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Abstract

We investigate the thermodynamics as well as the population dynamics of ecosystems based on a stochastic approach in which
the biomasses of the several species of the ecosystem are treated as stochastic variables. The several species are connected
by feeding relationships that are understood as unidirectional processes in which a certain amount of biomass is exchanged
between species. We show that the equations for the averages in the biomass of species are those given by the deterministic
approach. We determine the fluxes of mass, energy, and entropy as well as the rate of the entropy production. In the stationary
state, the entropy production and the input of energy into the ecosystem are both found to be proportional to the organic mass
generated by the autotrophs per unit time per unit mass of the autotrophs.
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1 Introduction

An ecosystem consists of organisms that live in the same
space, interacting with each other and with the physical
environment [1-8]. The organisms of distinct species are
connected with each other through a feeding relationship
structured in a hierarchy of trophic levels, called a food web
[3-9]. In the first trophic level, one finds the organisms that
produce organic matter from inorganic substances. These are
the autotrophs. In the other levels, we find the heterotrophs,
which obtain organic matter by feeding on the autotrophs
and on other heterotrophs. In the second level, there are the
species that eat the autotrophs and are food for the species of
the third level. The species of this level are, in turn, food for
the upper level, and so on. The top level consists of species
that are not food for any other species and are represented by
the apex predators.

The feeding relationship induces a change in the number
of individuals of each species, which for that reason evolves
in time and may reach a stationary state. Many approaches
have been employed in the theoretical study of the sizes
of populations in food webs and its evolution in time [10-
13]. We point out the deterministic approaches in which the
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number of individuals of each species obeys an ordinary dif-
ferential equation of first order in time. This approach was
employed by Lotka [14, 15] and by Volterra [16] in their
study of a predator—prey system. The Lotka-Volterra model
was extended to several interacting species by May in his
studies of the stability in multispecies community models
[17]. The extended model was then used by other investiga-
tors as a model for food webs [18-21].

The structure composed of the organisms and the abiotic
environment is maintained active by the consumption of light
energy by the autotrophs that transform inorganic substances
into organic matter through photosynthesis. The heterotrophs
obtain organic matter by feeding on the autotrophs and on
other heterotrophs. These organisms convert the nutrients
into matter that are used again by the autotrophs completing
the cyclic transformation of matter. The transformation of
matter induced by the input of energy in an ecosystem was
pointed out by Lotka [14, 15] and by Lindeman [22], and the
role of the flow of energy through the system was empha-
sized by Odum [4, 6]. The flow of energy acts to organize
the system [23], and an ecosystem is regarded as a thermo-
dynamic system which transforms matter and maintain the
living structure through the flow of energy.

The continuous flow of energy through the system shows
that the equilibrium thermodynamics cannot be applied
because in thermodynamic equilibrium, there can be no
macroscopic flow of any kind and particularly of energy.
Therefore, it is necessary to resort to theories that take into
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account the irreversible character of the processes as pointed
out by Prigogine and Wiame [24]. Such a theory was devel-
oped by De Donder [25] and by Prigogine [26-29] in which
entropy production, entropy flux, and energy flux are cen-
tral concepts. Irreversible thermodynamic was then applied
to the ecosystem by making it consistent with the dynamic
equations for the population, usually represented by the
Lotka-Volterra equations [30-39].

An inherent characteristic of species populations is fluc-
tuations, which are manifest when a species become extinct
in a certain region because by chance its number decreases
and vanishes. Fluctuations in space and time are essential
features of stochastic thermodynamics [40—43]. This theory
is based on a probabilistic approach to thermodynamics and
provides a stochastic dynamics from which we obtain the
time evolution of the thermodynamic quantities. Like statis-
tical mechanics the states of the system are defined by a set
of random variables over which a probability distribution is
defined. We wish here to apply the stochastic thermodynam-
ics to the ecosystem and thus explain through this theory the
flows of matter and energy and their connection with the flow
of entropy and the production of entropy.

From the present approach, we obtain the relation between
the flux of entropy, the flux of energy and the flux of matter.
It is singular when compared to other approaches in the ther-
modynamic treatment of unidirectional processes and on the
use of the biomass of each species as the dynamic variable,
which fits the conservation of mass, instead of the number of
individuals of each species. One of the main results coming
from the present approach is that at the stationary state, the
entropy production, which equals the flux of entropy to the
environment and the input of energy are both proportional
to the quantity of organic matter generated by the autotrophs
per unit time per unit mass of the autotrophs.

2 Deterministic Dynamics
2.1 Dynamic Equations

An example of a food web is that consisting of plants, her-
bivorous, and carnivorous living in a given region. The first
trophic level of the food web consists of plants , which gener-
ate organic matter using light energy through photosynthesis.
In the second trophic level, we find the herbivorous which eat
plants and are the food for the first carnivorous. The herbivo-
rous as well as the first carnivorous are the food for the second
carnivorous. There might be other carnivorous trophic levels
until the top level of the food web, consisting of the apex
carnivorous.

A food web is represented by a set of nodes and connec-
tions between them, as shown in Fig. 1. Each node of the food
web represents an animal species , except the bottom node,
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Fig. 1 Representation of two food webs with four trophic levels. The
gray circle represents the plants, and the other circles represent the
animal species. An arrow represents the process of feeding and points
from an organism eaten to the animal eating it

which represents the plants. The feeding connection between
the nodes is represented by an arrow which points from an
organism eaten to the animal eating it. Several arrows may
point to a node meaning that the species at the node eats sev-
eral species. A node may also be at the tail of several arrows
meaning that the species is the food of several species.

Instead of using the numbers of individual of each species
as the dynamic variables as is usual in population dynam-
ics, we employ here the biomasses of the several species.
We denote by M;, the biomass of the animal species i,
i =1,2,...,n, and by My the biomass of the plants. The
biomasses M; vary in time according to the feeding pro-
cesses represented by the arrows in Fig. 1. In this process,
a certain amount of the biomass of a species is transferred
to the biomass of the species eating it. In addition to this
type of process, there is another type involving only the ani-
mals, which is the spontaneous transformation of organic to
inorganic matter, which embraces many actions, such as the
death of animals. A third type of process involves only the
plants and corresponds to the transformation of inorganic
substances into organic matter through photosynthesis.

To set up the equation that gives the time variation of
M;, we consider first the contribution coming from the feed-
ing process. We assume that this process is analogous to
an autocatalytic reaction, which means that the contribution
associated with species i and j is proportional to the prod-
uct M;s;, where s; is the fraction in mass of specie j, to be
defined more precisely later. The contribution coming from
the transformation of the biomass of species i into inorganic
matter is proportional to M;, as it is understood as analogous
to a spontaneous reaction. Adding these two contributions,
we get the following equation

n

dM;
! ZZVijbijMisj_ciMh (1)
j=0

dt
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Fig.2 a Representation of a (a)
food web with five trophic
levels. b Representation after
one of the species of the third
level becomes extinct. ¢
Representation after the species
of the fourth level becomes
extinct. As a consequence, the
apex predator of the fifth level
also becomes extinct by the
suppression of its prey

where b;; > 0 is the feeding rate constant, ¢; > 0 is the
decomposition rate constant, and v;; = +1 if i feeds on j,
and v;; = —1 otherwise. We remark that ¢; cannot be zero for
the apex carnivorous; otherwise, its number would increase
without bounds.

The third process, which involves only the plants, is rep-
resented by a constant Q, which is the rate at which organic
matter is produced by the plants. The equation that gives the
time variation of My is

n
%:—Zboij+Q. )
j=1

It is more convenient to write the dynamic equations in
terms of the mass fraction s; defined as the ratio s; = M; /M
between M; and the total mass M of the ecosystem, which is
the sum of the masses of the living organisms and the mass
of the inorganic matter. If we denote by M, the mass of
the inorganic matter then

n
D Mi+ My =M. 3)
i=0

Dividing (1) and (2) by M, we find

ds n
d_tl = Z vijbijsisj — cisi, “)
j=0
valid fori =1, 2,...,n,and
dso "
E:—Zb()jsosj-i-q, &)
j=1

where ¢ = Q/M. The equation for the fraction s, of inor-
ganic matter is unnecessary because

n
D sit s =1 ©)
i=0

There are some immediate consequences of the dynamic
equations that are worth mentioning, which are illustrated

(b) () 9?

in Fig.2. If the biomass fraction s; of species k vanishes,
then it remains zero forever, which means that the species
becomes extinct. Indeed, if sy = 0, then it follows from (4)
that dsi /dt = 0 and s; will not change from its zero value.

If one animal species becomes extinct, then the food web
that remains is the one we obtain by removing all the arrows
that are connected to it, as shown in Fig. 2. Indeed, if k is the
species going extinct, then sy = 0. Setting sy = 0 in the other
equations is equivalent to set b;; = 0, which corresponding
to erasing the corresponding arrow.

If all prey of a species k disapear, then the species k
becomes extinct. In other words, if all arrows pointing to
k are erased, then s,y = 0. Indeed, if all prey of k disappears,
then all positive terms on the right-hand side of the (4) dis-
appear, remaining only negative terms, so that dsy/dt < 0
and sy eventually vanishes.

2.2 Food Chains

We consider here food chains, which are food webs such that
each animal has just one prey like that shown on the right
panel of Fig. 1. The species i + 1 feeds on the species i. To
turn the model simpler, we set b;11,; = b, except bjg = a,
and ¢; = c. The equations become

ds|

ar = as1so — bs1sy — ¢sq, (7
% = bsisi—1 — bsisi+1 — csi, ®)
Ci;t” = bsySy_1 — CSy, ©)
% = —asps1 +4q. (10)

The nonzero stationary solution is determined by the set
of equations

aso — bsy = c, (11)
bsi—1 — bsi11 =c, (12)
bs,—1 = c, (13)

asosy = ¢q. (14)
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Fig.3 Diagram in the space of parameters g /c versus b/c for the food
chain with n animal species. The number next to a line corresponds to
the number n of animal species. A line n determines the boundary of
the region R, of the occurrence of the positive solution s; > 0, for
i=0,1,2,...,n, which occurs at the right and above the line n

It is straightforward to solve this system of equations. For
n even, the solution is

2bq
50 = — (15)
nac
c
=mn—-0+1)—, £ odd, 16
s¢ = (n + )2b 0 (16)
2qg {Lc ¢ (17
== - — even.
T e T 2w

The fractions sg and s, for £ odd are all positive. The smaller
fraction sy for £ even is s,,. Thus, the condition that all sy be
positive is given by s, > 0, or

2qg nc (18)
—_— > _7
nc  2b

which defines the region R, in the space of parameters where
the full positive solution exists. The boundary of this region
is given by

2q nc (19)
ne  2b’°
valid forn = 2,4, 6, ... and is shown in Fig. 3.

Let us consider now the case n odd. In this case, the solu-
tion of the system of linear equation is

(n+ e
0= —7—" (20)
2a
2 -1
B Gt 1)

(n+ 1c 2b

se=m+1— z)%, ¢ even. 22)
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The fractions sy for £ even are all positive. The smaller
fraction s, for £ odd is s;,. Thus, again, the condition that all
s¢ be positive is given by s, > 0, or

2q (n—1c
>
(n+ 1c 2b

, (23)

which defines the region R, where the full positive solution
exists. The boundary of this region is given by

2q _ (n—1c
(n+Dc  2b

; (24)

valid forn = 1,3, 5, ... and is shown in Fig. 3.

It is worth mentioning that as one approaches the bound-
ary of R,,, given by (19) for n even and by (24) for n odd,
the fraction that vanishes is that corresponding to the apex
predator, which becomes extinct at the boundary of R,,.

3 Stochastic Dynamics
3.1 Fokker-Planck Equation

The dynamic approach that we have presented above describes
a deterministic motion. In the following, we present a
stochastic approach to the thermodynamics of an ecosystem.
The mass fraction now becomes a stochastic variable, which
we denote by x;. We use the notation x to represent the col-
lection of all fractions x;. We begin by setting up a master
equation that gives the evolution equation of the probability
distribution of P (x) of the mass fractions.

The ecosystem to be described here by the master equation
is understood as composed by n + 2 components, as shown
in Fig. 4, each one labeled by an integer i from O ton+ 1. The
component i = n + 1 represents the surroundings consisting
of inorganic matter. The component i = 0 represents the
plants that transform inorganic matter into organic matter.
The components from i = 1 to i = n represent each one an
animal species that eats another animal or the plants.

We remark that the mass of the surroundings consists of
inorganic matter. The plants transform the inorganic matter
into the organic matter, a process represented by the lowest
vertical arrow in Fig. 4. The solid arrows represent the process
of feeding, which transfers biomass from the species being
eaten to the eating species. The processes represented by
dashed arrows correspond to the decomposition of animals,
understood as the transformation of organic to inorganic mat-
ter deposited in the surroundings.

To set up a master equation, one needs to introduce the
rates at which mass is transferred from one component to
another, associated with each process. We suppose that the
amount of mass transferred is the same at each time a process
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Fig.4 Representation of the processes of transfer of masses occurring
in an ecosystem. The black small circle represents the surroundings
containing inorganic matter. The gray circle represents the plants, and
the other circles represent the animal species. The solid arrow at the bot-
tom, pointing from the black to the gray circle, represents the process
of production of organic matter by the plants through photosynthesis.
The other solid arrows represent the process of feeding. A solid arrow
points from an organism eaten to the animal eating it. The dashed arrows
represent the spontaneous decomposition of animals, that is, the trans-
formation of organic into inorganic matter

occurs. The rate of mass transfer is then understood as this
constant amount of mass, which we denote by m, multiplied
by the rate at which a process occurs, or the frequency of the
occurrence of a process. By this procedure, we simplify the
model, which otherwise would be complicated because the
individuals of distinct species have different masses. This is
possible by performing an rescalling of the rates of transition.

As the mass transferred in each process is the same and
equal to m, the biomass M; increases or decreases by the
amount m in each process. Thus, the mass fraction increases
or decreases by an amount ¢ = m/M. A processes repre-
sented by an arrow in Fig.4 from j to i corresponds to a
decrease of the fraction x; by an amount ¢ and an increase of
the fraction x; by the same amount. We represent this process
by the transition

x — x', (25)

where x represents the vector

X =(X0, 0oy Xiyoues Xjy ey Xng1)s (26)
and x'/ is the vector
X = (X0, .. Xi & X =& Xt ), 27

obtained from x by replacing x; by x; + ¢ and x; by x; — ¢.
The transition x — x%/ occurs with a probability per unit

time equal to w;;(x)/e where w;;(x) represents the change
per unit time in the mass fraction by an amount €. It may
depend on x and is given by

wij = bijxixj, (28)

ifi=1,...,nand j =0,1,...,n, where b;; is the feeding
rate constant. We remark that b;; is nonzero only when there

is an arrow from jtoi. Wheni =n+1landj=1,...,n
then
Wptl,j = CjXj, (29

where c; is the decomposition rate constant. When i = 0
and j = n + 1 then

Wo,n+1 =4, (30)

where ¢ is the rate in which the organic matter is produced
by the plants.

Once we are given the transition rates, the master equation
reads

%P(x) = EZ{wij(xff)P(xff) —w;;(x)Px)}, (31
ij

where i and j take all values from O to n + 1.

As ¢ is small compared to x; we may expand the right-
hand side of the master equation in powers of . Up to linear
terms in &, we find

&
— =Z{—DijwijP+§D?jwijP}, (32)

which is a Fokker-Planck equation, and we are using the
abbreviation

b _ 0 3 (33)
v ax,- 8x]‘ )

The presence of the quantity ¢ in the last term of the Fokker-
Planck indicates that ¢ is a measure of the fluctuations, that
is, the covariances of x; are proportional to ¢ = m/M. In
an equivalent manner, we may say that the amplitudes of the
fluctuations in M; is proportional to ~/M.

From (32), we may determine the time evolution of the
average (x;). It is given by

d

i) = ;ww —wji), (34)

where we have performed an integral by parts, and assumed
that the integrated part vanishes. Taking into account that
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the probability distribution is very sharp at the mean values
s; = {(x;), we may replace (w;;(x)) by w;;(s) and write

‘fl—s; = > {wij(s) — wji(s)}. (35)
J
We remark that this is a closed set of equations for s; and
determine s; as a function of time. These equations for
i =0,1,...,n coincide with the deterministic (4) and (5),
and we may say that within the present stochastic approach,
the dynamic variables of the deterministic approach can be
understood as the average values of the stochastic variables.

3.2 Entropy Flux

The entropy S of the ecosystem is defined by

S=- /Pln Pdx, (36)
where k is the Boltzmann constant and the integration is

performed over the space x. Its time evolution is

ds aP
=~k | =~ InPdx. (37)

dt

Using the master (31), we find

ds k P(x)
== 2}:/ wij ()P () In o s dx. (38)

The rate of entropy production IT is defined by the follow-
ing formula [44]

k
H:E%:/wij(x)x

P(x)

P~ P(x) + P(x")}dx, (39)

x{P(x)In

and we remark that IT is nonnegative because if we let £ =
P(x)/P(x") we see that the integrand is proportional to
EIn& — & 4+ 1 > 0. This formula for the entropy production
rate is distinct from the Schnakenberg formula [45], and is
appropriate for the unidirectional transitions that we consider
here. The time variation of the entropy of the system is equal
to the production of entropy minus the flux of entropy from
the system 7o the outside W, that is,

ds
— =TI -W. (40)
dt

From the expressions of dS/dt and I1, we find the fol-
lowing expression for the flux of entropy associated with

@ Springer

unidirectional processes,
k i
Y= Z wij (D{P ) = P(x)}dx. (41)
ij

We point out that the rate of entropy production vanishes
when all states are equally probable.
The entropy flux can be expressed as an average

=", (42)
ij

where
k i

i = g(wij(x] ) — w;ij(x)), (43)

In the limit ¢ — 0, W;; can be written as

Vj = —k(Djjwj), (44)

Let us determine the entropy flux W;; for each one of
transitions j — i. For the feeding processes, represented by
solid arrows in Fig.4, the transition rates are given by (28),
and the entropy flux is
‘-I’,'jZ-kb,’j(Sj—Si), i=1,2,...,n, (45)
and we recall that b;; > 0 if there is an arrow from j to i,
and vanishes otherwise. For the process of decomposition,

represented by dashed arrows in Fig. 4, the transition rates
are given by (29), and the entropy flux is

q’n+l,j = ij. (46)

an we recall that ¢; > 0. For the process of transformation
of inorganic matter into organic matter by the plants, repre-
sented by the small vertical arrow, the transition rate is given
by (30), and flux

Vo n+1 =0, (47)

which means that there is no flux of entropy associated with
the input of energy when inorganic matter is transformed into
organic matter by the plants.

3.3 Heat Flux

Let £(x) be a state function, which we wish to identify with
the energy function. The time variation of its average U =
(E) is

du oP
— = | —&dx. 48
dt /azgx (48)
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Using the master (31), we find

dUu
VTR (49)
where
1 §
¢ = z ;/wij(X)P(x){E(x 7y — E(x)}dx (50)

is the heat flux from the outside to the system. It can be
written as an average,

®=) @i (51)
ij
where
1 .
;= g(wij(x){g(x”) —E)h. (52)

The quantity ®;; is the heat flux associated to the transition
j toi.In the limit ¢ — 0, it can be written as

& = (w;; D;;E) (53)

which is nonzero only when there is an arrow from j toi. In
other cases, ®;; vanishes.

3.4 Relation Between the Entropy and Energy Fluxes

We did not give the precise form of the energy function. To
this end, we introduce a connection between entropy flux
and heat flux. Following Clausius, we postulate a relation
between the entropy flux W;; and the heat flux ®;;, which is

Vij = —Aij@ij, (54

where 4;; is a constant, and the negative sign is introduced
because ®;; is positive when heat is introduced into the sys-
tem and W;; is negative when entropy is introduced into the
system.

To determine the actual expression of £(x) and the coef-
ficients A;;, we proceed as follows. We observe first that the
coefficient A¢ ,+1 = 0 must be zero in view of the relation
(47). Using the expressions (44) and (53), the relation (54)
reads

k(Dijw;i;j) = Aij(w;jDi;E), (55)
which is fulfilled if
D,-jlnw,-j ITDUS. (56)

Taking into account that In w;; is linear in Inx; and Inx;,
then we wee that £ can be chosen to be of the form

5:EZlnx,~, (57)
i=0

where E is a positive constant.
The explicit expression for the energy fluxe for the first
type of transition is are

q)iijijE(Sj—Si) i=1,2,...,n. (58)
For the second type of transition, it is given by
—c;E. (59)

cI>n+1,j =

For the third type of transition, it is given by ®g ,4+1 =
Eq(1/xp), which we write as

q
$o 1 = E—, (60)
S0

Comparing these expressions with (45), (46) and bearing
in mind the relation (54), we may choose A;;, j #n + 1, to
be all the same and equal to A = k/E, that is,

Vi = —1d;; (61)
valid for all transitions, except n + 1 — 0, in which case the
coefficient Ag ,+1 = 0 and Yo ,4+1 = 0 but ®g 41 # 0 and
given by (60).

The flux &g ,41 given by (60) is the input of energy per
unit time introduced into the ecosystem. Let us use the abbre-
viation ¢ = ¢ ,41 = Egq/so for this quantity and the
abbreviation @’ for the sum of all the heat fluxes ®; j» except
©, so that
= +¢. (62)

If we multiply ® by —A, we get the total entropy flux W,
that is

V=P (63)
which follows from the relation (61). Therefore

V=D — ). (64)
In the stationary state ® = 0, and we reach the result

s (65)
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Bearing in mind that ¢ = E¢q/so and that A = k/E, we find

v=xL -0, (66)
S0

that is, the ecosystem is continuously producing entropy
which is throwing away at a rate given by (66). We remark
that the input of energy into the ecosystem

o=EL (67)

S0

is also the heat flux through the ecosystem.
The flux of entropy given (66) as well the input of energy
given by (67) are proportional to

a_Q
v (68)

This quantity is the rate at which organic matter is being
produced by the plants divided by the mass of the plants, or
the rate of creation of organic matter per unit mass of the
plants.

4 Discussion and Conclusion

We presented a stochastic approach to the population dynam-
ics as well as to the thermodynamics of ecosystems. The
stochastic dynamics led to a description in terms of a master
equation, which in turn was approached by a Fokker-Planck
equation. In the present stochastic approach, the fluctuations
in the populations of the several species are measured by
a parameter ¢ which is inversely proportional to the total
mass of the ecosystem. One could, for that matter, replace
the total mass by any other quantity that measures the size of
the ecosystem, such as the total number of individuals or the
area of the ecosystem. Thus, a prediction of the stochastic
approach is that if the area is small, the fluctuations will be
relatively greater and the extinction by fluctuations will be
more probable.

The dynamics are understood as a consequence of pro-
cesses involving the several species that are analogous to
chemical reactions. The creation of an individual of a cer-
tain species is analogous to an autocatalytic reaction. As a
consequence, if for some reason the number of individuals
of a certain species vanishes, then it becomes zero forever;
that is, the species becomes extinct. With the deterministic
approach, this occurs, for example, when the feeding rate
constant associated with a species is decreased. Observing
Fig.3, if the parameter b is decreased, the apex carnivorous
is extincted as one cross each one of the transition lines.

When ¢ is small, which we consider to be always the case,
the equations for the main values of the number of individuals

@ Springer

of each species coincide with the dynamic equations of the
deterministic approach. Thus, we may understand the evolu-
tion of a population as given by the deterministic equations
supplemented by the stochastic fluctuations. The fluctuations
may lead to the extinction of a species, which is not the abso-
lute type of extinction explained above and predicted by the
deterministic approach. If by fluctuations the number of indi-
viduals vanishes, then the species becomes extinct, a type of
extinction that we call extinction by fluctuations. If a small
group of individuals of the extincted species is introduced,
then the number of individuals may grow and the species is
restored. In the case of the absolute extinction, this is not
feasible, that is, the small group of individuals will disappear
instead of growing.

A single main feature resulting from the present ther-
modynamic approach concerning a food web consisting of
plants, animals, and environment is as follows. The plants
transforms inorganic substances into organic matter through
photosynthesis, inducing a flux of matter and energy across
the ecosystem. Simultaneously, entropy is being generated
and throwing away into the environment. The entropy flux
to the environment W, given by formula (66), and the input
of energy per unit time to the ecosystem ¢, given by (67),
are both proportional to ¢ /s9g = Q/My, which is understood
as the quantity of organic matter generated by the plants per
unit time per unit mass of the plants.
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