

GRAPHS AND NON ASSOCIATIVE ALGEBRAS

A. Grishkov and R. Costa

Resumo

To every simple graph $\Gamma = (V, S)$ we define a non associative algebra (over a fixed field k of characteristic $\neq 2$) $A(\Gamma)$ such that $A(\Gamma) \approx A(\Gamma')$ implies $\Gamma \approx \Gamma'$.

1 Introduction

In [2] the authors have constructed an exceptional Bernstein algebra over a field k , associated to a graph $\Gamma = (V, S)$, where V (resp. S) is the set of points (resp. lines) of Γ . The construction is the following. Let $U = \bigoplus_{v \in V} kv$ and $Z = \bigoplus_{(a,b) \in S} kz_a^b$, where z_a^b is the linear operator in U defined by the following rules:

$$\begin{cases} z_a^b = z_b^a \ (\forall a, b \in V) \\ z_a^b(b) = a, z_a^b(a) = b, z_a^b(c) = 0 \text{ where } c \neq a, b; c \in V \end{cases} \quad (1)$$

In the k -vector space $A = A(\Gamma) = U \oplus Z$ we define a commutative multiplication using the second statement in (1) to define products in UZ and imposing that

$$U^2 = Z^2 = 0 \quad (2)$$

It is easily seen that $A(\Gamma)$ satisfies the polynomial identity $(x^2)^2 = 0$ and so we can define on $ke \oplus A(\Gamma)$ the structure of a Bernstein algebra by saying that $2ev = v$, $(\forall v \in V)$ and $ez_a^b = 0$, $(\forall a, b \in V)$. We recall, from [3], that the type of this Bernstein algebra is (r, s) where $r = |V|$ and $s = |S|$. It was conjectured in [2] that, for given graphs Γ and Γ' , the existence of a baric isomorphism between the corresponding Bernstein algebras associated to Γ and Γ' would imply the existence of an isomorphism between Γ and Γ' . In this paper we prove that even the existence of an isomorphism between $A(\Gamma)$ and $A(\Gamma')$ (hence of an isomorphism between the corresponding Bernstein algebras) will imply that, in fact, Γ and Γ' are isomorphic. We use standard notation on Bernstein algebras as in [3] and groups as in [1]. The proof will appear in a final lemma, which follows from Theorem 1, which, in turn, is a consequence of the Lemmas 1,2 and 3 (below).

2 Some lemmas

We keep the same notations as above. Let us consider the following symmetric bilinear form defined on the bases V of U by

$$(v, w) = 1 \text{ if } v = w; (v, w) = 0 \text{ if } v \neq w, \text{ where } v, w \in V.$$

Lemma 1 *Let $\Gamma = (V, S)$ be convex graph and $|V| > 2$, then: (1) For all $v, w \in U$ and $z \in Z$, we have $(vz, w) = (v, wz)$.*

(2) If $\langle \cdot, \cdot \rangle$ is another invariant symmetric bilinear form in U such that (1) above holds then $\langle v, w \rangle = \lambda(v, w)$ for all $v, w \in U$, where $\lambda \in k$ is some constant depending on (\cdot, \cdot) and $\langle \cdot, \cdot \rangle$.

Proof. (1) The proof here is evident, according to (1). In fact, $(vz_v^w, w) = (v, wz_v^w) = 1$, that is, $(v, v) = (w, w)$. In case $(p, q) \neq (v, w)$, $(pz_v^w, q) = (p, qz_v^w) = 0$.

(2) Suppose we have the identity $\langle v, v \rangle = \lambda(v, v) = \lambda \in k$, where λ depends, at least in principle, of $v \in V$ and both scalar products $\langle \cdot, \cdot \rangle$ and (\cdot, \cdot) . Then for all $t \in k$, we have for any two pairs (v, w_1) and (v, w_2) of S , such that $w_1 \neq w_2$; (here we use that $|V| > 2$):

$$\begin{aligned} & \langle (w_1 + tw_2)(z_{w_1}^v + tz_{w_2}^v), v \rangle = \langle v, v \rangle + t^2 \langle v, v \rangle = (1 + t^2)\lambda = \\ & \langle w_1 + tw_2, v(z_{w_1}^v + tz_{w_2}^v) \rangle = \langle w_1 + tw_2, w_1 + tw_2 \rangle = \\ & \langle w_1, w_1 \rangle + t \langle w_1, w_2 \rangle + t^2 \langle w_2, w_2 \rangle \end{aligned}$$

and consequently

$$\langle w_1, w_1 \rangle = \lambda = \langle w_2, w_2 \rangle, \langle w_1, w_2 \rangle = 0. \quad (3)$$

We note that if $J \subset \text{End}U$ is the Jordan algebra generated by Z (that is, the Jordan algebra generated by the operators z_v^w) then $\langle vx, w \rangle = \langle v, wx \rangle$ for all $v, w \in U$, $x \in J$. Moreover, $J = \{x \in \text{End}U \mid (vx, w) = (v, wx), \forall v, w \in U\}$, because the graph Γ is convex. By this and (3) we can write $\langle v_i, v_j \rangle = \lambda \delta_i^j$.

Definition 1 *A basis Λ of the space U is regular if Z has a basis of the type $\{z_v^w : v, w \in \Lambda\}$.*

It is clear that the mapping $\varphi : v \rightarrow tv$ where $v \in \Lambda, t \in k^*$ is an isomorphism. In this way we can always consider regular and orthogonal basis for U .

Definition 2 *Let $\Gamma = (V, S)$ be a graph. Then $v, w \in V$ are called equivalent (denote by $v \sim w$) if $v = w$ or $(v, w) \notin S$ and for every $p \in V \setminus \{v, w\}$, we have $(v, p) \in S$ if and only if $(w, p) \in S$.*

It is clear that this is an equivalence relation in V and $V = \bigcup_{i=1}^n V_i$ where $\{V_1, \dots, V_n\}$ are the equivalence classes of V modulo this equivalence relation. Moreover if U_i is the subspace generated by V_i ,

$$U = \bigoplus_{i=1}^n U_i, U_i = \bigoplus_{v \in V_i} kv, (U_i, U_j) = 0 \text{ if } i \neq j.$$

We denote by $O(U)$ the orthogonal group of the vector space U over k , with the bilinear form above defined.

Lemma 2 $G = \bigoplus_{i=1}^n O(U_i) \oplus k^* \subset \text{Aut } A(\Gamma)$.

Proof. Let us fix two elements $v, w \in V_i$, where $v \neq w$, and elements $\alpha, \beta \in k$ with $\alpha^2 + \beta^2 = 1$. Let us show that the mapping φ , defined below, is an automorphism of the algebra A :

$$\begin{cases} v \rightarrow \alpha v + \beta w \\ w \rightarrow \beta w - \alpha v \\ u \rightarrow u \quad (\text{for all } u \in V \setminus \{v, w\}) \\ z_i^v \rightarrow \alpha z_i^v + \beta z_i^w \\ z_i^w \rightarrow -\beta z_i^v + \alpha z_i^w \end{cases}$$

where z_i^v is a simplified notation to $z_{v_i}^v$, $\{v_1, \dots, v_r\} = \{u \in V \mid z_u^v \neq 0\}$.

For instance, we have

$$\begin{aligned} (vz_i^v)^\varphi &= v^\varphi (z_i^v)^\varphi = (\alpha v + \beta w)(\alpha z_i^v + \beta z_i^w) = \\ &= \alpha^2 v z_i^v + \alpha \beta v z_i^w + \beta \alpha w z_i^v + \beta^2 w z_i^w = \\ &= (\alpha^2 + \beta^2)v_i = v_i^\varphi. \end{aligned}$$

As $(v, v) = 1 = (v^\varphi, v^\varphi)$, $(w, w) = 1 = (w^\varphi, w^\varphi)$, etc, we have $\varphi \in O(U_i)$. It is clear that automorphisms of the type $\varphi = \varphi(v, w, \alpha, \beta)$ generate the group $O(U_i)$. The lemma is proved.

We denote by $so(U)$ the Lie algebra of the all antisymmetric matrices in a space $\text{End } U$.

Lemma 3 For every graph $\Gamma = (V, S)$, $|V| > 2$, we have

$$\text{Der } A(\Gamma) = \bigoplus_{i=1}^n so(U_i) \oplus kd \quad \text{where } [d, \text{Der } A(\Gamma)] = 0.$$

Proof. Choose a regular basis $\Lambda = \{v_1, \dots, v_n\}$ of U (for instance V) and let $t \in \text{Der } A(\Gamma)$. Suppose that

$$v_i^t = \sum_j x_{ij} v_j, \quad i = 1, \dots, n; \quad z_{ij}^t = \sum_{p,q} y_{ij}^{pq} z_{pq},$$

(here we denote by z_{ij} the operator $z_{v_i}^{v_j}$, for convenience of notation). We have

$$(v_i z_{ij})^t = v_i^t z_{ij} + v_i z_{ij}^t \quad \text{for all } (i, j) \in S.$$

$$v_j^t = \sum_p x_{jp} v_p = x_{ii} v_j + x_{ij} v_i + \sum_{p \neq i} y_{ij}^{ip} v_p.$$

From this,

$$y_{ij}^{ij} = x_{jj} - x_{ii}, \quad (i, j) \in S, \tag{4}$$

$$x_{ij} = x_{ji}, \quad (i, j) \in S, \tag{5}$$

$$x_{jp} = y_{ij}^{ip}, (i, p) \in S, (i, j) \in S, p \neq j, \quad (6)$$

$$x_{jp} = 0, (i, j) \in S, (i, p) \notin S. \quad (7)$$

Now from $(v_p z_{ij})^t = 0$ for $p \notin \{i, j\}$, $(i, j) \in S$, we have $v_p^t z_{ij} + v_p z_{ij}^t = 0$ or

$$x_{pi} v_j + x_{pj} v_i + \sum_q y_{ij}^{pq} v_q = 0$$

giving

$$x_{pi} + y_{ij}^{pj} = 0, (i, j) \in S, (p, j) \in S, \quad (8)$$

$$y_{ij}^{pq} = 0, (i, j) \in S, (p, q) \in S, \{p, q\} \cap \{i, j\} = \emptyset. \quad (9)$$

Now we have:

1. $(p, j) \in S$. Then if there exists i such that $(i, p) \in S$ and $(j, i) \in S$, we have $x_{jp} = x_{pj} = y_{ij}^{ip} = -x_{pj}$ so that

$$x_{jp} = x_{pj} = 0 \quad (10)$$

(We have used equations (5),(6) and (8) in the above series of equalities.)

If there exists i such that $(i, j) \in S$ but $(p, i) \notin S$ then

$$x_{jp} = 0 \quad (11)$$

by (7). But as the graph Γ is connected, from (10) and (11) we have

$$x_{pj} = 0, (p, j) \in S \quad (12)$$

2. $(p, j) \notin S$. If there exists i such that $(i, j) \in S, (p, j) \notin S$, then, by (4), we have $x_{pj} = 0$. If there exists i such that $(i, j) \in S, (p, i) \in S$ then

$$x_{pj} = -y_{ij}^{pi} = -x_{jp} \quad (13)$$

where we used equalities (8) and (6).

By (4), $x_{ij} - x_{ii} = y_{ij}^{ij} = y_{ji}^{ji} = x_{ii} - x_{jj}$ so that $x_{ii} = x$ (for all i) and $y_{ij}^{ij} = 0$. Now if $i \not\sim j$ then $(i, j) \in S$ or there exists p such that $(i, p) \in S, (j, p) \notin S$. In any case, $x_{ij} = 0$ by (12) and (7). In case $i \sim j$ then $x_{ij} = -x_{ji}$.

Reciprocally if $t : U \oplus Z \rightarrow U \oplus Z$ is a linear mapping such that $x_{ij} = 0$ when $i \not\sim j, x_{ij} = -x_{ji}$ if $i \sim j, x_{ii} = x, y_{ij}^{ij} = 0, y_{ij}^{pq} = 0$ when $\{i, j\} \cap \{p, q\} = \emptyset, y_{ij}^{ip} = x_{jp}$ then t is a derivation of $A(\Gamma)$, as it can be easily verified.

Corollary 1 If $\Gamma = (V, S), |V| > 2, (Aut A(\Gamma))^\circ = k^* \times \prod_{i=1}^n SO(U_i)$, where $(Aut A(\Gamma))^\circ$ is the connected component of the group of automorphisms of $A(\Gamma)$.

Proof. By Lemma 2, $G_1 = k^* \times \prod_{i=1}^n SO(U_i) \subset G = (Aut A(\Gamma))^\circ$ and by Lemma 3, the Lie algebra L_1 of the algebraic group G is a subalgebra of the Lie algebra $L = \bigoplus_{i=1}^n so(U_i) \oplus k$. But it is obvious that $L_1 \approx L$, then $G_1 \approx G$.

3 Proof of the two main theorems.

The strategy now is to prove Theorem 1, which is a tecnical one, and then to obtain our main result as a corollary(Theorem 2).

Theorem 1 *Let Γ be a simple graph, $A(\Gamma)$ the corresponding k -algebra, Λ_1 and Λ_2 two regular bases of $U \subset A(\Gamma)$. Then there exists an automorphism $\varphi \in \text{Aut } A(\Gamma)$ such that $\Lambda_1^\varphi = \Lambda_2$.*

The idea of the proof of this theorem is the following:

1. First we prove that for every regular basis Λ of the space U and every maximal vector space $U_0 \subset P = \{v \in U \mid \dim vZ = r(\Gamma)\}$ there exists a basis Λ_0 of the space U_0 which has the form $\Lambda_0 \subset \Lambda$. Here $r(\Gamma) = \min_{v \in V} \{l(v)\}$ where $l(v) = |\{w \mid (w, v) \in S\}|$.

2. Induction by $\dim U, U = U_0 \oplus U_1, (U_0, U_1) = 0$.

Theorem 2 *Let Γ and Γ' be two graphs, simple and connected, such that the k -algebras $A(\Gamma)$ and $A(\Gamma')$ are isomorphic. Then the graphs Γ and Γ' are isomorphic.*

Proof. Let $\Gamma = (V, S)$, $\Gamma' = (V', S')$ and let $\varphi : A(\Gamma) \rightarrow A(\Gamma')$ be an isomorphism. Then $U^\varphi = U'$ and $Z^\varphi = Z'$. Let $V'' = \varphi^{-1}(V')$ be another regular basis of U so that the set $\{z_a^b \mid a, b \in V''\}$ is another basis of Z . If $S'' = \{(a, b) \mid z_a^b \neq 0\}$ then $\Gamma'' = (V'', S'')$ is a graph isomorphic to Γ by Theorem 1. But Γ'' and Γ are isomorphic, which ends the proof.

References

- [1] Capobianco, M. and Molluzzo, J.: *Examples and counterexamples in graph theory*, North Holland, 1978.
- [2] Costa R. and Guzzo J.H.: *A class of exceptional Bernstein algebras associated to graphs*, Comm. Alg. 25 (1997), No.7, 2129-2139.
- [3] Lyubich, Yu.I.: *Mathematical Structure in Population Genetics*, Biomathematics, 22, Springer, Berlin-Heidelberg-New-York, 1992.

A. Grishkov and R. Costa
Universidade de São Paulo
Instituto de Matemática e Estatística
Caixa Postal 66281
05315-970, São Paulo, Brazil
E-mail: rcosta@ime.usp.br and grishkov@ime.usp.br