of universal transport, for our purposes, we
introduce a stub parametrization [20] to embody the collu-
sive effects of barriers and all pertinent decoherence fields.

Fig. 5 Quantum interference
term of noise as a function of
perpendicular magnetic field.
We fix �1 = 0.8, �2 = 0.9,
N1 = 30, N2 = 20, b⊥ = 5,
b = 10, and a = a⊥ = 0
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Fig. 6 Interference correction
for noise as a function of
magnetic field perpendicular

The stub is a fictitious small extension of the geometry
of the QD, which, equivalently to external fields, enlarge
the dwell time of the electron inside the QD. The stub is
depicted in Fig. 1. Effect of spin imposes a unitary scattering
matrix with quaternionic entries [8, 11, 15],

S = T U
(

1 −Q†RQU
)−1

T †, (7)

where U is a M × M unitary symmetric matrix taken
from Dyson’s circular orthogonal ensemble. M stands for
the number of resonances of the QD, while N = N1 +
N2 is the total number of open channels, also identified
with the order of the S-matrix. The Q-matrix is a projec-
tion operator of order (M − N) × M , while T of order
N × M describes the channels-resonances couplings (bar-
riers). Their explicit forms read Qij = δi+N,j and Tij =
diag

(
iδi,j

√
�1, iδi+N1,j

√
�2

)
. Decoherence parameters, in

the stub framework, are introduced through the quaternionic
(M −N)× (M − N) unitary matrix R, defined as

R
(
τB, τ

SO|| , τ SO⊥ , τZ, τZ⊥
)
= exp

[
−i

(H
M

+ iV 12

)]
,

(8)

where H ≡ H
(
τB, τ

SO|| , τ SO⊥ , τZ, τZ⊥
)

is a (M − N) ×
(M − N) quaternionic matrix carrying the relevant infor-
mation about the symmetry breaks. The decoherence time
scales, τB, τ

SO
|| , τ SO⊥ , τZ, τZ⊥ are associated, respectively,

with perpendicular magnetic field, direct terms of crys-
tals anisotropies, crossed term of crystal anisotropies, pla-
nar Zeeman field through spin-magnetic field coupling,
and isolated perpendicular Zeeman field through magnetic-
orbit coupling. Barriers are introduced by an (M − N)-
dimensional matrix V , which can be constructed from
the entries of matrix T . Universality of the stub method
requires that the limit M → ∞ be taken at the end of the
calculations.

The effective Hamiltonians H(τB, τSO) for metallic

grains (isotropic model) and H
(
τB, τ

SO
|| , τ SO⊥ , τZ, τZ⊥

)
for

heterostructure QD (anisotropic model) have already been

thoroughly discussed in the recent literature [15]. Our pre-
sentation will focus only on the most important aspects of
new results for conductance and for quantum noise in ther-
mal crossover. Random matrix description of the crossover
in the universal regime are applicable since time scales
are far greater then the electron transit time τerg , i.e.,
τB, τSO, τ

SO|| , τ SO⊥ , τZ, τZ⊥ � τerg . The validity of the stub
model is guaranteed by the requirement that both scales are
of the order of the inverse mean level spacing, �, consider-
ing also its level broadening due to the presence of barriers.
We may thus introduce the following dimensionless param-
eters to characterize the intensity of symmetry breaking in
the system

x2 ≡ 2π�

τB� , a2 ≡ 2π�

τSO� , a2⊥ ≡ 2π�

τSO⊥ � , (9)

b2 ≡ 2π�

τZ� , b2⊥ ≡ 2π�

τZ⊥� . (10)

The random matrix models for the effective Hamiltonians
then follow directly from general symmetry considerations.
They are given by

Hiso = ix X 12 + i a√
2

3∑
i=1

Ai σi, (11)

for metallic grains, and

Haniso = ix X 12 + ia⊥ X σ3 − �b · �σ

+ b⊥ B σ3 + i a

2∑
i=1

Ai σi . (12)

for ballistic quantum dots patterned in GaAs heterostruc-
tures [15]. In the above equations, X and Ai (i = 1, 2, 3) are
real antisymmetric matrices, B is a real symmetric matrix
of dimension (M − N) × (M − N), and σi are Pauli
matrices. The matrices are uncorrelated and its entries are
independent Gaussian random numbers.
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3 Ensemble Averaged Quantum Conductance
and Quantum Noise

We start by studying QDs at zero temperature, for which
(3) yields the shot-noise power p = S/G0 = Tr

(
tt†

) −
Tr

(
tt†

)2
. Below, we will study the quantum noise in

thermal crossover and hence the asymptotic limit of the
Johnson-Nyquist noise. We perform a diagrammatic per-
turbative expansion of the ensemble averaged conductance,
〈g〉 = 〈

Tr
(
tt†

)〉
, in inverse powers of N and M . The first

term contributing to 〈g〉 is obtained by adding ladder-type
diagrams [21–23]. To perform the trace over the chan-
nel indices, we use the following identity Tr

(
R ⊗ R†

) =
(M −N1�1 −N2�2) 12 ⊗ 12. Selecting and adding the
ladder-type diagrams and using the index D for this contri-
bution, we obtain

〈
Tr

(
tt†

)〉D =
∑
ρσ

{[Tr (C1)Tr (C2)]D}ρσ ;σρ , (13)

resulting in
〈
Tr

(
tt†

)〉D = 2G1G2/(G1 + G2) where
Gi = Ni�i , a semiclassical Ohm’s law with Gi anal-
ogous to a classical conductance in series with Gj �=i in
the absence of quantum interference terms. Notice that
this result for ladder-type diagrams does not depend on
the symmetries of the system or on the presence of exter-
nal fields, being valid for both isotropic and anisotropic
systems. Also Ci = WiT ⊗ W

†
i T

†, Tr(Ci) = Gi12 ⊗ 12,

D = [
M12 ⊗ 12 − Tr

(
R ⊗ R†

)]−1
, W1 is a (N1 + N2) ×

2(N1 +N2)-matrix constructed such as (W1)ij = 1 if i = j

and 0 if i �= j , W2 is a 2(N1 + N2) × (N1 + N2)-matrix
constructed such as (W2)ij = 1 if i = j + N1 + N2 and 0
if i �= j , in agreement with [15]. The tensor multiplications
must be understood, by means of the backward multiplica-
tion rule, [11, 15] as

(
σi ⊗ σj

)
(σk ⊗ σl) =

(
σiσk ⊗ σlσj

)
,

and the factor 2 is due to spin degeneracy.
The next term in the expansion is called the weak-

localization correction. It is composed of two contributions.
The first one, denoted δg1, is obtained from the ladder

diagrams by applying the following correction to the weight
[21–23] M−n −→ M−n − nM−n−1. We obtain

δg1 = −
∑
ρσ

{
[Tr (C1)Tr (C2)]D2

}
ρσ ;σρ , (14)

or, taking spin trace, δg1 = −2G1G2/(G1 + G2)
2 and,

again, the contribution is system independent.
The second contribution to the weak localization term

comes from crossed portions of Cooperon-type diagrams,
which are affected by the effective hamiltonian. We obtain

δg2 =
∑
ρσ

{
−

(
M−312 ⊗ 12

)
Tr [FL (T fTT T )] Tr [FR]

+ Tr [FL (T fUUT ) FR]}ρσ ;ρσ , (15)

where T = 12 ⊗ σ2, and

FL = C1 + Tr [C1]D
(
R† ⊗ R

)
, (16)

FR = C2 +
(
R ⊗ R†

)
Tr [C2]D, (17)

fUU = [
M12 ⊗ 12 − Tr

(
R ⊗ R∗)]−1

, (18)

fTT = (M12 ⊗ 12)Tr
(
R ⊗ R∗) fUU. (19)

The superscript ∗ denotes the quaternion complex conju-
gation. Using (8), the conjugation rules of quaternions and
taking the limit M −→ ∞, we obtain

f−1
UU =

(
GC + 3

2
a2

)
12 ⊗ 12 − a2

2

3∑
i=1

σi ⊗ σi, (20)

for the isotropic model and

f−1
UU =

(
GC + a2⊥ + 2 a2 + b2⊥

)
12 ⊗ 12

+ 2 a⊥ x(σ3 ⊗ σ0 − σ0 ⊗ σ3)+
(
b2⊥ − a2⊥

)
σ3 ⊗ σ3

+ i
−→
b . (−→σ ⊗ σ0 + σ0 ⊗−→σ )− a2

2∑
i=1

σi ⊗ σi, (21)

for anisotropic model with GC = G1+G2+2x2. Summing
(13), (14) and (15), we find the expressions (22) and (23)
for the average conductance for the isotropic and anisotropic
models, respectively,

〈
Tr

(
t t†

)
iso

〉
= 2

G1G2

G1 +G2

[
1 − (G1�2 +G2�1)

(G1 +G2)

(
1

GC + 2a2 − a2

GC(GC + 2a2)

)]
, (22)

〈
Tr

(
t t†

)
aniso

〉
= 2

G1G2

G1 +G2

[
1 − (G1�2 +G2�1)

2(G1 +G2)

(
1

GC + 2b2⊥ + 4a2

−
(
Gc + 2a2 + 2a2⊥

)2 − 2
(
Gc + 2a2 + 2a2⊥

) (
Gc + 2b2⊥

) − 16a2⊥x2 − 4b2

(
Gc + 2a2 + 2a2⊥

)2 (
Gc + 2b2⊥

) + 4b2
(
Gc + 2a2 + 2a2⊥

) − 16a2⊥x2
(
Gc + 2b2⊥

)
)]

.

(23)
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We compared graphically (22) and (23) and found that the
two have similar numerical behavior as a function of all
the crossover parameters between Wigner-Dyson ensem-
bles, including all the kind of Zeeman effects, even if the
forms of the (22) and (23) are completely different. Physi-
cally, quantum interference effects produced by QD’s quite
distinct from the fundamental point of view display the
same conductance averages. For universal conductance fluc-
tuations and its respective variances, [15] shows that the
Zeeman effect can qualitatively affect quantum properties of

the system. Now, we return to the problem of investigating
how the discrete nature of the charge, manifested in quan-
tum noise, can be affected by crossover fields of anisotropic
structures.

We use the diagrammatic perturbative expansion of the
average shot-noise power 〈p〉 = 〈

Tr
[
tt†

(
1 − tt†

)]〉
. We

can use in the crossover problem of a QD with barriers the
same diagrammatic topologies typical of pure orthogonal
class, which can be found in [23]. For the isotropic case, we
obtain the analytical and exact result of (24)

〈
Tr

[
tt†

(
1 − tt†

)]
iso

〉
= 2G1G2

G1G2(G1 +G2)+G3
1(1 − �2)+G3

2(1 − �1)

(G1 +G2)4

−4G2
1G

2
2(G1�2 +G2�1) [G1(1 − �2)+G2(1 − �1)]

(G1 +G2)4
×

[
1

G2
C

− 3

(GC + 2a)2

]

−G1G2(G1�2 +G2�1)
[
G1G2(G1 +G2)+G3

1(3 − 4�2)+G3
2(3 − 4�1)

]
(G1 +G2)5

×
(

1

GC

− 3

GC + 2a2

)
. (24)

As expected, (24) shows the total suppression of the quan-
tum interference term in the unitary ensemble, GC → ∞.
Notice also the signal inversion of the WL term when com-
paring the orthogonal ensemble, a → 0 and x → 0, with the
symplectic ensemble, a → ∞ and x → 0. The depletion-
amplification effect of the noise can also be seen in (24)
when the value of the barriers transits around �i = 3/4.

We also calculate the shot-noise power for anisotropic
QDs in the presence of dephasing fields and obtain a general
cumbersome and complicated equation, which will be stud-
ied graphically below. In particular, for b → 0 and for both
a = 0 and a⊥ → 0, respectively, we have the following
simplifications

〈
Tr

[
t t†

(
1 − t t†

)]
aniso

〉
= 2G1G2

G1G2(G1 +G2)+G3
1(1 − �2)+G3

2(1 − �1)

(G1 +G2)4 − 4G2
1G

2
2(G1�2 +G2�1) [G1(1 − �2)+G2(1 − �1)]

(G1 +G2)4

×
[

1[
GC + 2b2⊥

]2
− 1[

GC + 4a2 + 2b2⊥
]2

− 1[
G1 +G2 + 2a2 + 2(x − a⊥)2

]2
− 1[

G1 +G2 + 2a2 + 2(x + a⊥)2
]2

]

+G1G2(G1�2 +G2�1)
[
G1G2(G1 +G2)+G3

1(3 − 4�2)+G3
2(3 − 4�1)

]
(G1 +G2)5

×
[

1

GC + 2b2⊥
− 1

GC + 4a2 + 2b2⊥
− 1

G1 +G2 + 2a2 + 2(x − a⊥)2 − 1

G1 +G2 + 2a2 + 2(x + a⊥)2

]
(25)

〈
Tr

[
t t†

(
1 − t t†

)]
aniso

〉
= 2G1G2

G1G2(G1 +G2)+G3
1(1 − �2)+G3

2(1 − �1)

(G1 +G2)4 + 4G2
1G

2
2(G1�2 +G2�1) [G1(1 − �2)+G2(1 − �1)]

(G1 +G2)4

×
[

1

G2
C

+ 1[
GC + 2b2⊥

]2 + 4b2⊥
(
GC + b2⊥

)
[
G2

C + 2GCb
2⊥ + 4b2

]2

]

− G1G2(G1�2 +G2�1)
[
G1G2(G1 +G2)+G3

1(3 − 4�2)+G3
2(3 − 4�1)

]
(G1 +G2)5

×
[

1

GC

+ 1

GC + 2b2⊥
+ 2b2⊥

G2
C + 2GCb

2⊥ + 4b2

]
(26)
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The first terms (independent of the fields) of the sums in
the equations for the noise results from the diffusions. We
focus on the other terms of quantum interference correction
(WL) resulting from the cooperons. For the conductance,
we will denote all these terms simply by gWL and, for the
shot-noise power, we will denote all this terms of WL by
pWL. The (26) shows that only the perpendicular magnetic
field x, GC → ∞, suppresses the quantum interference in
shot-noise power, making the crossover among orthogonal
and unitary ensembles. Other dephasing fields may annihi-
late the quantum interference, but only in a combination.
Surprisingly, just this combined effect clearly distinguishes
the types of systems, isotropic or anisotropic, by means of
quantum interference.

More general physical situations require graphical stud-
ies which we consider henceforth. Figure 2 shows the ratio
pwl/gwl between “weak localization” (WL) terms for noise
and conductance in the case of symmetric contacts, �1 =
�2 = �. We varied � from opaque limit, � → 0, to the ideal
contact case, � = 1. We set a/

√
GT = 1, x/

√
GT = 0.5

e b = b⊥ = 0. One can see that the ratio does not show

a simple behavior in relation to the values of a⊥ and can
change in nontrivial ways the slope at the opaque limit, like
an anomalous ‘Fano’ effect. In this regime, the presence of
the Zeeman effect generates a depletion-amplification effect
of the shot-noise signal analogous to the previously men-
tioned effect generated by the barriers. We can also notice
that all curves tend to the same point in � = 1, show-
ing that only in this case the ratio does not depend of the
fields, despite the conjecture of [24] which shows that this
ratio does not depend on crossover fields, according to the
following equation:

pWL

gWL

= −
(
N1 − N2

N1 + N2

)2

. (27)

We show that the tunneling rates play a crucial role in vio-
lating the conjecture. In the relevant case of opaque limit,
when the number of channels Ni → ∞ and �i → 0
with Gi finite, for example, the ratio of the weak localiza-
tion correction of noise and of conductance exhibits peculiar
properties, as shown in Fig. 2 and according to the following
analytical equation

pWL

gWL

= 3G1 − 2G1G2 + 3G2

(G1 +G2)2
− 4G1G2

(G1 +G2)
(
GC + 4a2 + 2b2⊥

)

− 4G1G2

(G1 +G2)

[
3G2

1 + 4G1b
2⊥ + 12G1x

2 + 8a2⊥G1 + 8G1a
2 + 6G1G2 + 4b2 + 4a4⊥ + 4G2b

2⊥ + 8a2⊥a2

+ 8a2b2⊥ + 8a2G2 + 8G2a
2⊥ + 4a4 + 12x4 + 12G2x

2 + 8x2b2⊥ + 16a2x2 + 3G2
2 + 8a2⊥b2⊥

]

/
[
8a2b2 + 8a4⊥x2 + 8a4b2⊥ + 8b2a2⊥ + 8b2⊥a4⊥ − 16a2⊥x2b2⊥ + 16a2b2⊥a2⊥ + 16a2a2⊥x2 + 4b2⊥G1G2

+ 8b2⊥G1x
2 + 8b2⊥G1a

2⊥ + 8b2⊥G1a
2 + 8b2⊥G2x

2 + 8b2⊥G2a
2⊥ + 8b2⊥G2a

2 + 16b2⊥x2a2

+ 8a2⊥G1G2 + 8a2⊥G1a
2 + 8a2⊥G2a

2 + 4a4G1 + 4a4G2 + 8a4x2 − 16a2⊥x4 + 2b2⊥G2
1

+ 2b2⊥G2
2 + 8b2⊥x4 + 4a2⊥G2

1 + 4a4⊥G1 + 4a2⊥G2
2 + 4a4⊥G2 + 3G2

1G2 + 6G2
1x

2 + 4G2
1a

2

+ G3
1 +G3

2 + 8x6 + 12G1G2x
2 + 8G1G2a

2 + 16G1x
2a2 + 16G2x

2a2 + 3G1G
2
2

+ 12G1x
4 + 6G2

2x
2 + 4G2

2a
2 + 12G2x

4 + 16x4a2 + 4b2G1 + 4b2G2 + 8b2x2
]

− 4G1G2

(G1 +G2)

[
3G2

1 + 8G1b
2⊥ + 6G1G2 + 4a2⊥G1 + 8G1a

2 + 12G1x
2 + 4b2 + 8G2b

2⊥ + 12G2x
2 + 4b4⊥

+ 12x4 + 8x2a2⊥ + 4G2a
2⊥ + 3G2

2 + 16x2b2⊥ + 8a2⊥b2⊥ + 16a2b2⊥ + 16a2x2 + 8a2G2

]

/
[
−4b2b2⊥ − 4b2a2⊥ − 8b4⊥a2⊥ − 16a2⊥x2b2⊥ +

(
8a4⊥ − 12b2 − 16G2x

2 − 8b4⊥ − 16G2b
2⊥ − 16a2⊥b2⊥

− 32x2a2⊥ − 16G1b
2⊥ − 32x2b2⊥ − 8G1G2

− 16G1x
2 − 4G2

1 − 4G2
2 − 16x4

)
a2

+
(
−16b2⊥ + 16a2⊥

)
a4 − 4G1b

4⊥ + 8a6 − 8b2⊥G1G2 − 16b2⊥G1x
2 − 8b2⊥G1a

2⊥ − 16b2⊥G2x
2

− 8b2⊥G2a
2⊥ − 4a2⊥G1G2 − 8a2⊥x4 − 4b2⊥G2

1 − 4b2⊥G2
2 − 16b2⊥x4 − 2a2⊥G2

1 − 2a2⊥G2
2 − 3G2

1G2

− 6G2
1x

2 −G3
1 −G3

2 − 8x6 − 12G1G2x
2 − 3G1G

2
2 − 12G1x

4 − 6G2
2x

2 − 12G2x
4 − 4b2G1

− 4b2G2 − 8b2x2 − 8G1x
2a2⊥ − 4b4⊥G2 − 8b4⊥x2 − 8a2⊥x2G2

]
(28)



Braz J Phys (2014) 44:223–232 231

Taking the limit x → ∞, the (28) simplifies to the following
form

pWL

gWL

= 3G1 − 2G1G2 + 3G2

(G1 +G2)2
, (29)

showing that the perpendicular finite magnetic field also
plays an essential role in the violation of conjecture placed
in [24], amplified in combination with anisotropic and
Zeeman fields.

One of the main results is the complete separation of
the types of effects produced by the myriad of categories
of universal systems. For this purpose, Fig. 3 displays the
shot-noise WL term as a function of perpendicular magnetic
field. We fix typical values of �1 = 0.8, �2 = 0.9, N1 =
30, N2 = 20, and a/

√
GT = 0.2 for both isotropic and

anisotropic cases. Without loss of generality, we fix b → 0
and b⊥ → 0 in anisotropic case. We can ascertain that the
graphs of pWL for isotropic and anisotropic systems are
very similar when a⊥ → 0, making it difficult to differ-
entiate the physical quantum interference effects of the two
kinds of QDs. We can see that the two systems show com-
pletely different behavior in the presence of the Zeeman
effect that makes a⊥ finite for anisotropic structures.

Now, we focus on the study of thermal noise in the
crossover regime. As [25] indicates, in this regime, the
effect of depletion-amplification on the shot-noise power
is suppressed with the increasing of temperature, even in
pure Dyson ensembles. This invites us to ask what is the
combined effect of this suppression mechanism with the
Zeeman effect and other crossover fields in the characteri-
zation of the WL effects. We studied the thermal crossover
[25] replacing the equations for the average conductance
and shot-noise in the average of the (5). Again, the result
is a long and complicated equation. Without loss of gen-
erality, we study the relevant effects to the general noise
by means of graphs. Firstly, we studied the effect of par-
allel magnetic field by means of Fig. 4 which shows the
interference correction for the noise as a function of per-
pendicular magnetic field for finite parallel field b. We set
�1 = 0.8, �2 = 0.9, N1 = 30, N2 = 20, b⊥ = 5, θ = 20
(finite temperature), and a = a⊥ = 0 and seen subtle dif-
ferences in the noise. We studied the role of a⊥ compared to
b, the two Zeeman fields, in the noise. We observed that the
effect of a⊥ is much more strong and compelling, as can be
seen by comparing previous figures.

We found that the effect of θ can generate an “echo” in
noise, concerning the appearance of two strong secondary
peaks and inversion of the main peak [26] in the orthogonal-
unitary crossover, as can be seen in Fig. 5. This figure
shows quantum interference term of noise as a function of

perpendicular magnetic field, where we set �1 = 0.8, �2 =
0.9, N1 = 30, N2 = 20, b⊥ = 5, b = 10, and a = a⊥ = 0.

We also observe the effect of θ in the transition “localiza-
tion” and “anti-localization” for the noise. Figure 6 shows
the interference correction for noise as a function of perpen-
dicular magnetic field. We set �1 = 0.8, �2 = 0.9, N1 =
30, N2 = 20, a⊥ = 2, a = 1, and b = b⊥ = 0. We
found again the “echo” and the annihilation of depletion-
amplification transition with the increase of θ .

4 Discussion and Conclusions

In this paper, we present a very detailed study of the
role of quantum interference in noise. We consider a wide
class of crossovers between the Wigner-Dyson ensembles
and between different thermal regimes. Furthermore, the
crossover between ensembles take into account the paral-
lel and perpendicular magnetic fields, the Zeeman effect,
the longitudinal spin-orbit coupling caused by anisotropy
in the crystal lattice, the spin-orbit coupling due to the
parallel magnetic field, etc. We also take into account
the effects of temperature in the reservoirs of electrons
to obtain both the relevant regime of shot-noise and ther-
mal noise of Nyquist-Johnson. We show surprising effects
on depletion-amplification noise due to the controllable
parameters. To connect with the modern real-time measure-
ments, we take into account the role of tunneling barriers.
Our study provides several important regimes and show a
great possibility to measure [27, 28] the effect of quan-
tum interference in nonequilibrium fluctuations in chaotic
nonideal nanostructures. The conclusion that the Zeeman
effect has strong phenomenological implications to the tem-
poral fluctuations of the conductance (noise) is a useful
information on spintronics for future investigations follow-
ing the perspective of [29]. Another interesting future study
is to investigate the role of the Zeeman effect and tem-
perature on universal conductance fluctuations following
this work and [30]. Our study also shows explicitly the
effect of competition among the leading concepts of gen-
eral quantum mechanics and thermodynamics as follows:
interference, fluctuation-dissipation, tunneling, symmetries,
and discreteness of electronic transport.
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