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Abstract We show that the Kronecker sum of d ≥ 2 copies of a random one-dimensional
sparse model displays a spectral transition of the type predicted by Anderson, from abso-
lutely continuous around the center of the band to pure point around the boundaries. Possible
applications to physics and open problems are discussed briefly.
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1 Introduction and Summary

In this paper we study a class of models whose relationship to the original Anderson [3]
model will now be briefly explained (for further clarification, see Sect. 3). The Anderson
Hamiltonian

Hω = � + λV ω (1.1)

on

l2
(
Z

d
) =

{
u = (un)n∈Zd : un ∈ C,

∑

n∈Zd

|un|2 < ∞
}
, d ≥ 1,

is given by the (centered) discrete Laplacian

(�u)n =
∑

n′: |n−n′ |=1

un′ (1.2)
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plus a perturbation by a random potential
(
V ωu

)
n
= V ω

n un

where {V ω
n }n∈Zd is a family of independent, identically distributed random variables

(i.i.d.r.v.) on the probability space (�, B,μ), with a common distribution F(x) = μ({ω:
V ω

n ≤ x}); λ > 0 is the disorder parameter also called coupling constant. The spectrum
of Hω is, by the ergodic theorem, almost surely a nonrandom set σ(Hω) = [−2d,2d] +
λ suppdF . Anderson [3] conjectured that there exists a critical coupling constant 0 <

λc < ∞ such that for λ ≥ λc the spectral measure of (1.1) is pure point (p.p.) for μ-almost
every ω, while, for λ < λc the spectral measure of Hω contains two components, separated
by so called “mobility edge” E±: if E ∈ [E−,E+] the spectrum of Hω is pure absolutely
continuous (a.c.); in the complementary set σ(Hω)\[E−,E+], Hω has pure point spectra.
We refer to [19] for a comprehensive review on the status of the problem and references,
and only wish to remark that for d = 1 the spectrum is p.p. for all λ for almost every ω [13,
25], while, for d ≥ 2 the existence of a.c. spectrum is open, except for the version of (1.1)
on the Bethe lattice, where it was first proved by A. Klein in a seminal paper [22] (see also
[19], Sect. 2.31).

Given the above mentioned difficulties, one might be led to study the limit λ → 0 of (1.1),
for which the spectrum is pure a.c. We shall instead follow a different approach to the An-
derson conjecture suggested by Molchanov: the limit of zero concentration, i.e., taking V ω

in (1.1) such that

V ω
n =

∑

i

ϕω
i (n − ai), (1.3)

with elementary potential (“bump”) ϕω : Z
d −→ R satisfying a uniform integrability condi-

tion
∣∣ϕω(z)

∣∣ ≤ C0

1 + |z|d+ε
(1.4)

for some ε > 0 and 0 < C0 < ∞ and

lim
R→∞

#{i: |ai | ≤ R}
Rd

= 0. (1.5)

Due to condition (1.5) of zero concentration, potentials such as (1.3) are called sparse and
have been intensively studied in recent years since the seminal work by Pearson in dimension
d = 1 [34], notably by Kiselev, Last and Simon [23] for d = 1 and by Molchanov in the
multidimensional case [29] (see also [30, 31] for complete proofs and additional results).
As a consequence of (1.4), for d ≥ 2 the interaction between bumps is weak [29] while for
d = 1 the phase of the wave after propagation between distant bumps become “stochastic”
[34]. This is the right moment to introduce our one-dimensional model.

Instead of (1.1) we shall adopt an off-diagonal Hamiltonian which contains the Lapla-
cian (1.2):

Jω ≡ JPω =

⎛

⎜⎜
⎜⎜
⎜⎜
⎝

0 p0 0 0 · · ·
p0 0 p1 0 · · ·
0 p1 0 p2 · · ·
0 0 p2 0 · · ·
...

...
...

...
. . .

⎞

⎟⎟
⎟⎟
⎟⎟
⎠

, (1.6)
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for each sequence P ω = (pω
n )n≥0 of the form

pω
n =

{
p if n = aω

j for some j

1 otherwise,
(1.7)

for p ∈ (0,1). Above, {aω
j }j≥1 is a random set of natural numbers

aω
j = aj + ωj

with aj satisfying the “sparseness” condition

aj − aj−1 = βj , j = 2,3, . . . (1.8)

with a1 + 1 = β ≥ 2 where β is an integer and ωj , j ≥ 1, are independent random variables
defined on a probability space (�, B, ν), uniformly distributed on the set �j = {−j, . . . , j}.
We denote by Jω

φ an operator related to the Jacobi matrix Jω acting on the Hilbert space
H of square summable complex valued sequences u = (un)n≥−1 satisfying a φ-boundary
condition at −1:

(
Jω

φ u
)
n
= pω

n−1un−1 + pnun+1 (1.9)

for n ≥ 0, with pω
−1 = 1 and

u−1 cosφ − u0 sinφ = 0 (1.10)

(i.e., (J ω
φ u)n = (J ω

0 u)n + δ0,n tanφ u0). The variables {ωj }j≥1 introduce uncertainty in the
positions {aj }j≥1 where the “bumps” are located. The corresponding diagonal version sat-
isfies trivially (1.4), since ϕω

i (n) = δωi ,n is just a Kronecker delta at ωi ; such models are
nowadays called Poisson models (see pg. 624 of [19] and references therein). A disordered
diagonal model of the above type—to which our results are also applicable—was intro-
duced by Zlatoš [47]. The present non-diagonal version has some advantages in addition to
the initial motivation coming from [15]: that the spectrum σ(Jω) of Jω interpolates between
purely absolutely continuous for p = 1 and dense pure point for p = 0 (in the latter case,
Jω is a direct sum of finite matrices; the dense character is due to (1.8)). It is easily proved
that the essential spectrum of Jω is σess(J

ω) = [−2,2] (see [8]).
We may ask whether the p.p. part of σ(Jω) for p = 0 above persists in some nonempty

interval. Let

I = {
λ ∈ [−2,2]: v−2(β − 1)

(
4 − λ2

) ≥ 1
}

(1.11)

where v = v(p) = (1 − p2)/p and set

I c = [−2,2]\I. (1.12)

Note that I = ∅ (consequently, I c = [−2,2]) if p < pc , where pc is defined by

v2(pc) =
(

1 − p2
c

pc

)2

= 4(β − 1).

Such a equation has always a solution pc =
√

2β − 1 − 2
√

β2 − β in (0,1) for β ≥ 2 and

vc = v(pc) = 2
√

β − 1 will play a role similar to the critical coupling λc of the Anderson
model. We have (see Theorem 2.4 of [8]).

Theorem 1.1 Let Jω
φ be defined by (1.6)–(1.10), and set

Asc = 2 cosπQ ∩ I

App = 2 cosπQ ∩ I c. (1.13)

Then, for ν-almost every ω,
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Fig. 1 Singular continuous (light gray) and pure point (dark gray) spectra separated by the “mobility edges”

λ± = ±2
√

1 − v2/v2
c ; v/vc = 1.3038 . . .

a. the spectrum of Jω
φ restricted to the set I\A′

sc with A′
sc = Asc ∪A′ and A′ a set of Lebesgue

measure zero, is purely singular continuous;
b. the spectrum of Jω

φ is dense pure point when restricted to I c\App for almost every φ ∈
[0,π).

Remark 1.2

1. The occurrence of the set A′ of Lebesgue measure zero is related to the definition of
essential (or minimal) support of the spectral measure μ (see Definition 1 of [14]).

2. As we have excluded a countable set App , the spectrum is purely p.p. in I c .

Theorem 1.1 for the corresponding diagonal model was proved in [47], except for the
specification of the set App , which leads to the refinement of Remark 1.2.2. The latter de-
pended on the details of the method in [8], whose crucial step was a proof that the sequence
of Prüfer angles (θω

j )j≥0 (see [23, 33, 47] for definitions) is uniformly distributed mod π

(u.d. mod π ) for ν-almost every ω and for all λ = 2 cosϕ with ϕ ∈ [0,π] such that ϕ/π is
an irrational number. As remarked by Remling [37] in his review of [33], which introduced
our method, the new idea was to fix the energy λ and assume (or prove, when one is able to)
that the Prüfer angles (θω

j ) at aj are uniformly distributed (u.d.) as a function of j , instead of
the traditional approach which exploits the u.d. of the Prüfer angles in the energy variable at
fixed aj . We shall see that this refinement, perhaps of apparently minor importance, will play
an important role in our approach (see Remark 2.9). Figure 1 depicts the one-dimensional
spectral transition, where the “mobility edges” λ± = 2 cosϕ± are implicitly given by the
equation

1 − λ2

4
= sin2 ϕ = v2

v2
c

provided v < vc = 2
√

β − 1.
For superexponential sparseness, i.e., aj − aj−1 = [ecnγ ] ([z] the integer part of z), with

c > 0, γ > 1 and {ωj }j≥1 independent random variable, uniform in �j , it may be proved that
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σ(Jω
φ ) is purely singular continuous (s.c.) for almost every ω ∈×∞

j=1 {−j, . . . , j} ([8], The-
orem 5.2). This has a simple physical interpretation already pointed out by Pearson [34]: the
enormous separation between the aj causes the aforementioned “stochasticity” of the phase
of the Bloch wave of difference Laplacian, with the particle behaving as if successively un-
dergoing reflections (and transmissions) through the bumps. The reflection from the latter
is O(v2) by the Born approximation, and, since

∑
n≥0(1 − p2

n)
2/p2

n = ∞, no particles ar-
rive at infinity (for

∑
n≥0(1 − p2

n)
2/p2

n < ∞, the spectrum is purely a.c. as may be proved
by methods of [23]). This conclusion is rigorously confirmed by the dynamics: the average
time spent by the particle, in any bounded region, is zero for states both in the a.c. and s.c.
subspaces, by the RAGE theorem [40], but the “sojourn time” (properly defined, see [43])
for a particle in the s.c. subspace has, in contrast to the a.c. case, to be infinite for some finite
region of space as a consequence of Theorem 1 of [43].

On the other hand, for subexponential sparseness, with aj −aj−1 = [ecnγ ] with γ < 1 and
everything else as before, σess(J

ω
φ ) = σpp(J

ω
φ ) = [−2,2] for a.e. boundary phase φ ∈ [0,π]

and for a.e. ω ∈×∞
j=1 {−j, . . . , j} ([8], Theorem 5.1).

These results joins smoothly to the one (corresponding to γ = 0) for the standard Ander-
son model in d = 1, according to which all states are localized [13, 25]. The latter is believed
to be physically related to the subtle instability of tunneling [20, 41] which is strongest in
d = 1.

What is really surprising in Theorem 1.1 is, of course, not the existence of s.c. spectrum,
but that of p.p. spectrum in a regime of high (exponential) sparsity (1.8). That is the more so
because the well-known instability of Anderson localization under rank one perturbations
[38] implies that the spectral measure associated to s.c. spectrum which is obtained in the
Anderson model by changing the value of the potential at a point is supported on a set of zero
Hausdorff dimension, which is not the case for Jω

φ (see [9, 47]). Thus the spectral transition
depicted in the latter is of the robust type. For further general references on random systems,
see [6, 35, 44].

We now summarize the contents of the paper. In Sect. 2 we prove our main result (The-
orem 2.6), which states that the Kronecker sum of d ≥ 2 copies of Jω

φ exhibits a Anderson
transition (see also Sect. 3 for this designation and a discussion of possible application to the
Anderson transition in lightly-doped semiconductors) from a.c. spectrum for small energy
(i.e., in the region situated around the center of the band) to dense p.p. for large energy (i.e.,
in the union of the two regions around the extreme points): this is true for suitable values of
parameters, and exclusion of resonances.

The proof of our main result (Theorem 2.6) shows that ideas of Kahane and Salem [26,
27] combine with the Strichartz-Last theorem [28, 45] in a neat way, yielding a result of
quite general nature, i.e., showing the existence of a.c. spectrum for any Kronecker sum of
operators A⊗I +θI ⊗A for a.e. θ ∈ [0,1] whenever A has s.c. spectrum in some nonempty
interval with local Hausdorff dimension greater than 1/2. For this reason, we believe that
the idea might have further potential applications, e.g., to the intermediate region, see the
discussion in Sect. 3. For a physically related model—the Anderson random potential on
tree graphs (i.e. Bethe lattice) at weak disorder, absence of mobility edge has been shown
recently [1]. We also refer to [2] for the important proof of existence of a.c. spectra in
quantum tree graphs with weak disorder, as well as [1] for further literature on quantum tree
graphs.

2 Main Result

In order to formulate and prove our main result (Theorem 2.6) we need the following [47]:
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Definition 2.1 A finite Borel measure μ has exact local Hausdorff dimension α(·) in an
interval I if for any λ ∈ I there exists an α(λ) such that for any ε > 0 there is a δ > 0 with
μ((λ − δ,λ + δ) ∩ ·) is both (α(λ) − ε)-continuous and (α(λ) + ε)-singular.

The above notion of continuous and singular refer to the Hausdorff measure hα (see e.g.
Sect. 4 of [28] for a convenient summary of all relevant concepts and references).

Definition 2.2 (Definition 2.1 of [28]) We say that μ is uniformly α-Hölder continuous
(UαH) iff there exists a constant C such that, for every interval I with |I | < 1,

μ(I) < C|I |α.

Above, |S| denotes Lebesgue measure of S. Let {E(λ)} denote the spectral family associ-
ated to Jω

φ (we omit the indices for simplicity) and {Esc(λ)}, {Epp(λ)} its singular continuous
and pure point parts. As usual (see e.g. [25]), we define Hsc and Hpp so that, if ψ ∈ Hsc the
spectral measure,

μsc
ψ (λ) ≡ (

ψ,E(λ)ψ
)
, (2.1a)

is purely singular continuous and, if ψ ∈ Hpp,

μ
pp
ψ (λ) ≡ (

ψ,E(λ)ψ
)
, (2.1b)

is purely pure point. Hsc and Hpp are closed (in norm), mutually orthogonal subspaces:
H = Hsc ⊕ Hpp, and invariant under Jω

φ .
By [9, 47] the local Hausdorff dimension (Definition 2.1) associated to Jω

φ � I , with I

given by (1.11), is

α(λ) = 1 − log r(λ)

logβ
(2.2)

where

r(λ) = 1 + v2

4 − λ2
. (2.3)

We now choose an arbitrary ε > 0 and pick (λi)
Nε

i=1 with λi ∈ I and (δi
ε)

Nε

i=1, with

0 < δi
ε < 1, (2.4a)

for some Nε < ∞, in such way that

λ1 − δ1
ε = −

√
4 − v2/(β − 1), (2.4b)

λi + δi
ε = λi+1 − δi+1

ε , i = 1, . . . ,Nε − 1, (2.4c)

λNε + δNε
ε =

√
4 − v2/(β − 1). (2.4d)

We set

Ai
ε = [

λi − δi
ε, λi + δi

ε

)
, (2.4e)

for 1 ≤ i < Nε , with ANε
ε = [λNε − δNε

ε , λNε + δNε
ε ], and

Ãi
ε = (

λi − δi
ε, λi + δi

ε

)
, (2.4f)

for 1 ≤ i ≤ Nε , and write I as a mutually disjoint union:

I =
Nε⋃

i=1

Ai
ε. (2.5)
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Observe that (2.4b) and (2.4d) represent the boundary points λ± of I , given by (1.11). The
choice of (λi)

Nε

i=1 is arbitrary but the quantities δi
ε , i = 1, . . . ,Nε , are chosen in correspon-

dence to ε according to Definition 2.1, with α(·) given by (2.2), and satisfy

δ̄ε ≡ max
i

δi
ε → 0, (2.6)

by continuity, as ε tends to 0. As a consequence, the spectral measure of Jω
φ restricted to Ãi

ε

μsc
ψ � Ãi

ε (2.7)

is (α(λi) − ε)-continuous and (α(λi) + ε)-singular, for i = 1, . . . ,Nε .

Proposition 2.3 Under the hypotheses of Theorem 1.1 and (2.2)–(2.7), there exists a dense
set D in Hsc such that, ∀ψ ∈ D, μsc

ψ � Ãi
ε is, for each i ∈ {1, . . . ,Nε}, uniformly (α(λi)− ε)-

Hölder continuous.

Proof We write

H =
Nε⊕

i=1

Hi

where Hi is the subspace of Hsc generated by
{
EIψ : ψ ∈ Hsc, for every I = (λ,λ′] ⊂ Ãi

ε

}

where EI = ∫
I
dE(λ) is the spectral projection on I . By (2.2)–(2.7) and Theorem 5.2 of

[28], for each Hi we may choose Di dense in Hi such that, ∀ψ ∈ Di , μψ is uniformly
(α(λi) − ε)-Hölder continuous. Since the subspace M generated by {E(λi + δi

ε)ψ : ψ ∈ H}
for i = 1, . . . ,Nε −1 is such that M ⊂ H⊥

sc, we have by (2.4c), (2.4e) and (2.5) that
⊕Nε

i=1 Di

is dense in Hsc and satisfies the assertion by (2.7). �

Corollary 2.4 Let I0 ⊆ I and ψ ∈ D. Then μsc
ψ � I0 is UαH, where

α = min
i: Ãi

ε∩I0 �=∅
α(λi) − ε. (2.8)

Proof This follows immediately from Proposition 2.3, Definition 2.2 and additivity
of μsc

ψ . �

In the rest of the paper we assume that ε and (δi
ε)

Nε

i=1 is a given fixed set of numbers, with
ε > 0 arbitrarily small (but with Nε < ∞). Consider the Kronecker sum of two copies of Jω

φ

as an operator on H ⊗ H:

J
(2)
θ := Jω1

φ ⊗ I + θI ⊗ Jω2

φ (2.9)

where ω1 = (ω1
j )j≥1 and ω2 = (ω2

j )j≥1 are two independent sequences of independent ran-
dom variables defined in (�, B, ν), as before (we omit ω1 and ω2 in the l.h.s. of (2.9)
for brevity). Above, the parameter θ ∈ [0,1] is included to avoid resonances (see Re-
mark 2.10). We ask for properties of J

(2)
θ (e.g. the spectral type) which hold for typical

configurations, i.e., a.e. (ω1,ω2, θ) with respect to ν × ν × l where l is the Lebesgue mea-
sure in [0,1]. J

(2)
θ is a special two-dimensional analog of Jω

φ ; if the latter was replaced
by −� + V on L2(R, dx) where � = d2/dx2 is the second derivative operator, and V a
multiplicative operator V ψ(x) = V (x)ψ(x) (potential), the sum (2.9) would correspond to
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(−d2/dx2
1 + V1) + (−d2/dx2

2 + V2) on L2(R2, dx1dx2), i.e., the “separable case” in two
dimensions. Accordingly, we shall also refer to J

(n)
θ , n = 2,3, . . ., as the separable case in n

dimensions.
Our approach is to look at the quantity

(
�,e−itJ

(2)
θ �

) = f 1(t)f 2(θt) (2.10a)

by (2.9), where

f i(s) = f i
sc(s) + f i

pp(s), i = 1,2 (2.10b)

with

f i
sc(s) =

∫
e−isλ dμsc

ϕi ,ψi
(λ) (2.10c)

f i
pp(s) =

∫
e−isλ dμpp

ρi ,χi
(λ). (2.10d)

Above �,� ∈ H ⊗ H,

� = (ϕ1 +̇ρ1) ⊗ (ϕ2 +̇ρ2), (2.11a)

� = (ψ1 +̇χ1) ⊗ (ψ2 +̇χ2), (2.11b)

with ϕi,ψi ∈ Hsc, ρi,χi ∈ Hpp and ϕ +̇ρ denotes the direct sum of two vectors ϕ,ρ ∈ H.
The vectors

ϕ1,ψ1 ∈ D1, ϕ2,ψ2 ∈ D2 (2.11c)

where D1 and D2 are copies of the set D occurring in Proposition 2.3; by (2.11a), (2.11b)
and (2.11c), ϕi +̇ρi , ψi +̇χi run through a dense set in H = Hsc ⊕ Hpp. In (2.10c) and
(2.10d), μsc

ϕ,ψ (λ) = (ϕ,E(λ)ψ), μ
pp
ρ,χ (λ) = (ρ,E(λ)χ) as in (2.1), the f ’s being the corre-

sponding Fourier-Stieltjes (F.S.) transforms. By (2.10a) and (2.10b)
(
�,e−itJ

(2)
θ �

) = g(t, θ) + h(t, θ) + k(t, θ) (2.12a)

where

g(t, θ) = f 1
sc(t)f

2
sc(θt) (2.12b)

h(t, θ) = f 1
sc(t)f

2
pp(θt) + f 1

pp(t)f
2

sc(θt) (2.12c)

k(t, θ) = f 1
pp(t)f

2
pp(θt) (2.12d)

are the F.S. transforms of the complex valued spectral measures of J
(2)
θ associated with

Hsc ⊕ Hsc, Hsc ⊕ Hpp ∪ Hpp ⊕ Hsc and Hpp ⊕ Hpp, respectively. It follows from (2.12b) that
g is F.S. transform of the convolution of the measures μsc

ϕ1
and μ̃sc

ϕ2
with

μ̃sc
ϕ2

(λ) ≡ μsc
ϕ2

(λ/θ), θ �= 0 (2.13)

defined by (see [21], pg. 41):

μsc
ϕ1

∗ μ̃sc
ϕ2

(B) =
∫

μsc
ϕ1

(B − λ)dμ̃sc
ϕ2

(λ) (2.14)

for any Borel set B of R, where B − λ ≡ B − {λ} = {x − λ: x ∈ B}, and analogously for h

and k.
At least since the paper of Kahane and Salem [26] of 1958, it is well known that the

convolution of two s.c. measures may be absolutely continuous (this possibility was revived
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for models in mathematical physics by [32]). Their proof, as well as our proof of the cor-
responding assertion in the forthcoming Theorem 2.6, was based on the following folklore
proposition:

Proposition 2.5 Let μ be a measure on the space M(R) of all finite regular Borel measures
on R. If the Fourier-Stieltjes transform of μ

R � t �−→ μ̂(t) =
∫

e−itλ dμ(λ) (2.15)

belongs to L2(R, dt), then μ is absolutely continuous with respect to Lebesgue measure.

Proof See ([5], Exercise 11, pg. 159) or [43]; for a generalization of this result using differ-
ent methods, see [12].

We now go back to Theorem 1.1. Let

λ± = ±2

√

1 − v2

v2
c

(2.16)

under the condition

0 < v < vc = 2
√

β − 1 (2.17)

so that

0 < λ+ < 2. (2.18)

We are now ready to state our main result:

Theorem 2.6 Let J
(2)
θ be defined by (2.9) and let

v2 < a(
√

β − 1) < v2
c (2.19)

with a < 4. Then, for almost every (ω1,ω2, θ) with respect to ν × ν × l,

a. there exist λ̃± with λ̃+ = −λ̃− and

0 < λ̃+ < λ+ (2.20a)

such that
(
λ̃−(1 + θ), λ̃+(1 + θ)

) ⊂ σac
(
J

(2)
θ

)
(2.20b)

b.
[−2(1 + θ), λ−(1 + θ)

) ∪ (
λ+(1 + θ),2(1 + θ)

] ⊂ σpp

(
J

(2)
θ

)
(2.20c)

c. σsc

(
J

(2)
θ

) ∩ (
λ−(1 + θ), λ+(1 + θ)

)
(2.20d)

may, or may not, be an empty set.

Proof We first choose I0 in Corollary 2.4 such that

I0 = [−λ̃+, λ̃+]
(2.21)

and

α = min
i: Ãi

ε∩I0 �=∅
α(λi) − ε >

1

2
. (2.22)

The inequalities (2.20a) and (2.22) are established in Appendix (Proposition A.1) for any
choice of parameters p, β satisfying (2.19) and ε depending on p, β and a.
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Coming back to (2.10c), by polarization we need only consider ϕ1 = ψ1 ∈ D1, ϕ2 = ψ2 ∈
D2 and, accordingly, with (2.21) and (2.22), we define

f i
sc(s) :=

∫

I0

e−isλ dμsc
ϕi

(λ), i = 1,2 (2.23)

in (2.12a).
Let

Ii(T ) :=
∫ T

0

∣∣f i
sc(s)

∣∣2
ds. (2.24)

By Strichartz’ theorem [45] (see also Theorem 2.5 of [28], for a slick proof) and (2.21)

Ii(T ) ≤ CiT
1−α ≤ CT 1−α (2.25)

for 0 < Ci < ∞, i = 1,2, T -independent constants and C = max(C1,C2). By (2.23) and
(2.25) and a change of variable, we have

∫ 1

0

∣
∣f 2

sc(θt)
∣
∣2

dθ = 1

t
I2(t) ≤ Ct−α

which implies
∫ T

1
dt

∣∣f 1
sc(t)

∣∣2
∫ 1

0

∣∣f 2
sc(θt)

∣∣2
dθ ≤ C

∫ T

1

∣∣f 1
sc(t)

∣∣2
t−α dt. (2.26)

We now perform an integration by parts on the r.h.s. of (2.26)
∫ T

1

∣
∣f 1

sc(t)
∣
∣2

t−α dt = I1(t)t
−α|T1 + α

∫ T

1
dt I1(t)t

−α−1. (2.27)

By (2.26), (2.27) and Fubini’s theorem (T ≥ 1)
∫ 1

0
dθ

∫ T

1

∣
∣f 1

sc(t)
∣
∣2∣∣f 2

sc(θt)
∣
∣2

dt ≤ CT 1−2α + αC

∫ T

1
dt t−2α

≤ C
1

2α − 1

(
α − (1 − α)T 1−2α

)
. (2.28)

By (2.22) and (2.28), the limit
∫ 1

0
dθ

∫ ∞

0

∣
∣f 1

sc(t)
∣
∣2∣∣f 2

sc(θt)
∣
∣2

dt = lim
T →∞

∫ 1

0
dθ

∫ T

0

∣
∣f 1

sc(t)
∣
∣2∣∣f 2

sc(θt)
∣
∣2

dt

exists, is finite and
∫ ∞

0

∣∣f 1
sc(t)

∣∣2∣∣f 2
sc(θt)

∣∣2
dt < ∞ (2.29)

for a.e. θ ∈ [0,1]. By Ichinose’s theorem [18] (actually, Theorem VIII.33 of [40], for Ak

bounded, and its Corollary, pgs. 300 and 301, suffice) and (2.9), the spectrum of J
(2)
θ is the

arithmetic sum of the spectrum of Jω1

φ and θJ ω2

φ . Together with Theorem 1.1, Proposition 2.5
and (2.29) this proves (2.20b).

In order to prove (2.20c), we need only consider ρ1 = χ1 ∈ Hpp and ρ2 = χ2 ∈ Hpp with
f i

pp in (2.10d) defined accordingly. By Theorem 5.6 of [21], R � t �−→ f i
pp(t) is an almost

periodic function on R, i.e., f i
pp ∈ AP(R) (see [21], Definitions 5.1 and 5.2) and, therefore

(see (2.12d))

k(t, θ) = f 1
pp(t)f

2
pp(θt)
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belongs to AP(R) by Theorem 5 of [21] and, again by Theorem 5.6 of [21], μ defined by

μ = μpp
ρ1

∗ μ̃pp
ρ2

where μ̃
pp
ρ2(λ) = μ

pp
ρ2(λ/θ), θ �= 0, is pure point. Together with Ichinose’s theorem and The-

orem 1.1, this proves (2.20c).
By the definition analogous to (2.14) it follows that

μpp
ρ1

∗ μ̃sc
ϕ2

({λ}) = μsc
ϕ1

∗ μ̃pp
ρ2

({λ}) = 0

for any singleton {λ}. Hence, by Ichinose’s theorem and Theorem 1.1, the spectrum of
J

(2)
θ restricted to [(1 + θ)λ−, (1 + θ)λ+] is necessarily continuous—but may be singular

continuous—showing part c. and concluding the proof of Theorem 2.6. �

Remark 2.7 Some of the ideas used in the proof of Theorem 2.6 have also employed by
Kahane and Salem [26, 27] in more specific contexts. We refer in particular to [27] for the
general crucial method of interpolating the sets {ξk} of dissection ratios of Cantor sets by
convex combinations

ξk = ak(1 − ζk) + ξζk

with ζ ≡ (ζ1, . . . , ζk, . . .) in the unit hypercube, and then proving that F.S. transform of the
corresponding s.c. measure tends to zero at infinity for a.e. ζ (Théorème III of [27], pg. 106).
In our case the parameter θ (the analog of ζ ) appears in (2.9), and the F.S. transform of the
corresponding measure is L2 for a.e. θ ∈ [0,1], which implies that it tends to zero at infinity
by the Riemann-Lebesgue lemma.

Remark 2.8 The a.c. part of the spectrum of J
(2)
θ is not, of course, promoted by the random-

ness on the “bump” positions. It makes, however, the Hausdorff dimension of the spectral
measures μsc

ϕ1
and μ̃sc

ϕ2
and, consequently, the intervals I0 and I appearing in Theorems 2.6

and 1.1, be determined exactly. Items a. and b. of Theorem 2.6 thus hold for a bidimensional
model (2.9) with the J

ωi
φ replaced by deterministic sparse models studied in [33] since their

local Hausdorff dimension may be determined as accurately as one wishes, provided the
sparse parameter β is large enough. The p.p. part of the spectrum cannot, however, be estab-
lished except for the random model (see comment after Theorem 2.3 of [8] and Remark 5.9.1
of [33]).

Remark 2.9 It is important to employ our version of Zlatoš’s theorem (Theorem 2.4 of [8]),
which shows the purity of the p.p. spectrum. For, in case that the p.p. spectrum contains
admixture of s.c. spectrum, the latter may, by convolution, generate an a.c. part in J

(2)
θ .

Since a (possibly dense) p.p. superposition to the a.c. spectrum of J
(2)
θ cannot be excluded

in Theorem 2.1 (originated e.g. from the convolution of two—again possibly dense—p.p.
spectra which may be superposed to the s.c. spectrum of Theorem 2.4 of [8]), we would, in
this special case, have no transition at all in the spectral type from one region to another.

Remark 2.10 In the special case of exactly self-similar spectral measures μ and μθ (μθ(λ) =
μ(λ/θ)), a theorem of X. Hu and S.J. Taylor [17] implies that their convolution is a.e.
θ ∈ [0,1] absolutely continuous. This fact has been used by Bellissard and Schulz-Baldes
[4] to construct the first models in d ≥ 2 dimensions with a.c. spectrum and subdiffusive
quantum transport (thought to describe properties of quasicrystals)—see their theorem in
[4] and a previous remark that it cannot be true for all θ due to resonance phenomena;
see also [36]. It is to be remarked that exact self-similarity is a rare property. In particular,
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Combes and Mantica [7] proved that this property does not hold for sparse models, such as
ours (see Theorem 2 of [7]).

Remark 2.11 It is clear that the proof of Theorem 2.6 generalizes to dimensions d > 2,
for even a wider range of parameter values, since the corresponding condition on the r.h.s.
of (2.22), given by α > 1/d , becomes successively weaker for increasing d .

Remark 2.12 We have not proved pointwise decay of the F.S. transform μ̂ of the spectral
measure μ of Jω

φ ; i.e., a bound of the form

∣∣|̂f |2μ(t)
∣∣ ≤ Cf t−α/2 (2.30)

for C∞
0 ([−2,2]) functions f. Indeed, such a bound (2.30) has never been proved except for

classes of sparse models with superexponential sparsity, for which the spectrum is purely s.c.
and the Hausdorff dimension equal to one; in this case, (2.30) assumed the form: ∀ε > 0,
∃0 < Cε < ∞ such that

∣∣|̂f |2μ(t)
∣∣ ≤ Cf,εt

−1/2+ε (2.31)

(see [10, 24, 42]). It is a challenging open problem to prove (2.31) for the present model,
with 1/2 replaced by α/2 on the r.h.s. with α being the local Hausdorff dimension.

3 Conclusions and Open Problems

Our main result (Theorem 2.6) realizes part of the program set by Molchanov in dimensions
d ≥ 2. See also the discussion in Chap. 5 of [11].

Concerning possible physical applications, it seems natural to expect that the present
model might pave the way for a good qualitative description of the Anderson transition in
lightly doped semiconductors, which, in fact, takes place for d ≥ 2! (see Chap. 2.2 of [46]).
We say “pave the way” because the present form of the model is not adequate for a physical
description for at least two reasons—but we argue that both objections may be eliminated
by considering a truly d-dimensional model.

The first reason is, of course, that exponential sparsity (1.8) is too severe, and not physi-
cally reasonable. It must be recalled, however, that the separable model does not take account
of dimensionality in a proper way. For instance, for the usual one-dimensional model (see
e.g. [13, 25]), supposedly adequate to describe heavily doped semiconductors, the three di-
mensional version (analogous to (2.9)) also yields purely p.p. spectrum, by the same proof
of Theorem 2.6, in complete disagreement with the expected transition (see also Sect. 1).
However, “truly” three dimensional sparse models may drastically change, in (1.5), the car-
dinality of {i: |ai | ≤ R} from O(logR) to O(Rd−ε) in dimension d , for some ε > 0, which
is still compatible with (1.5), changing, at the same time, the conditions on the sparsity for
the existence of the transition.

The second reason is that, in one dimension, exponential sparsity (1.8) is critical for the
existence of transition: there is no transition (at least for 0 < pak

< 1) either for subexpo-
nential or for superexponential sparsity (see Sect. 1, for discussion and references). Again,
for “truly” d ≥ 2 dimensional systems we expect this to change, implying a wider region in
the sparsity parameter for which a transition takes place.

As in the Bethe lattice case treated by [22], the sharpness of the transition, i.e., the exis-
tence of a mobility edge, was not proved for the present model. Similarly to the Bethe lattice,
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our separable model has no loops, but it is certainly a constituent part of the full model in d

dimensions (for light doping, as conjectured above). The general character of the arguments
used in Theorem 2.6 to establish the existence of a.c. spectrum, which we commented upon
at the end of the introduction, suggests that the intermediate region might be more accessi-
ble to analysis than the Bethe lattice, but this remains as a challenging open problem. On
the other hand, it is rewarding that already the separable model displays a dramatic “kine-
matic” effect of the dimensionality: for d ≥ 2 the transition becomes truly Anderson-like,
i.e., from a.c. to p.p. spectrum. The a.c. spectrum is the one which most closely corresponds
to the physicist’s picture of “delocalized states”; indeed, the s.c. spectrum has quite different
properties, both dynamic [43] and for the point of view of perturbations (see e.g. [16, 39]).

Finally, it is clear that, besides the intermediate region mentioned above, Theorem 2.6
leaves much room for improvement. Elimination of the set of zero Lebesgue measure in the
s.c. part of the spectrum would be a significant improvement, as a well as clarification of
which alternative holds in item c. of Theorem 2.6.

Acknowledgements DHUM thanks Gordon Slade and David Brydges for their hospitality at UBC. We
thank the referee for the recommendation of research directions and references.

Appendix: The Choice of Parameters

Proposition A.1 Let p ∈ (0,1) and β ≥ 2 be chosen so that (2.19) holds for some a < 4.
Then, there exists ε0 = ε0(p,β, a) > 0 such that (2.20a) and (2.22), with I0 given by (2.21),
are satisfied for any 0 < ε < ε0.

Proof With the definitions (2.3) of r(λ) and (2.6), let I0 = [λ̃−, λ̃+], λ̃− = −λ̃+, be defined
by

r
(
λ̃+ + δ̄ε

) = r∗ (A.1)

for certain r∗ satisfying

1 + v2

4 − δ̄2
ε

< r∗ <
√

β.

By the first inequality there exists λ̃+ > 0 which solves (A.1). Note that r(λ) is monotone
increasing for λ ∈ (0,2). Under the condition (2.19), with a < 4 fixed,

1 + v2

4 − δ̄2
ε

< 1 + a

4 − δ̄2
ε

(
√

β − 1) <
√

β

by (2.6), provided ε < ε1 for some ε1 = ε1(p,β, a) > 0. So, r∗ is well defined and

0 < λ̃+ < λ+

by (2.17), monotonicity of r(λ) and r(λ̃+) <
√

β < β = r(λ+), for β ≥ 2.
In addition, it follows by (A.1) and (2.4 (a-f)) that |λi | ≤ λ̃+ + δ̄ε holds for every i such

that Ãi
ε ∩ I0 �= ∅ and, by definition (2.8), (2.2) and the monotone behavior of r(λ),

α = min
i: Ãi

ε∩I0 �=∅
α(λi) − ε ≥ 1 − ln r∗

lnβ
− ε >

1

2

provided ε < ε0 with ε0 = min(ε1, ln(
√

β/r∗)/ lnβ) > 0, establishing (2.22). This con-
cludes the proof of the proposition. �
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