GRAPHS AND NON ASSOCIATIVE ALGEBRAS

A. Grishkov and R. Costa

Resumo

To every simple graph T' = (V,5) we define a non associative algebra (over a fixed
field k of characteristic # 2) A(L') such that A(I") ~ A(I") implies I' ~ T".

1 Introduction

In [2] the authors have constructed an exceptional Bernstein algebra over a field k, associated
to a graph I' = (V,.S), where V(resp.S) is the set of points (resp.lines) of I'. The construction
is the following. Let U = ®yevhkv and Z = @, p)cskz!, where 2! is the linear operator in U
defined by the following rules:

2t =2t (Ya,be V)
(1)
z2(b) = a,zl(a) = b, 2%(c) = 0 where ¢ # a,b;c € V

In the k-vector space A = A(T') = U ® Z we define a commutative multiplication using the
second statement in (1) to define products in UZ and imposing that

Ut=2°=0 (2)

It is easily seen that A(T') satisfies the polynomial identity (z%)* = 0 and so we can define
on ke ® A(T') the structure of a Bernstein algebra by saying that 2ev = v, (Vv € V) and
ezl =0, (Va,b€ V). We recall, from [3], that the type of this Bernstein algebra is (7, s) where
r = |V|and s = |S|. It was conjectured in [2] that, for given graphs I' and I, the existence of a
baric isomorphism between the corresponding Bernstein algebras associated to I and I would
imply the existence of an isomorphism between I' and I". In this paper we prove that even the
existence of an isomorphism between A(I') and A(I") (hence of an isomorphism between the
corresponding Bernstein algebras) will imply that, in fact, I' and I are isomorphic. We use
standard notation on Bernstein algebras as in [3] and groups as in (1]. The proof will appear in
a final lemma, which follows from Theorem 1, which, in turn, is a consequence of the Lemmas

1,2 and 3 (below).




2 Some lemmas

We keep the same notations as above. Let us consider the following symmetric bilinear form
defined on the bases V' of U by

(v,w)=1 if v=w;(v,w) =0 if v+#w, where v,w € V.

Lemma 1 LetT' = (V. S) be convex graph and
we have (vz,w) = (v, wz).

(2) If <, > is another invariant symmetric bilinear form an U such that (1) above holds then
<wv,w>= Nov,w) for all v,w € U, where \ € k is some constant depending on (,) and <, > .

V| > 2 then: (1) For all v,w & U and z € Z,

Proof. (1) The proof here is evident, according to (1). In fact, (vz¥ w) = (v,wzy) = 1, that
is, (v,v) = (w,w). In case (p,q) # (v, w), (pz, 4) = (p,qz») = 0.

(2) Suppose we have the identity < v,y »>= AMv,v) = X € k, where \ depends, at least in
principle, of v € V' and both scalar products <, > and (,). Then for all ¢ € k, we have for any
two pairs (v,w1) and (v,w;) of S, such that w, # wy: (here we use that [V| > 2):

< (w1 +twa)(2h, + 122 ), 0 >=< v,0 > +2 < v, 0 >= (1 + A =

wy

<wy + twy, v(zy, +t2Y) >=< wy + twy, wy + twy >=
w) 2 1

W

<wy,un > A< wywy > A+t < wy, wy >

and consequently
< Wy, wy >= X =< wy, wy >, < wy, wy >= 0. (3)

We note that if J ¢ EndU is the Jordan algebra generated by 7 (that is, the Jordan algebra
generated by the operators 2*) then < vz, w >=< v,wr > for all v,w e U, x € J Moreover,
J ={z € EndU|(vz,w) = (v,wx),Yv,w € U}, because the graph T is convex. By this and (3)
we can write < v;, v; >= \J].

Definition 1 A basis A of the space U is reqular if Z has a basis of the type {z 1 v,w € A}.

It is clear that the mapping ¢ : v — tv where v € At € k* is an isomorphism. In this way we
can always consider regular and orthogonal basis for [/,

Definition 2 Let T' = (V,5) be a graph. Then v,w € V are called equivalent (denote by
v~w)ifv=wor (v,w) &S and for every p € V \ {v,w}, we have (v,p) € S if and only if
(w,p) € S.

It is clear that this is an equivalence relation in V and V = Ul Vi where {Vi,...,V,} are
the equivalence classes of V modulo this equivalence relation. Morcovere if U; is the subspace
generated by V;,

U=&,U,Ui = ®yevkv, (U, U;Y=0 if 4 % 4.
We denote by O(U/) the orthogonal group of the vector space U over k, with the bilinear form
above defined.
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Lemma 2 G = & ,0(U;)é k" C AutA(T).

Proof. Let us fix two elements v, w € V;, where v # w, and elements «, 3 € k with 4% =1
Let us show that the mapping ¢, defined below, is an automorphism of the algebra A :

v — av + fw

w — fw — av

u—u (forall uweV\{vw})
2y = az! + B2

zl! — =Bz + azl’

where 2’ is a simplified notation to ¥, {vy,...,v,} = {u € V|z} # 0}.

For instance, we have

(v2?)¥ = v*(2?)? = (v + Pw)(az} + Bz) =
a?vzy + affuzl + Bowz] + Brwzf =
(o + BH)v; = v; = vf.

As (v,v) = 1 = (v¥,v%), (w,w) = 1 = (w?,w¥)), ete, we have ¢ € O(U;). 1t is clear that
automorphims of the type ¢ = (v, w, o, 3) generate the group O(U;). The lemma is proved.

We denote by so(U) the Lie algebra of the all antisymmetric matrices in a space EndU.
Lemma 3 For cvery graph ' = (V,S),|V| > 2, we have
DerA(T) = @ so(U,) @ kd  where d, DerA(T')] = 0.

Proof. Choose a regular basis A = {vy,...,v,} of U (for instance V) and let ¢ € DerA(L).

Suppose that
R : vt e P
U = 2 Tijvj, i =1,...,n2; = E Yij “pa
J pa

I for convenience of notation). We have

i)

(here we denote by z;; the operator z

(vizij)' = vizij + vizf; forall (i,5) € S.

ot y § - . E : ip,
v = E Tjplp = TiiVj + &ijvi + Yi; Up-

P p#i

. From this,

!/:,;7 = gj; — Ty (hJ) €5, (4)

Tij = Tji, (I/) (< S| (5)



Tip =40, (i,p) € S.(i,) € S,p # J. (6)

2, =0,(i,7) € S,(i,p) € S. (7)
Now from (vpzi;) = 0 for p & {i,j},(i,7) € S, we have vyz;; + v,2l; = 0 or

LpiVj + TpjVi + E 1/”1r =0

giving
Zpi + UZJ =0,(,7) €S, (p,Jj) €S, (8)

Yl =0,(i,5) € S,(p,q) € S {p, g} N {i, j} = 0. (9)

Now we have:
1. (p,j) € S. Then if there exists ¢ such that (i,p) € S and (j,7) € S, we have x;, = x,; =
Yy = —xp; s0 that

Tjp = Tpj = 0 (10)

(We have used equations (5),(6) and (8) in the above series of equalities.)
If there exists i such that (7,7) € S but (p,7) € S than

rip =0 (11)
by (7). But as the graph I is connected, from (10) and (11) we have
Zp; = 0,(pij) €8 (12)

2. (p,j) € S. If there exists 7 such that (i,7) € S,(p,7) ¢ S, then, by (4), we have z,; = 0.

If there exists ¢ such that (4,7) € S, (p,7) € S then
Tpj = —y:'; = =Ty (13)
where we used eqlldll[leb (8) and (6).

By (4), zj; — z:i = Jl] = sz = T;; — xj; so that z; = & (for all 7) and ]/:j =0. Now if i £ j
then (i, j) € S or there exists p such that (i.p) € S,(j,p € ). In any case, x;; = 0 by (12) and
(7). In case i ~ j then x;; = —z;.

Reciprocally if ¢ : U®Z — U@ Z is a linear mapping such that z;; = O wheni £ j, z;; = —x;;
ifi~ jay =ua (/u =0, J”" = 0 when {4,j} " {p,q} = o, y,’f = 1, then t is a derivation of
A(), as it can be easily verified.

Corollary 1 IfT' = (V,S),|V]| > 2, (Aut A('))” = k* x [T'_, SO(U), where (Aut A(1'))° 1s the
connected component of the group of automorphisms of A(1).
Proof. By Lemma 2, Gy = k* x [[I", SO(U,) € G = (AuwtA(T))° and by Lemma 3, the Lie

algebra L, of the algebraic group G is a subalgebra of the Lie algebra L = @ so(U,) & k. But
it is obvious that L, =~ L, then G| =~ (.
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3 Proof of the two main theorems.

The strategy now is to prove Theorem 1, which is a tecnical one, and then to obtain our main
result as a corollary(Theorem 2).

Theorem 1 Let 1 be a simple graph, A(T') the corresponding k-algebra, Ay and Ay two regular
bases of U C A(L). Then there exists an autommorphism p € Aut A(L) such that AY = A,.

The idea of the proof of this theorem is the following:
1.First we prove that for every regular basis A of the space U and every maximal vector
space Uy € P = {v € UldimvZ = r(I')} there exists a basis Ao of the space Uy which has the
form Ag C A. Here r(I") = Hli‘l/l{l(v)} where ((v) = [{w|(w,v) € S}|.
ve
2. Induction by dim U, U = Uy & Uy, (Up, Uy) = 0.

Theorem 2 Let I' and 1 be two graphs, simple and connected, such that the k-algebras A(T)
and A(T") are isomorphic. Then the graphs T' and I" are isomorphic.

Proof. Let I' = (V,S), I" = (V',8') and let ¢ : A(T') — A(I") be an isomorphism. Then
U? = U and 2% = Z'. Let V" = ¢ (V') be another regular basis of U so that the set
{28|a,b € V"} is another basis of Z. If §" = {(a,b)|z} # 0} then I = (V",S") is a graph
isomorphic to I' by Theorem 1. But I and ' are isomorphic, which ends the proof.
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