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Abstract We obtain classical solutions of λ-deformed σ -
models based on SL(2,R)/U (1) and SU (2)/U (1) coset
manifolds. Using two different sets of coordinates, we derive
two distinct classes of solutions. The first class is expressed in
terms of hyperbolic and trigonometric functions, whereas the
second one in terms of elliptic functions. We analyze their
properties along with the boundary conditions and discuss
string systems that they describe. It turns out that there is an
apparent similarity between the solutions of the second class
and the motion of a pendulum.

1 Introduction

Classical solutions are one of the main subjects in Quan-
tum Field Theory and play an important role in studying
its dynamics. A large class of such configurations are the
so-called solitons, for instance see [1,2]. In general, soli-
tons are solutions which retain their shape, as they propagate
at constant velocity. Usually such lumps are topological in
nature and saturate a BPS bound. The most studied exam-
ple, the kinks, interpolates between different classical vacua
of the theory. It goes without saying that the existence of
kink solutions requires a non-trivial vacuum structure. In gen-
eral, these configurations are excitations of the theory, which
even though they are not elementary, they exhibit a particle-
like behaviour. Kinks can be made to scatter and even create
bound states, which are called breathers. An appealing fact
about these objects is that the equations describing them are
obtained using topological arguments or exploiting integra-
bility and not by attacking the equations of motion straight-
forwardly. The reason is the high non-linearity of the equa-
tions of motion, which makes the derivation of their solu-
tion practically impossible. Having classical solutions one
can utilise them in studying several aspects of QFT. These
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include semi-classical quantization, the vacuum structure of
the theory and the effective theory around a non-trivial back-
ground solution.

In this work, focusing on two-dimensional field theories,
we obtain classical solutions of an integrable class of defor-
mations of WZW-models, namely the λ-deformations intro-
duced in [3]. The generalization of these models for symmet-
ric spaces is given in [4], while the asymmetric gauging is
constructed in [5], building on the setup of [6]. Recently, a lot
of attention has been paid in various aspects of these theories.
The reason is that they also possess non-perturbative duality
symmetries, enabling the exact calculations of various quan-
tities among which β-functions, C-functions and anomalous
dimensions for a large class of single and composite opera-
tors (see [7–10] and references therein).

It would be interesting though, to move one step further
and obtain explicit expressions for classical solutions in order
to enlarge the knowledge about the dynamics of such theo-
ries. Solving directly the equations of motion is a very hard
task due to the high non-linearity. To overcome this, we study
λ-deformations on the coset manifolds SL(2,R)/U (1) and
SU (2)/U (1). Even though the non-linearity is still present
and the equations of motion are not drastically simplified,
there is a way to proceed. In the case of non-linear sigma
models having two-dimensional target space, solving the
equations corresponding to the conservation of the Energy–
Momentum tensor is essentially equivalent to solving the
equations of motion. There is a small caveat in this equiva-
lence but it does not affect our results. In any case, exploiting
this remark, along with the fact that these equations are first
order and much simpler than the equations of motion, we
obtain two different classes of solutions of the models under
consideration. It is not clear how they fit in the spectrum
of the theory, since our results are not based on topological
arguments.

The structure of the paper is as follows: in Sect. 2 we
present the specific models under study emphasizing the rela-
tions between them via analytic continuations. These rela-
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tions are useful when deriving solutions of the same class.
In Sect. 3 we present the method for deriving the solutions
of this work. By solving the Energy–Momentum tensor con-
servation equations we obtain two classes of solutions for
vectorially and axially gauged SL(2,R)/U (1) coset model,
as well as for the SU (2)/U (1) model. In Sect. 4 we analyze
the solutions and also present the admissible boundary con-
ditions and possible brane configurations associated to them.
In addition, we discuss the effects of the non-perturbative
dualities on the solutions. Section 5 contains conclusions and
future directions. Finally, let us mention that in Appendix B
we briefly review some aspects of Jacobi elliptic functions.
The properties of these functions are required in order to
understand properties of the second class of solutions. Our
main results are gathered in Tables 1, 2, 3, 4, 5 and 6.

2 λ-deformations on coset manifolds

In this section we introduce the models that will occupy
our interest, namely the SL(2,R)/U (1) and SU (2)/U (1)

λ-deformed models. The vectorially gauged SU (2)/U (1) λ-
deformed model has been worked out in [3]. In [11] its rela-
tion to the non-compact variant, i.e. the SL(2,R)/U (1) λ-
deformed model, was presented. The axial gauging of these
models was constructed in [5]. Some additional technical
details on the parametrization of the models are given in
Appendix A.

2.1 SU (2)/U (1) vector gauging

As a first example we present the SU (2)/U (1) λ-deformed
WZW model in the case of vector gauging.1 The action reads

S = k

π

∫
d2σ e2Φ

×
[

1 + λ

1 − λ
∂+y1 ∂−y1 + 1 − λ

1 + λ
∂+y2 ∂−y2

]
, (1)

where the conformal factor reads

e−2Φ = 1 − y2
1 − y2

2 . (2)

Coordinates y1 and y2 are related to the usual (θ, φ) coordi-
nates by

y1 = cos θ cos φ, y2 = cos θ sin φ. (3)

It is evident that the coordinates y1 and y2 satisfy the inequal-
ity y2

1 + y2
2 ≤ 1. For completeness, we also write down the

1 As the group SU (2) does not possess any outer automorphisms, the
axial gauging is equivalent to a field re-definition of the vector gauged
model, namely θ → π/2 − θ .

equations of motion, which read

∂+∂−y1 =
y1

(
∂+y1∂−y1 −

(
1−λ
1+λ

)2
∂+y2∂−y2

)

y2
1 + y2

2 − 1

+ y2 (∂−y1∂+y2 + ∂+y1∂−y2)

y2
1 + y2

2 − 1
, (4)

and

∂+∂−y2 =
y2

(
∂+y2∂−y2 −

(
1+λ
1−λ

)2
∂+y1∂−y1

)

y2
1 + y2

2 − 1

+ y1 (∂−y2∂+y1 + ∂+y2∂−y1)

y2
1 + y2

2 − 1
. (5)

Note that the action (1), including the SL(2,R)/U (1)models
presented below, respects the duality symmetries

λ → 1/λ, k → −k (6)

and also

λ → −λ, y1 ↔ y2. (7)

These symmetries, if enforced on the solutions, imply that
the parameters of the configurations transform in a specific
way. We will come back to this later on.

The action (1) is also written in a new conformally flat
form as

S = k

π

∫
d2σ e2Φ̃

[
∂+χ∂−χ + ∂+ψ∂−ψ

]
, (8)

where the conformal factor reads

e−2Φ̃ = e−2χ −
(

1 + λ

1 − λ
− 4λ

1 − λ2 cos2 ψ

)
(9)

and the coordinates χ and ψ are defined in term of θ and
φ by Eqs. (135) and (121). These coordinates are valued in
an appropriate domain, so that the dilaton is real and the
conformal factor e−2Φ̃ positive.

2.2 SL(2,R)/U (1) vector gauging

Starting with the SU (2)/U (1) model and applying the fol-
lowing transformations

k → −k, κ → iκ, θ → iρ. (10)

we obtain the SL(2,R)/U (1)V λ-deformed model.2 Also,
the level k ceases being quantized, but this does not concern
our analysis. The transformation of κ is required in order to
leave the coupling λ invariant. In addition, the transformation
of θ amounts to exchanging the cosines to hyperbolic cosines.

2 From now on we use this abbreviation for the vectorially gauged
SL(2,R)/U (1) model and SL(2,R)/U (1)A for the axially gauged
model presented below.
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Notice that, the overall sign of the action, which is due to the
transformation of k, is absorbed by the dilaton, so that the
later remains manifestly positive in the new coordinates. In
this case, the action reads

S = k

π

∫
d2σ e2Φ

×
[

1 + λ

1 − λ
∂+y1 ∂−y1 + 1 − λ

1 + λ
∂+y2 ∂−y2

]
, (11)

where the conformal factor reads

e−2Φ = y2
1 + y2

2 − 1 (12)

and the coordinates y1 and y2 are related to the coordinates
ρ and φ as

y1 = cosh ρ cos φ, y2 = cosh ρ sin φ. (13)

The equations of motion coincide with (4) and (5), since the
actions (1) and (11) as functionals of y1 and y2, differ only
by an overall sign. Nevertheless, in this case the coordinates
y1 and y2 are defined in the complimentary region satisfying
y2

1 + y2
2 ≥ 1. Following the steps of the previous section, the

action (11) can be rewritten as

S = k

π

∫
d2σ e2Φ̃

[
∂+χ∂−χ + ∂+ψ∂−ψ

]
, (14)

where the conformal factor reads

e−2Φ̃ = 1 + λ

1 − λ
− 4λ

1 − λ2 cos2 ψ − e−2χ (15)

and the coordinates χ and ψ are defined in terms of ρ and φ

by (120) and (121).

2.3 SL(2,R)/U (1) axial gauging

Implementing the transformations ρ → ρ + iπ/2, which is
equivalent to

yI → iyI , I = 1, 2, (16)

on SL(2,R)/U (1)V model we obtain the SL(2,R)/U (1)A
λ-deformed model. Interestingly enough, the transformation,
relating the axial and vector gauged WZW models at full
quantum level [12], also relates the λ-deformed theories (at
least semi-classically). The corresponding action reads

S = k

π

∫
d2σ e2Φ

×
[

1 + λ

1 − λ
∂+y1 ∂−y1 + 1 − λ

1 + λ
∂+y2 ∂−y2

]
, (17)

where the conformal factor reads

e−2Φ = y2
1 + y2

2 + 1 (18)

and the coordinates y1 and y2 are related to the coordinates
ρ and φ as

y1 = sinh ρ cos φ, y2 = sinh ρ sin φ. (19)

The equations of motion are obtained by applying the trans-
formation (16) to the equations of motion (4) and (5). It
amounts to setting − 1 to + 1 on the denominators of the
right-hand-sides. The action (17) can be rewritten as

S = k

π

∫
d2σ e2Φ̃

[
∂+χ∂−χ + ∂+ψ∂−ψ

]
, (20)

where the conformal factor reads

e−2Φ̃ = 1 + λ

1 − λ
− 4λ

1 − λ2 cos2 ψ + e−2χ (21)

the coordinates χ and ψ are defined in terms of ρ and φ by
Eqs. (131) and (121). Finally, notice that the action (20) is
obtain by (14) by sending χ → χ + iπ/2.

3 Classical solutions

In this section we derive two different classes of solutions
for each model. The first class of solutions is derived using
the actions in terms of the coordinates y1 and y2. For the
second class of solutions we use the actions in terms of the
coordinates χ and ψ . Even though we could have used a
different ansatz to solve the equations of motion of the same
action, i.e. the one in terms of y1 and y2, we employ the
action in terms of χ and ψ , which motivates the ansatz more
naturally.

The first class of solutions, corresponding to the actions
(1), (11) and (17), is expressed using hyperbolic-
trigonometric functions, whereas the second one, corre-
sponding to the actions (8), (14) and (20), in terms of Jacobi
elliptic functions. As expected, the relations of the models
via analytic continuation, are also reflected to the classical
solutions of the same type as well. Recall that (16) relates the
axially and vectorially gauged SL(2,R)/U (1)models, while
the SU (2)/U (1) and the vectorially gauged SL(2,R)/U (1)

model merely differ by the fact that the coordinates are val-
ued in complementary regions. Therefore, solving one model
is enough for solving all of them and the differences of the
solutions are highlighted wherever it is necessary.

3.1 A remark on the solution of the equations of motion

It is evident that solving directly the equations of motion (4)
and (5) is quite difficult. To untie our hands, a trick is needed
which will allows us to sidestep this obstacle. Let us consider
a non-linear sigma model (we do not include Bμν field since
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it is absent in our models)

S = 1

2π

∫
d2σ Gμν(X)∂+Xμ∂−Xν . (22)

The non-vanishing components of the Energy–Momentum
tensor are given by

T±± = Gμν∂±Xμ∂±Xν (23)

satisfying ∂∓T±± = 0 on-shell. Due to the previous equa-
tions, it follows that T±± satisfy

Gμν∂±Xμ∂±Xν = f±(σ±). (24)

These are essentially, first integrals of the equations of motion
and, as known, solutions of the equations of motion also solve
(24). In addition, f±(σ±) are functions, which can be set to
constants, denoted asC±. Without loss of generality, we may
additionally select C± = C . Performing a Lorentz boost on
the world-sheet we may always restore unequal values of
C+ and C−. The models under study have a positive definite
metric, thus these constants are necessarily positive. Notice
that in order to embed this model in string theory, one has to
consider the tensor product of this theory with another one,
so that the overall Energy–Momentum vanishes, implying
that the Virasoro constraints are satisfied. Slightly abusing
the terminology and having the previous remark in mind, we
will refer to (24) as the Virasoro constraints.

As mentioned, the Energy–Momentum tensor is con-
served on-shell. Nevertheless, the converse is not generally
true, unless the target space is two-dimensional. In this case
it follows that

(
∂−T++
∂+T−−

)
=

(
∂+X1 ∂+X2

∂−X1 ∂−X2

) (
δL
δX1
δL
δX2

)
, (25)

where L is the Lagrangian density and δL/δXμ is the vari-
ation of the action with respect to the Xμ field. Thus, if the
matrix on the right-hand-side is invertible, the solutions of
the Virasoro constraints are also solutions of the equations
of motion.3 This approach resembles the Pohlmeyer reduc-
tion, where one gauge fixes the world-sheet diffeomorphisms
[13].

3.2 First class of solutions

Having clarified our methodology, we derive the solutions of
the models presented in the previous section.

3 Of course it is possible that the solutions of the Virassoro constraint
still solve the equations of motion even if the matrix is not invertible,
but this is not the case for the solutions of this work.

3.2.1 SL(2,R)/U (1)V model

As a first example we derive classical solutions of the model
described by the action (11). The Virasoro constraints (24)
constitute the pair of differential equations

1 + λ

1 − λ
(∂±y1)

2 + 1 − λ

1 + λ
(∂±y2)

2 = m2

4
(y2

1 + y2
2 − 1), (26)

where we have set C = m2/4 so that the right-hand-side is
manifestly positive, as the left-hand-side. The factor of 1/4
is introduced for future convenience. In order to obtain non-
trivial solutions, it is required that m �= 0. We can decouple
the equations as follows

1 + λ

1 − λ
(∂±y1)

2 = m2

4

(
y2

1 + c± − 1

2

)
, (27)

1 − λ

1 + λ
(∂±y2)

2 = m2

4

(
y2

2 − c± − 1

2

)
. (28)

The equations above have similar form, their only differ-
ence is the sign in front of c±. Thus, solving one equation
suffices to obtain solutions for both equations. Considering
Eq. (27), we immediately obtain that

∂±y1√
y2

1 + c± − 1
2

= s±
m

2

√
1 − λ

1 + λ
, (29)

where s± are constants that take independently the value 1 or
− 1. From now on, we also set c± = c.4 Since is it straight-
forward to solve Eq. (29), we just present the solutions and
make some comments.

First, the functional form of the solution of (29) depends
on the value of the constant c. It turns out that the parametric
space is divided in three regions, namely c > 1/2, 1/2 >

c > −1/2 and −1/2 > c, along with the limiting values
c = ±1/2. Secondly, a quick glimpse on (28) suffices in order
to realize that the solutions for y2 are obtained from the y1

solutions by sending c → −c and λ → −λ, while adapting
the allowed values for c. Finally, one should combine the
solutions for y1 and y2, taking into account the requirement
that their derivatives are linearly independent as noted in
(25). Essentially, this condition implies that the solutions for
y1 and y2 should not be functions of the same variable. In
following we choose y1 = y1(τ ) and also discard the various
signs s±. These can be recovered by parity transformations
of the world-sheet coordinates, combined with the discrete
symmetries of the action, such as y1 → −y1. We gather the
solutions appropriately matched in Table 1. One can verify

4 One can show that this choice is a consistency condition of the equa-
tions. In order to keep our expressions as simple a possible, we present
the derivation having set the constants c+ and c− to equal values all
along the calculation.
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Table 1 First class of solution
for the SL(2,R)/U (1)V
λ-deformed model

y1(τ ) y2(σ )

c > 1
2

√
c − 1

2 sinh
(
m

√
1−λ
1+λ

(τ − τ0)
) √

c + 1
2 cosh

(
m

√
1+λ
1−λ

(σ − σ0)
)

1
2 > c > − 1

2

√
1
2 − c cosh

(
m

√
1−λ
1+λ

(τ − τ0)
) √

c + 1
2 cosh

(
m

√
1+λ
1−λ

(σ − σ0)
)

− 1
2 > c

√
1
2 − c cosh

(
m

√
1−λ
1+λ

(τ − τ0)
) √

− 1
2 − c sinh

(
m

√
1+λ
1−λ

(σ − σ0)
)

c = 1
2 A exp

(
m

√
1−λ
1+λ

(τ − τ0)
)

cosh
(
m

√
1+λ
1−λ

(σ − σ0)
)

c = − 1
2 cosh

(
m

√
1−λ
1+λ

(τ − τ0)
)

A exp
(
m

√
1+λ
1−λ

(σ − σ0)
)

that these indeed satisfy the equations of motion (4) and (5).5

Notice that τ0 and σ0 are integration constants, which may
be regarded as collective coordinates of the solutions.

3.2.2 SL(2,R)/U (1)A model

In the axial gauging case, writing down the Virasoro con-
straints corresponding to the action (17), one realizes that
the solutions are obtained by setting

c → −c, 1/2 → −1/2 (30)

on the coefficients of various functions in Table 1, while
neglecting the overall minus sign to compensate the i factor
of the transformation (16). Note that the range of c should be
adjusted appropriately. The solutions are gathered in Table 2.

3.2.3 SU (2)/U (1) model

The solutions of the SU (2)/U (1) model are obtain by the
ones of SL(2,R)/U (1)V case, for m2 → −m2. As this
coset is compact, the admissible values of the parameter c,
are bounded. In particular, it turns out that c satisfies the
inequality 1/2 ≥ c ≥ −1/2. The solution are gathered in
Table 3. Notice that all solutions in Tables 1 and 2 (except
the exponential ones) can be cast in the form given above.

3.3 Second class of solutions

The second class of solutions is expressed in terms of Jacobi
elliptic functions. A short review is given in Appendix B
where all the necessary definitions are provided, along with
several properties of these functions. A careful study will
help the unfamiliar reader for the better understanding of the
material that follows.

5 Recall that the SL(2,R)/U (1)V and the SU (2)/U (1) share the same
equations of motion.

3.3.1 SL(2,R)/U (1)V model

Let us now derive solutions for the action (14). We implement
the same strategy that we used for the first class of solutions
by solving the Virasoro constraints and combining the solu-
tions appropriately to satisfy the equations of motion. Again,
the form of the metric implies that the constants appearing
at the right-hand-sides of the Virasoro constraints have to be
positive definite. Thus, in the following we obtain solutions
of the equations

(∂±χ)2 + (∂±ψ)2

= m2

4

(
1 + λ

1 − λ
− 4λ

1 − λ2 cos2 ψ − e−2χ

)
. (31)

these equations can be decoupled as

(∂±χ)2 + m2

4
e−2χ = m2

4
c2±, (32)

(∂±ψ)2 − m2

4

(
1 + λ

1 − λ
− 4λ

1 − λ2 cos2 ψ

)
= −m2

4
c2±.

(33)

Positivity of the constants on the right-hand-side of (32) is
required, due to the manifest positivity of the left-hand-side.
Immediately, it follows that χ is given by

eχ = 1

c
cosh

[
m c

(
σ+ ± σ−

2
+ α

)]
, (34)

where α is an integration constant. Notice that the Eq. (32)
are incompatible, unless c+ = c− = c > 0. Moving to the
second pair of equations we can factorise it as

(∂±ψ)2 = m2

4
�2

(
1 − κ2 cos2 ψ

)
, λ > 0, (35)

(∂±ψ)2 = m2

4
�2

(
1 − κ2 sin2 ψ

)
, λ < 0, (36)

where κ2 is the elliptic modulus, which is given by

κ2 = 4|λ|
1 − λ2

1

�2 (37)

123



  545 Page 6 of 22 Eur. Phys. J. C           (2022) 82:545 

Table 2 First class of solution
for the SL(2,R)/U (1)A
λ-deformed model

y1(τ ) y2(σ )

c > 1
2

√
c − 1

2 cosh
(
m

√
1−λ
1+λ

(τ − τ0)
) √

c + 1
2 sinh

(
m

√
1+λ
1−λ

(σ − σ0)
)

1
2 > c > − 1

2

√
1
2 − c sinh

(
m

√
1−λ
1+λ

(τ − τ0)
) √

c + 1
2 sinh

(
m

√
1+λ
1−λ

(σ − σ0)
)

− 1
2 > c

√
1
2 − c sinh

(
m

√
1−λ
1+λ

(τ − τ0)
) √

− 1
2 − c cosh

(
m

√
1+λ
1−λ

(σ − σ0)
)

c = 1
2 A exp

(
m

√
1−λ
1+λ

(τ − τ0)
)

sinh
(
m

√
1+λ
1−λ

(σ − σ0)
)

c = − 1
2 sinh

(
m

√
1−λ
1+λ

(τ − τ0)
)

A exp
(
m

√
1+λ
1−λ

(σ − σ0)
)

Table 3 First class of solution
for the SU (2)/U (1)

λ-deformed model

y1(τ ) y2(σ )

1
2 > c > − 1

2

√
1
2 − c cos

(
m

√
1−λ
1+λ

(τ − τ0)
) √

1
2 + c cos

(
m

√
1+λ
1−λ

(σ − σ0)
)

and � is defined by the equation

�2 = 1 + |λ|
1 − |λ| − c2. (38)

As these equations are of the form of (140), it follows that
their solution is

ψ = am

[
m �

(
σ+ ∓ σ−

2
+ β

) ∣∣∣κ2
]

+ π

2

λ + |λ|
2|λ| , (39)

where am(x |m) is the Jacobi amplitude.6 The reality of the
solutions requires �2 ≥ 0, which implies that c is subject to
the constraint√

1 + |λ|
1 − |λ| ≥ c ≥ 0. (40)

Choosing χ = χ(τ) (and necessarily ψ = ψ(σ)) we obtain
the solution

eχ(τ) = 1

c
cosh [m c (τ − τ0)] , (41)

ψ(σ) = am
[
m � (σ − σ0)

∣∣∣κ2
]

+ π

2

λ + |λ|
2|λ| . (42)

Of course, the class of solutions χ = χ(σ) and ψ = ψ(τ)

is also admissible.

3.3.2 SL(2,R)/U (1)A model

For the axial gauging we have to solve the Virasoro con-
straints

(∂±χ)2 + (∂±ψ)2 = m2

4

[
1 + λ

1 − λ

− 4λ

1 − λ2 cos2 ψ + e−2χ

]
. (43)

6 See Appendix B for a review about basic properties of the Jacobi
elliptic functions.

Notice that both contributions of the right-hand-side are man-
ifestly positive. This fact has interesting consequences at the
set of solutions. Decoupling the equations as in the case of
vector gauging, there are two distinct pairs of equations

(∂±χ)2 − m2

4
e−2χ = ±m2

4
c2±, (44)

(∂±ψ)2 − m2

4

(
1 + λ

1 − λ
− 4λ

1 − λ2 cos2 ψ

)
= ∓m2

4
c2±,

(45)

since the left-hand-side of (44) is not manifestly positive.
Again, the equations are incompatible unless c+ = c− = c.
Choosing first, the plus sign in (44) we obtain the solution

eχ = 1

c
sinh

[
m c

(
σ+ ± σ−

2
+ α

)]
. (46)

The solution for ψ is provided by (39), where c is subjected
to Eq. (40). Of course, c may be taken purely imaginary
to provide a solution for the minus sign in (44). In such a
case the solution is automatically real and the parameter c
is unconstrained. Putting everything together, we obtain the
following class of solutions

eχ1(τ ) = 1

c
sinh [m c (τ − τ0)] , (47)

ψ1(σ ) = am
[
m � (σ − σ0)

∣∣∣κ2
]

+ π

2

λ + |λ|
2|λ| , (48)

where the elliptic modulus κ2 and � are defined in (37) and
(38), respectively, as well as,

eχ2(τ ) = 1

c
sin [m c (τ − τ0)] , (49)

ψ2(σ ) = am
[
m �̃ (σ − σ0)

∣∣∣κ̃2
]

+ π

2

λ + |λ|
2|λ| , (50)
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where the elliptic modulus κ̃2 and �̃ are defined as

κ̃2 = κ2|
�2→�̃2 , �̃2 = �2|c2→−c2 . (51)

Notice that this solution is valid for any c. Of course, one can
interchange σ and τ to obtain the rest of the solutions of this
model.

3.3.3 SU (2)/U (1) model

Finally we proceed with the solutions on the SU (2)/U (1).
Proceeding in the usual manner, by solving the Virasoro con-
straints, the decoupled equations read

(∂±χ)2 − m2

4
e−2χ = −m2

4
c2±, (52)

(∂±ψ)2 + m2

4

(
1 + λ

1 − λ
− 4λ

1 − λ2 cos2 ψ

)
= m2

4
c2±, (53)

where the right-hand-side of (53) is manifestly positive in
view of (123). The solution of the first equation is

eχ = 1

c
sin

[
m c

(
σ+ ± σ−

2
+ a

)]
, (54)

while the pair of Eq. (53) can be written as

(∂±ψ)2 = m2

4
�̄2

(
1 − κ̄2 sin2 ψ

)
, λ > 0, (55)

(∂±ψ)2 = m2

4
�̄2

(
1 − κ̄2 cos2 ψ

)
, λ < 0, (56)

where the elliptic modulus κ̄2 is defined as

κ̄2 = 4|λ|
1 − λ2

1

�̄2
(57)

and �̄ is defined via the equation

�̄2 = c2 − 1 − |λ|
1 + |λ| . (58)

The reality of the solutions implies that c is subject to the
constraint

c2 ≥ 1 − |λ|
1 + |λ| . (59)

Considering χ = χ(τ) and ψ = ψ(σ), the solution reads

eχ(τ) = 1

c
sin [m c (τ − τ0)] , (60)

ψ(σ) = am
[
m �̄ (σ − σ0)

∣∣∣κ̄2
]

+ π

2

|λ| − λ

2|λ| . (61)

4 Properties of the solutions

In this section we study the properties of the solutions we
derived in the previous one. First of all, we summarize the
second class of solutions and present their basic features.
Then, we specify their boundary conditions. This is required
in order to eliminate the surface terms, rising when varying
the action. In addition, since σ -models describe string theo-
ries, we also mention possible brane configurations, related
to the aforementioned boundary conditions.7 Having speci-
fied all admissible cases, we plot the solutions and discuss
them. Finally, the effect of the non-perturbative dualities (6)
and (7) is described.

4.1 Overview of the 2nd class of solutions

In this section we summarize the second class of solutions
and discuss some of their common features. Before doing
so, we present the coordinates y1 and y2 for this class of
solutions. Taking into account the definitions of y1 and y2

for each model, namely Eqs. (3), (13) and (19), along with
(128), which is common for all models, as well as the Eqs.
(125), (132) and (137), it follows that y1 and y2 are given in
terms of χ and ψ by

y1 =
√

1 − λ

1 + λ
eχ cos ψ, y2 =

√
1 + λ

1 − λ
eχ sin ψ, (62)

for all models. This expressions are free of the subtleties
regarding the positivity of eχ , which appear in Eqs. (47), (49)
and (60). It is evident that this class of solutions parametrize
an ellipsis. The eccentricity of this ellipsis depends on λ.8 In
the case χ = χ(τ) the overall scale of the ellipsis is time
dependent, whereas in the case χ = χ(σ), the solution is a
rod, whose endpoint(s) lies on ellipses. In both cases, it is
straightforward to show that these solutions satisfy

Gy1y1∂σ y1∂τ y1 + Gy2 y2∂σ y2∂τ y2 = 0, ∀σ, τ. (63)

This implies that when considering open strings, they are
always perpendicular to the surfaces traced by their end-
points. This equation is a direct consequence of the Virasoro

7 In order to do so one has to tensor the models of this work, with
another sigma model corresponding to a metric of indefinite signature.
The simplest case is to consider a single time dimension. In this case,
the equations of motion are solved by t = 1

2 (m+σ+ + m−σ−). This
selection also makes the overall Virasoro constraints vanish, implying
that the theory is (classically) conformally invariant. Had we considered
C+ �= C− in (24), the obtained solutions would depend on this coor-
dinate and on � = 1

2 (m+σ+ − m−σ−). Thus, from the target space
perspective, the values of of m+ and m− are irrelevant, whereas on the
world-sheet their values may be altered by a Lorentz boost.
8 Nevertheless the effect of the λ-deformation is much more than a
rescaling of coordinates, as the elliptic modulus depends non-trivially
on it.
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Table 4 This table summarizes the expressions for the coordinates χ

and ψ , and the elliptic modulus for each of the models of the first col-
umn. Notice that there are two kinds of solutions for the SL(2,R)/U (1)

axially gauged model. There is no constraint on c for the second kind
of solutions

Model χ(τ) ψ(σ) Elliptic modulus Constraint on c

SL(2,R)/U (1)V (41) (42) (37) (40)

SL(2,R)/U (1)A1 (47) (48) (37) (40)

SL(2,R)/U (1)A2 (49) (50) (51) –

SU (2)/U (1) (60) (61) (57) (59)

Table 5 All solutions of the second class are classified by their charac-
teristics. Solutions are characterized either as static (ST) if ψ = ψ(σ)

or as translationally invariant (TI) if ψ = ψ(τ). Similarly, they are char-
acterized as oscillating if the value of the elliptic modulus is greater than

1 and as rotating if it is between zero and one. The expressions for the
coordinates χ and ψ , and the elliptic modulus for each of the models
of the first column are in Table 4

Model χ ψ Phase Range of c Plot

SL(2,R)/U (1)V χ(τ) ψ(σ) ST Oscillating 1−|λ|
1+|λ| ≤ c2 ≤ 1+|λ|

1−|λ| Figure 1

SL(2,R)/U (1)V χ(τ) ψ(σ) ST Rotating 0 ≤ c2 ≤ 1−|λ|
1+|λ| Figure 1

SL(2,R)/U (1)V χ(σ) ψ(τ) TI Oscillating 1−|λ|
1+|λ| ≤ c2 ≤ 1+|λ|

1−|λ| Figure 2

SL(2,R)/U (1)V χ(σ) ψ(τ) TI Rotating 0 ≤ c2 ≤ 1−|λ|
1+|λ| Figure 2

SL(2,R)/U (1)A1 χ(τ) ψ(σ) ST Oscillating 1−|λ|
1+|λ| ≤ c2 ≤ 1+|λ|

1−|λ| Figure 3

SL(2,R)/U (1)A1 χ(τ) ψ(σ) ST Rotating 0 ≤ c2 ≤ 1−|λ|
1+|λ| Figure 3

SL(2,R)/U (1)A1 χ(σ) ψ(τ) TI Oscillating 1−|λ|
1+|λ| ≤ c2 ≤ 1+|λ|

1−|λ| Figure 4

SL(2,R)/U (1)A1 χ(σ) ψ(τ) TI Rotating 0 ≤ c2 ≤ 1−|λ|
1+|λ| Figure 4

SL(2,R)/U (1)A2 χ(τ) ψ(σ) ST Rotating c ∈ R Figure 5

SL(2,R)/U (1)A2 χ(σ) ψ(τ) TI Rotating c ∈ R Figure 5

SU (2)/U (1) χ(τ) ψ(σ) ST Oscillating 1−|λ|
1+|λ| ≤ c2 ≤ 1+|λ|

1−|λ| Figure 6

SU (2)/U (1) χ(τ) ψ(σ) ST Rotating 1+|λ|
1−|λ| ≤ c2 Figure 6

SU (2)/U (1) χ(σ ) ψ(τ) TI Oscillating 1−|λ|
1+|λ| ≤ c2 ≤ 1+|λ|

1−|λ| Figure 7

SU (2)/U (1) χ(σ ) ψ(τ) TI Rotating 1+|λ|
1−|λ| ≤ c2 Figure 7

constraints. The Virasoro constraints also imply

Gy1y1

[
(∂τ y1)

2 + (∂σ y1)
2
]

+Gy2 y2

[
(∂τ y2)

2 + (∂σ y2)
2
]

= m2, ∀σ, τ, (64)

the physical time being t = mτ . Thus, there is no momentum
flow on strings endpoints. The exact behaviour of the solution
depends on the values of the parameters and the boundary
conditions. In Table 4 we gather all equations, which define
the second class of solutions for each model. Table 5 presents
the classification of all solutions of the second class according
to their features. These include the cases ψ = ψ(σ) and ψ =
ψ(τ), as well as whether the value of the elliptic modulus is
greater or smaller that one. This classification is analogous to
the one performed in [14] regarding elliptic string solutions
in R × S2.

Regarding the solutions of SL(2,R)/U (1)V model and
one of the two solutions of the SL(2,R)/U (1)A model, the

elliptic modulus κ2, defined in (37), satisfies 0 ≤ κ2 ≤ 1
when

1 − |λ|
1 + |λ| ≤ c2 ≤ 1 + |λ|

1 − |λ| (65)

and is associated to rotating solutions. Similarly, when

0 ≤ c2 ≤ 1 − |λ|
1 + |λ| (66)

it satisfies 1 ≤ κ2 and it is related to oscillating solutions.
For these solutions we define

δσ = ω1

m�
. (67)

The half-period ω1 is defined in terms of the elliptic modulus
via (149).

Considering the other solution of the SL(2,R)/U (1)A
model, the elliptic modulus κ̃2, defined in (51), always sat-
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Table 6 The kink limit of the static solutions of the second class for λ > 0. Translationally invariant ones are obtained via σ ↔ τ , while the λ < 0,
are obtained using the duality (7)

Model y1 y2

SL(2,R)/U (1)V cosh
(
m

√
1−λ
1+λ

τ
)

tanh
(

2m
√

λ
1−λ2 σ

)
1+λ
1−λ

cosh
(
m

√
1−λ
1+λ

τ
)

sech
(

2m
√

λ
1−λ2 σ

)

SL(2,R)/U (1)A sinh
(
m

√
1−λ
1+λ

τ
)

tanh
(

2m
√

λ
1−λ2 σ

)
1+λ
1−λ

sinh
(
m

√
1−λ
1+λ

τ
)

sech
(

2m
√

λ
1−λ2 σ

)

SU (2)/U (1) 1−λ
1+λ

sin
(
m

√
1+λ
1−λ

τ
)

sech
(

2m
√

λ
1−λ2 σ

)
sin

(
m

√
1+λ
1−λ

τ
)

tanh
(

2m
√

λ
1−λ2 σ

)

isfies 0 ≤ κ̃2 ≤ 1 for any value of c. In this case we define

δσ̃ = ω1

m�̃
. (68)

Finally, for the solutions of the SU (2)/U (1) model, the ellip-
tic modulus κ̄2, defined in (57), satisfies 0 ≤ κ̄2 ≤ 1 when

1 + |λ|
1 − |λ| ≤ c2 (69)

related to rotating solutions. Similarly, it satisfies 1 ≤ κ̄2

when

1 − |λ|
1 + |λ| ≤ c2 ≤ 1 + |λ|

1 − |λ| (70)

and is associated to oscillating solutions. Finally, in this case
we define

δσ̄ = ω1

m�̄
. (71)

The lengths δσ , δσ̃ and δσ̄ will be used when studying the
boundary conditions and the periodicity properties.

4.1.1 Special limits

Solutions of the second class have two interesting limits. The
first one is the limit of the vanishing elliptic modulus. This
limit is obtained for λ = 0. In this case the Jacobi amplitude
becomes just the linear function x , see Eq. (141). The elliptic
function degenerate to trigonometric ones. In general, ellip-
tic functions are defined on a torus, since they are doubly
periodic. In this limit the imaginary period diverges and the
torus becomes singular. Starting from the undeformed solu-
tion, from a mathematical point of view, the λ-deformation
resolves this singularity and the corresponding degenerate
torus becomes non-degenerate.

A far more interesting limit is the one of the diverging real
period. This is the case when the elliptic modulus equals to
unity. The Jacobi amplitude is given by (143). The elliptic
functions degenerate to hyperbolic ones. The form of the
solutions in this limit is presented in Table 6. Notice that
we present only the λ > 0 solutions, while the rest of them
are obtained using the duality (7) (m is invariant). Also, we
present only the static solutions. The translationally invariant
ones are obtained via the σ ↔ τ transformation.

4.2 Boundary conditions – analysis: 1st class

4.2.1 Generalities

Up to now we have not addressed the problem of surface
terms of the actions. Besides the validity of the solution
per se, considering the embedding of the sigma model in
string theory, these boundary conditions may describe either
open or closed strings and hint at the brane configurations,
which are associated with the string solution. Note that our
target space is two-dimensional restricting us in p2-branes
as boundary configurations at most. The boundary terms,
dropped, when varying the actions (1), (11) and (17), are

δyi e
2Φ∂σ yi

∣∣
σ=σi

= δyi e
2Φ∂σ yi

∣∣
σ=σ f

, (72)

where i = 1, 2.
We first present the boundary conditions of the first class

and then discuss the solutions of the second class. As the
expressions for the first class are very simple, we can treat
both vector and axial gauging simultaneously. Regarding the
second class of solutions we use the classification introduced
in Sect. 4.1. The reader may find Tables 4 and 5 particularly
useful, since they provide an overview of the solutions, their
classification and corresponding range of the parameters. As
a last remark, for convenience we consider that for the second
class of solutions the parameters σ0 and τ0 vanish.

4.2.2 SL(2,R)/U (1) models

The solutions we obtained, either in the case of vector gaug-
ing (Table 1) or in the case of axial gauging (Table 2), are
hyperbolic and exponentials functions

ys,τ = a sinh (b (τ − τ0)) , (73)

yc,τ = a cosh (b (τ − τ0)) , (74)

ye,τ = a exp (b (τ − τ0)) (75)

and

ys,σ = a′ sinh
(
b′ (σ − σ0)

)
, (76)

yc,σ = a′ cosh
(
b′ (σ − σ0)

)
, (77)
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ye,σ = a′ exp
(
b′ (σ − σ0)

)
. (78)

satisfying e2Φ∂σ yi,α
∣∣
σ=±∞ = 0, where i = c, s, e and α =

σ, τ .9 Thus, the variational problem is well defined for σ ∈
(−∞,∞) without imposing any further conditions and these
solutions naturally represent long strings. The world-sheet of
such solutions is the Minkowski plane.

One can impose boundary conditions in the following
cases:

Neumann: Since

∂σ yc,σ
∣∣
σ=σ0

= 0, (79)

we can impose Neumann conditions both for yc,σ and yI,τ
at σ = σ0.

Dirichlet: Since

∂τ yI,σ = 0, ∂σ yI,τ = 0, (80)

we can impose Dirichlet conditions for yI,σ and Neumann
for yI ′,τ for any arbitrary σ .

Combining appropriately the above two cases, we can
impose the following boundary conditions on the solutions:

– N for yc,σ and yI,τ at σ = σ0, corresponding to a space
filling p2-brane.

– D for yI,σ and N for yI ′,τ at σ = σD , corresponding to
semi-infinite sting ending on a single p1-brane.

– D-D for yI,σ and N-N yI ′,τ at σ = σi and σ = σ f ,
corresponding to a pair of p1-branes.

– D-N for yc,σ and N-N yI,τ at σ = σD and σ = σ0,
corresponding to a p1-brane and a space filling p2-brane.

All these solutions correspond to infinite, semi-infinite or
finite moving line segments. Intestingly enough, the D-D and
N-N boundary conditions are integrable [5].

4.2.3 SU (2)/U (1) model

Contrary to the SL(2;R)/U (1) case, the conformal factor
e2Φ , defined in (1), does not vanish at σ = ±∞. This class
of solutions is naturally periodic, corresponding to closed
configurations. We discuss, the y1 = y1(τ ) and y2 = y2(σ )

case, but similar conclusions hold for the other case too. In
particular, the solutions (Table 3) are periodic under

σ → σ + δσ, δσ = 2π

m

√
1 − λ

1 + λ
. (81)

These configurations are folded strings, which oscillate in the
y1 direction as time flows. The world-sheet of such solutions
is a torus.

9 The first subscript denotes the type of function and the second one
the argument of the function.

One can impose open string boundary conditions in the
following cases: Neumann: Since

∂σ y2
∣∣
σ=σN

= 0, σN = σ0 + n

√
1 − λ

1 + λ

π

m
, n ∈ N (82)

we can impose Neumann conditions both for y1 and y2 at
σ = σN .

Dirichlet: Since

∂τ y2 = 0, ∂σ y1 = 0, (83)

we can impose Dirichlet conditions for y2 and Neumann for
y1 for any arbitrary σD .

Combining appropriately the above two cases, we can
impose the following boundary conditions on the solutions:

– N-N for both y1 and y2 atσi = σ0 andσ f = σ0+
√

1−λ
1+λ

π
m ,

corresponding to a space-filling p2-brane.
– D-D for y2 and N-N y1 at σi and σ f , which correspond

to a pair of p1-branes.
– D-N/N-D for y2 and N-N y1 at σ = σD and σ = σN ,

corresponding to a p1-brane and a p2-brane.

These solutions correspond to finite moving line segments.

4.3 Boundary conditions – analysis: 2nd class

The second class of solutions reveals a much larger variety
of results including static and translationally invariant con-
figurations. It consists of fourteen distinct types of solutions.
We keep the presentation as short as possible, presenting only
basic facts for each of these types of solutions, but the overall
presentation is lengthy.

4.3.1 SL(2,R)/U (1)V model

Static
These solutions are of the form

y1 = 1

c

√
1 − λ

1 + λ
cosh (m c τ) cos ψ(σ), (84)

y2 = 1

c

√
1 + λ

1 − λ
cosh (m c τ) sin ψ(σ), (85)

where ψ is given by (42) and the corresponding elliptic mod-
ulus by (37). The world-sheet of such solutions is cylindrical.

Closed strings In the case of rotating solutions, the angle ψ

is monotonous and satisfies

ψ(σ + 4δσ ) = ψ(σ) + 2π, (86)

just like the angle of a rotating pendulum, depicted in the
right panel of Fig. 8. Static rotating solutions correspond to
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Fig. 1 Indicative static solutions of the SL(2,R)/U (1)V model. The
left panel corresponds to a rotating solution, while the right one to an
oscillating solution, which is a folded string. Notice that as λ > 0 the

angle ψ of the oscillating solution “oscillates” around π/2. The equa-
tion of the black ellipses is (87)

closed strings. These solutions are ellipses, which, starting
from infinity, approach the origin of the y1-y2 plane up to
τ = 0, and reflect back to infinity. Their motion, is bounded
in the exterior of the ellipsis

y1 = 1

c

√
1 − λ

1 + λ
cos ω, y2 = 1

c

√
1 + λ

1 − λ
sin ω, ω ∈ [0, 2π) .

(87)
The background is a deformed version of the well-known
trumpet geometry. Intuitively, it has the same features but its
cross-section is of elliptic shape. As the cross-section of the
trumpet grows towards the origin ρ = 0, the string approach-
ing the origin stretches. At some point there is no more kinetic
energy to be absorbed for the string to keep stretching, thus,
it reflects back.

In the case of oscillating solutions, the angle ψ “oscillates”
between two limiting values, see (148), and satisfies

ψ(σ + 4δσ ) = ψ(σ), (88)

where δσ is given by (67), just like the angle of an oscillating
pendulum depicted on the left panel of Fig. 8. Intuitively,

their motion is analogous to the rotating case, but the reason
which prevents the string from collapsing to a points is not
topological, but kinematic. The endpoints of the string move
at the speed of light. Indeed, it is easy to show that

Gy1y1 (∂t y1)
2 + Gy2y2 (∂t y2)

2 |σ=(2n+1)δσ = 1, ∀t, (89)

where the time t of the target space, defined as t = mτ . Fig-
ure 1 depicts indicative examples of closed static oscillating
and rotating strings.

Open strings As mentioned, in the case of rotating strings
the angle ψ is monotonous. Thus, in order to apply Dirichlet–
Neumann (or Neumann–Dirichlet) boundary conditions, the
only possibility is to set ψ = nπ/2, where n ∈ N. This is
achieved for σ = nδσ . In this way we obtain strings, which
are parts of the closed rotating strings ending on y1 = 0 or
y2 = 0 axis. One can construct configurations, which extend
along one, two or three quadrants and either end on different
branes or on the same one.

For oscillating strings, the angle ψ “oscillates” either
around 0 or around π/2, depending on whether λ > 0 or
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λ < 0, see (42). The points of the string corresponding to
σ = nδσ either lie on an axis, or on the lines which are
tangential to the motion of the folded string, like the dashed
lines in the right panel of Fig. 1.

Translationally invariant
These solutions are of the form

y1 = 1

c

√
1 − λ

1 + λ
cosh (m c σ) cos ψ(τ), (90)

y2 = 1

c

√
1 + λ

1 − λ
cosh (m c σ) sin ψ(τ), (91)

where ψ is given by (42) and the corresponding elliptic mod-
ulus by (37). The world-sheet of such solutions is cylindrical.

These strings satisfy identically

Gy1y1 (∂t y1)
2 + Gy2 y2 (∂t y2)

2 |σ=0 = 1, ∀t, (92)

where the time t of the target space is defined as t = mτ .
One can consider these configurations either as folded

strings, for σ ∈ (−∞,∞), in order to make the superfi-
cial terms vanish, or as open ones. As the σ = 0 point moves
at the speed of light, the string is prevented from collapsing.
In the case of rotating strings, this point rotates on an ellip-
tic trajectory, whereas in the case of oscillating strings, this
point oscillates between two limiting points, see Fig. 2. In
both cases the motion is periodic with period T = 4δσ .

4.3.2 SL(2,R)/U (1)A model

Static 1
The static solutions of this class are of the form

y1 = 1

c

√
1 − λ

1 + λ
sinh (m c τ) cos ψ(σ), (93)

y2 = 1

c

√
1 + λ

1 − λ
sinh (m c τ) sin ψ(σ), (94)

where ψ is given by (48) and the corresponding elliptic mod-
ulus by (37). The world-sheet of such solutions is cylindrical.

Closed strings Angle ψ satisfies (86) and (88) in the case
of rotating and oscillating solutions, respectively. Similarly
to the case of the vectorially gauged model, the rotating
solutions are ellipses. The background is a deformed ver-
sion of Witten’s cigar geometry [15]. Intuitively, it has the
same characteristics but its cross-section is of elliptic shape.
As the cross-section of the cigar shrinks towards the origin
ρ = 0, the string approaching the origin loosens. The incom-
ing string becomes point-like at the tip of the cigar and then
it is reflected back to infinity.

In the case of oscillating solutions, the motion of the
strings is analogous to the rotating ones. Again the reason,
which prevents the string from collapsing to a points is not the

topological, but kinematic. The endpoints of the string move
at the speed of light. Figure 3 depicts indicative examples of
closed static oscillating and rotating strings.

Open strings As in the case of the vectorially gauged model,
we can enforce Dirichlet–Neumann (or Neumann–Dirichlet)
boundary conditions to the rotating solutions, for σ = nδσ .
In this way we obtain strings, which are parts of the closed
rotating strings and end at the axis y1 = 0 or y2 = 0. One
can construct configurations, which extend along one, two or
three quadrants and either end on different branes or on the
same one.

A similar picture emerges in the the case of oscillating
strings. The angle ψ “oscillates” either around 0 or around
π/2, depending on whether λ > 0 or λ < 0. The points of
the string corresponding to σ = nδσ either lie on an axis, or
on the lines which are tangential to the motion of the folded
string, the dashed lines in the right panel of Fig. 3.

Translationally invariant 1
These solutions are of the form

y1 = 1

c

√
1 − λ

1 + λ
sinh (m c σ) cos ψ(τ), (95)

y2 = 1

c

√
1 + λ

1 − λ
sinh (m c σ) sin ψ(τ), (96)

where ψ is given by (48) and the corresponding elliptic mod-
ulus by (37). The world-sheet of such solutions is cylindrical.

These strings satisfy identically

Gy1y1 (∂t y1)
2 + Gy2y2 (∂t y2)

2 |σ=0 = 0, ∀t, (97)

where the time t of the target space is defined as t = mτ . One
can consider these configurations either as infinite strings, for
σ ∈ (−∞,∞), or semi-inifinite open ones, for σ ∈ (0,∞).
In the second case, the string is considered to end on a D0
brane, which is located at the tip of the cigar. This way the
string is prevent from collapsing to a point.

In the case of rotating strings the string rotates freely,
whereas in the case of oscillating strings, the string oscillates
between two limiting points. The configurations are like the
vectorially gauged ones in Fig. 2, but either with the strings
ending on the origin of the plot, or extending all the way to
infinity. They are depicted in Fig. 4. In both cases the motion
is periodic with period T = 4δσ .

Static 2 These solutions are of the form

y1 = 1

c

√
1 − λ

1 + λ
sin (m c τ) cos ψ(σ), (98)

y2 = 1

c

√
1 + λ

1 − λ
sin (m c τ) sin ψ(σ), (99)

where ψ is given by (50) and the corresponding elliptic mod-
ulus by (51). The angle ψ of these solutions obeys equation
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Fig. 2 Indicative translationally invariant solutions of the
SL(2,R)/U (1)V model. The left panel corresponds to a rotating
solution, while the right one to an oscillating solution. Notice that as

λ > 0 the angle ψ of the oscillating solution “oscillates” around π/2.
The equation of the dotted ellipses is (87)

(86), but in terms of δσ̃ , defined in (68), instead of δσ . There
are only rotating solutions of this form. The world-sheet of
such solutions is toroidal.

Closed strings Similar to the static solutions presented so
far, these solutions are ellipses. Again, the background is a
deformed version of the Witten’s cigar geometry [15]. Their
motion is analogous to the static rotating solutions of the
vectorially gauged model. Their motion is bounded by the
same ellipsis, see equation (87), but these solutions move in
the interior rather than the exterior. The string stretches until
there is no more kinetic energy left and reflects back to the
tip of the cigar. Such solutions are periodic both on the time-
like and space-like world-sheet coordinates. The left panel
of Fig. 5 depicts indicative examples of such closed static
rotating strings.

Open strings As in the case of the vectorially gauged model,
we can enforce Dirichlet–Neumann (or Neumann–Dirichlet)
boundary conditions to the rotating solutions, for σ = nδσ̃ .
This way we obtain strings, which are parts of the closed
rotating strings and end at axis y1 = 0 or y2 = 0. One
can construct configurations, which extend along one, two

or three quadrants and either end on different branes or on
the same one.

Translationally invariant 2 The static solutions of this class
are of the form

y1 = 1

c

√
1 − λ

1 + λ
sin (m c σ) cos ψ(τ), (100)

y2 = 1

c

√
1 + λ

1 − λ
sin (m c σ) sin ψ(τ), (101)

where ψ is given by (50) and the corresponding elliptic mod-
ulus by (51). There are only rotating solutions of this form.
The world-sheet of such solutions is toroidal.

These strings satisfy identically

Gy1y1 (∂t y1)
2 + Gy2y2 (∂t y2)

2 |σ=0 = 0, ∀t, (102)

Gy1y1 (∂t y1)
2 + Gy2y2 (∂t y2)

2 |σ=± 1
mc

π
2

= 1, ∀t, (103)

where the time t of the target space is defined as t = mτ .
These solutions correspond either to closed folded strings or
to open ones, whose endpoint move at the speed of light. The
motion of the endpoints prevents the string from shrinking
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Fig. 3 Indicative static solutions of the SL(2,R)/U (1)A model. The left panel corresponds to a rotating solution, while the right one to an
oscillating one, which is a folded string. Notice that as λ > 0 the angle ψ of the oscillating solution “oscillates” around π/2. The equation of the
blue ellipses is (87)

Fig. 4 Indicative translationally invariant solutions of the SL(2,R)/U (1)A model. The left panel corresponds to a rotating solution, while the
right one to an oscillating solution. Notice, again, that as λ > 0 the angle ψ of the oscillating solution “oscillates” around π/2. The equation of
dotted ellipses is (87)
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Fig. 5 Indicative rotating solutions of the SL(2,R)/U (1)A model. The left panel corresponds to a static solution, while the right one to a
translationally invariant one, which is a folded string. The equation of the cyan ellipsis on the left panel and the dotted one on the right is (87)

to a point. One can also consider open strings which end on
a D0-brane at the tip of the cigar. The right panel of Fig. 5
depicts an indicative example of such closed translationally
invariant rotating strings.

4.3.3 SU (2)/U (1) model

Static These solutions are of the form

y1 = 1

c

√
1 − λ

1 + λ
sin (m c τ) cos ψ(σ), (104)

y2 = 1

c

√
1 + λ

1 − λ
sin (m c τ) sin ψ(σ), (105)

where ψ is given by (61) and the corresponding elliptic mod-
ulus by (57). The world-sheet of such solutions is toroidal.

Closed strings The angle ψ satisfies (86) and (88) in the
case of rotating and oscillating solutions, respectively, but in
terms of δσ̄ , defined in (71), instead of δσ .

Static rotating solutions correspond to closed strings. They
are ellipses, whose scale oscillates. Their motion, is bounded
by the ellipsis (87), which is expected as the manifold is

compact. Considering the target space embedded in three
dimensions, it has the shape of an spheroid. The string shrinks
and stretches as it oscillates from a one pole to the other.

The oscillating solutions are folded strings. They are part
of an ellipsis and their endpoints move at the speed of light.
Their motion is analogous to the rotating ones, but in this
case the reason, which prevents the string from collapsing
to a points is not the topological, but kinematic. It is easy to
show that

Gy1y1 (∂t y1)
2 + Gy2y2 (∂t y2)

2 |σ=(2n+1)δσ = 1, ∀t, (106)

where the time t of the target space, defined as t = mτ . Fig-
ure 6 depicts indicative examples of closed static oscillating
and rotating strings.

Open strings In the case of rotating strings the angle ψ is
monotonous. Thus, in order to enforce Dirichlet–Neumann
(or Neumann–Dirichlet) boundary conditions, the only pos-
sibility is to set ψ = nπ/2, where n ∈ N. This is achieved for
σ = nδσ̄ . This way we obtain strings, which are parts of the
closed rotating strings and end at the axis y1 = 0 or y2 = 0.
One can construct configurations, which extend along one,
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Fig. 6 Indicative static solutions of the SU (2)/U (1) model. The left panel corresponds to a rotating solution, while the right one to an oscillating
one, which is a folded string. Notice that as λ > 0 the angle ψ of the oscillating solution “oscillates” around 0. The equation of the cyan ellipses is
(87)

two or three quadrants and either end on different branes or
on the same one.

For oscillating strings, the angle ψ “oscillates” either
around 0 or around π/2, depending on whether λ > 0 or
λ < 0. The points of the string corresponding to σ = nδσ̄

either lie on an axis, or on the lines which are tangential to
the motion of the folded string, like the dashed lines in the
right panel of Fig. 6.

Translationally invariant These solutions are of the form

y1 = 1

c

√
1 − λ

1 + λ
sin (m c σ) cos ψ(τ), (107)

y2 = 1

c

√
1 + λ

1 − λ
sin (m c σ) sin ψ(τ), (108)

where ψ is given by (61) and the corresponding elliptic mod-
ulus by (57). The world-sheet of such solutions is toroidal.

These strings satisfy identically

Gy1y1 (∂t y1)
2 + Gy2 y2 (∂t y2)

2 |σ=± 1
mc

π
2

= 1, ∀t, (109)

where the time t of the target space is defined as t = mτ .

One can consider these configurations either as folded
strings, or as open ones. As the endpoints moves at the speed
of light, the string is prevent from collapsing. In the case of
rotating strings, this point rotates on an elliptic trajectory,
whereas in the case of oscillating strings, these points oscil-
late between two limiting ones, see Fig. 7. In both cases the
motion is periodic with period T = 4δσ̄ .

4.4 The effect of the non-perturbative symmetries

Regarding the first class of solutions, let us return for a
moment in Eqs. (27) and (28) and impose invariance under
the duality symmetry (6). In order to do so, we have to pos-
tulate that m2 is a function of λ transforming as

m2 (1/λ) = −m2(λ). (110)

On the contrary, c is not affected, which implies that c(1/λ) =
c(λ).

As far as the duality (7) is concerned, one can easily see
from (27) and (28), that invariance under this duality implies
that

m2(−λ) = m2(λ) c(−λ) = −c(λ) (111)
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Fig. 7 Indicative translationally invariant solutions of the vectorially gauged SU (2)/U (1) model. The left panel corresponds to a rotating solution,
while the right one to an oscillating solution. Notice that as λ > 0 the angle ψ of the oscillating solution “oscillates” around 0

We conclude that c, is even under (6) and odd under (7)
symmetry. The inverse holds for m2.10 One can easily verify
that the sets of solutions in Tables 1, 2 and 3, are closed under
symmetries (6) and (7) .

Let us turn to the second class of solutions. In the case of
the SL(2,R)/U (1) model, the duality symmetry (6) acts on
the coordinates ρ and φ as

λ → 1/λ, ρ → −ρ, φ → −φ. (113)

Taking into account Eqs. (120), (121) and (122), we infer
that χ , ψ and the dilaton Φ̃ transform as

χ → χ + iπ/2, ψ → ψ, e2Φ̃ → −e2Φ̃ . (114)

As a result, the action (14) is invariant under (6).
In order to retain the duality symmetry at the level of solu-

tions, Eqs. (32) and (33) imply that m2 and c2 are functions
of λ satisfying

m2 (1/λ) = −m2(λ) c2 (1/λ) = −c2(λ). (115)

10 As an indicative example, one may define

m2 = 1 − λ2

1 + λ2 m
2
0, c = λ

1 + λ2 c0, (112)

where m0 and c0 are invariant under both transformations.

Equation (37) implies that κ2 is invariant, thus (42) implies
that ψ is indeed invariant. Finally, according to Eq. (41), χ

transforms appropriately.
Last but not least, the symmetry (7), in terms of coordi-

nates (θ, φ) is replaced by

ρ → ρ, φ → φ + π/2 (116)

and one can show that under (116)

χ → χ, ψ → ψ + π/2, (117)

while

m2(−λ) = m2(λ), c2(−λ) = c2(λ). (118)

Similar conclusions hold for the case of axial gauging too,
as well as for the SU (2)/U (1) model.

5 Discussion

In this work we derived as a first example in the litera-
ture, two distinct classes of solutions of the SL(2,R)/U (1)

and SU (2)/U (1) λ-deformed models. We achieved this by
exploiting a special property of the two-dimensional tar-
get spaces, namely the fact that the solutions of equations
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describing the conservation of Energy–Momentum tensor
also solve the equations of motion.

The solutions of the first class are expressed in terms
of trigonometric - hyperbolic functions. Overall we obtain
eleven distinct solutions of this kind, which are gathered in
Tables 1, 2 and 3. All these configurations are of the form
y1 = y1(τ ) and y2 = y2(σ ), but the σ ↔ τ transformed
solutions are also valid. The solutions of the first class of
the SL(2,R)/U (1) λ-deformed models are infinite, semi-
infinite or finite moving line segments, whereas the ones of
the SU (2)/U (1) λ-deformed model are finite line segments,
which oscillate.

The solutions of the second class are expressed in terms
of Jacobi elliptic functions. Overall we obtain fourteen dis-
tinct solutions of this kind, which are gathered in Table 4.
In addition, Table 5 present the classification of these solu-
tions. These configurations are either of the form y1 =
f (τ ) cos ψ(σ) and y2 = f (τ ) sin ψ(σ), which are referred
to as static, or of the form y1 = f (σ ) cos ψ(τ) and y2 =
f (σ ) sin ψ(τ), which are referred to as translationally invari-
ant. It is important to point out, that in this case the σ ↔ τ

transformation relates solutions, which are not related by any
target space symmetry. The static solutions are of elliptical
shape, whose scale is time-dependent, whereas the transla-
tionally invariant solutions are semi-infinite rotating line seg-
ments, whose endpoint lies on an ellipses. The second class
of solutions has two special limits. The first one is obtained
when the elliptic modulus vanishes and the elliptic functions
degenerate to trigonometric functions. This is the case when
λ = 0. For this class of solutions, the λ-deformation turns
the trigonometric functions to elliptic ones. The second one
is obtained for some specific value of c, which depends on
the model. In this limit the elliptic functions degenerate to
hyperbolic ones and the corresponding configurations are
presented in Table 6.

Both classes of configurations are not necessarily invari-
ant under the non-perturbative duality symmetries, but this
can be imposed as an extra demand. Solution profiles are
time dependent and do not saturate a BPS bound. It remains
obscure how these configurations are incorporated in the
spectrum of the theory.

Several new directions emerge through this analysis. First
of all, it would be interesting to study the Pohlmeyer reduced
theory of the models [4]. Such a study may provide informa-
tion relevant to the spectrum of the theory. For instance when
the elliptic modulus of the second class of solutions equals to
unity, are configurations are analogous to the Giant Magnon
[16] and one expects that the Pohlmeyer avatar is a solitonic
object.

On the same line, the derived solutions may be used in
order to obtain new ones. This can be achieved via the appli-
cation of the dressing method [17,18]. The dressing method
is a technique, which takes advantage of a known solution,

usually refereed to as the seed solution, in order to obtain new
ones. The advantage of this method is that in order to derive
the solutions one has to solve a system of linear coupled first
order PDEs, rather than the equations of motion, which con-
stitute a system of coupled, non-linear, second order PDEs.
This method has already been applied in the context of λ-
deformations in [19]. In this work the seed solution is analo-
gous to the BMN particle [20], a solution of the undeformed
model, which also solves the deformed one. The solutions
we derived are much more complicated and the application
of the dressing method on such seed solutions may reveal
interesting phenomena, such as the formation of spikes and
memory effect regarding the propagation of the inserted kink
on the non-trivial background [21].

It is worth noticing that the dressing method is also related
with the stability analysis of the seed solutions [21]. Obvi-
ously, it also has the advantage that besides determining the
fate of small perturbations, one also obtains the full non-
linear solution as well. Of course, even a linear stability anal-
ysis is of interest. Its conclusions are expected to match the
ones of the dressing method [22].

It would, also be interesting to derive kink configurations
i.e time-independent lumps of finite energy, or time indepen-
dent solutions in general. Unfortunately, for such configura-
tions the approach based on the conservation of the Energy–
Momentum tensor is inapplicable. This is also the case for
models, whose target space is of higher dimension. Regard-
ing models, generalizing the ones of this work, i.e. ones hav-
ing the groups considered here as subgroups, one can obtain
solutions via the dressing method. To do so, one needs to
embed the solutions of this work in the higher-dimensional
target space and apply the dressing method using this seed
solution.

Besides further investigating the solutions themselves or
the corresponding models, there are various studies, which
are related to them. To begin with, it would be interesting
to find classical solutions of other theories having a two-
dimensional target space using the approach based on the
conservation of the Energy–Momentum tensor. For instance,
one may obtain solutions of various known integrable defor-
mations, such as Yang Baxter [23]/η [24,25], bi Yang Bax-
ter [26] and asymptotic λ-deformations [27]. Regarding the
Yang Baxter and η deformations, it is well known that they
are related to λ-deformations via Poisson-Lie T-duality and
appropriate analytic continuations [28].

Moreover, as we described a lot of open string config-
urations, another interesting direction, is to investigate the
fitting of D-branes in this setup and derive classical solutions
for such objects. One can also study whether the boundary
conditions preserve the integrability of the theory or not [29].

Finally, the derived solutions enable various field theory
calculations. In particular, one could study the effective the-
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ory related to a non-trivial classical solution and perform
semi-classical quantization.
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AppendixA:Theparametrization of the 2nd class of solu-
tions

In this appendix we give some technical details on the second
parametrization that we introduced in order to describe the
models under study.
SL(2,R)/U (1)V model Let us first discuss the case of
the vectorially gauged SL(2,R)/U (1) model. Applying the
change of variables (13), the action (11) is written as

S = k

π

∫
d2σ

{
1 − λ

1 + λ

(
∂+ρ∂−ρ + coth2 ρ∂+φ∂−φ

)

+ 4λ

1 − λ2 (cos φ∂+ρ − sin φ coth ρ∂+φ)

· (cos φ∂−ρ − sin φ coth ρ∂−φ)

}
. (119)

With some work one can show that defining the new coordi-
nates χ and ψ as

χ(ρ, φ) = log

[
cosh ρ

√
1 − λ

1 + λ
+ 4λ

1 − λ2 cos2 φ

]
, (120)

ψ(ρ, φ) = arctan

[
1 − λ

1 + λ
tan φ

]
. (121)

the action can be written in a conformally flat form, see (14),
where initially the dilaton is defined as

e2Φ̃ = coth2 ρ

(
1 − λ

1 + λ
+ 4λ

1 − λ2 cos2 φ

)
. (122)

Note that the square root in the definition of the χ variable,
Eq. (120), should not worry us, because it is well defined for
−1 < λ < 1, since

1 + |λ|
1 − |λ| ≥ 1 − λ

1 + λ
+ 4λ

1 − λ2 cos2 φ ≥ 1 − |λ|
1 + |λ| . (123)

Of course, the dilaton field has to be expressed in terms of
the new variables (χ,ψ). To invert (120) and (121) we take
advantage of the equation

1 − λ

1 + λ
+ 4λ

1 − λ2 cos2 φ =
(

1 + λ

1 − λ
− 4λ

1 − λ2 cos2 ψ

)−1

,

(124)

which is a direct consequence of (121). Doing so, we obtain
following expressions

ρ(χ,ψ) = arccosh

[
eχ

√
1 + λ

1 − λ
− 4λ

1 − λ2 cos2 ψ

]
, (125)

φ(ψ) = arctan

[
1 + λ

1 − λ
tan ψ

]
. (126)

It order to specify uniquely ψ in terms of φ we choose

cos ψ = cos φ√(
1−λ
1+λ

)2 + 4λ

(1+λ)2 cos2 φ

,

sin ψ =
1−λ
1+λ

sin φ√(
1−λ
1+λ

)2 + 4λ

(1+λ)2 cos2 φ

.

(127)

Taking into account (124), the inverse transformation is

cos φ = cos ψ√(
1+λ
1−λ

)2 − 4λ

(1−λ)2 cos2 ψ

,

sin φ =
1+λ
1−λ

sin ψ√(
1+λ
1−λ

)2 − 4λ

(1−λ)2 cos2 ψ

.

(128)

These definitions are common for all three models.
In view of (123), the quantity under the square root in Eq.

(125) is positive provided that ψ is a real function. Never-
theless, the validity of this equation requires

eχ

√
1 + λ

1 − λ
− 4λ

1 − λ2 cos2 ψ ≥ 1. (129)

This is a constraint that has to be imposed on the solutions.
Implementing (125) and (126) on the dilaton profile (122),
we can finally express it in terms of χ and ψ as

e−2Φ̃ = 1 + λ

1 − λ
− 4λ

1 − λ2 cos2 ψ − e−2χ . (130)
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Provided the inequality (129) is satisfied, the dilaton Φ̃ is
real valued as required.

SL(2,R)/U (1)A model
It is evident that the actions of the vectorially and axially

gauged SL(2,R)/U (1) models are essentially related by the
interchange sinh ρ ↔ cosh ρ. This means that the action
of the axially gauged model is provided by (119) upon the
substitution coth ρ → tanh ρ. Obviously the replacement
discussed above, does not alter the definition of ψ , i.e. Eq.
(121), but the definition of χ should be adjusted appropri-
ately. Thus, χ is given by

χ(ρ, φ) = log

[
sinh ρ

√
1 − λ

1 + λ
+ 4λ

1 − λ2 cos2 φ

]
. (131)

Contrary to the case of vector gauging, the inverse transfor-
mation, namely

ρ(χ,ψ) = arcsinh

[
eχ

√
1 + λ

1 − λ
− 4λ

1 − λ2 cos2 ψ

]
(132)

is valid automatically and does not impose any constraint on
the parameters. The first new entry here is the expression
relating the fields χ and ψ with the new dilaton field. Fol-
lowing the step of the previous case, the conformal factor is
given in terms of χ and ψ by

e−2Φ̃ = 1 + λ

1 − λ
− 4λ

1 − λ2 cos2 ψ + e−2χ . (133)

SU (2)/U (1) model
Using the analytic continuation (10), which relates the

SU (2)/U (1) to the vectorially gauged SL(2,R)/U (1) in
(119), the action of the former reads

S = k

π

∫
d2σ

{
1 − λ

1 + λ

(
∂+θ∂−θ + cot2 θ∂+φ∂−φ

)

+ 4λ

1 − λ2 (cos φ∂+θ + sin φ cot θ∂+φ)

· (cos φ∂−θ + sin φ cot θ∂−φ)

}
. (134)

The action can be written in the conformally flat form form
(8) using

χ(θ, φ) = 1

2
log

[
cos2 θ

(
1 − λ

1 + λ
+ 4λ

1 − λ2 cos2 φ

)]
,

(135)

and (121), while the new dilaton field is given by

e−2Φ̃ = e−2χ −
(

1 + λ

1 − λ
− 4λ

1 − λ2 cos2 ψ

)
. (136)

Implementing (124), one can show that θ is given by

θ = arccos

(
eχ

√
1 + λ

1 − λ
− 4λ

1 − λ2 cos2 ψ

)
. (137)

Actually, this equation determines the absolute value of cos θ .
One should define θ , so that it is continuous and smooth. The
validity of this equation requires

1 ≥ eχ

√
1 + λ

1 − λ
− 4λ

1 − λ2 cos2 ψ ≥ −1. (138)

This inequality guaranties that the dilaton is real valued.

Appendix B: The Jacobi elliptic functions

In this section we gather some properties of the Jacobi elliptic
functions, which are relevant for this work. The fundamen-
tal object of Jacobi elliptic functions is the Jacobi ampli-
tude am(x |m). Essentially, is generalizes the linear function
f (x) = x . Using the Jacobi amplitude, one defines the ellip-
tic sine and cosine as

sn(x |m) = sin (am(x |m)) , cn(x |m) = cos (am(x |m)) .

(139)

The Jacobi amplitude satisfies the differential equation
(

d

dx
am(x |m)

)2

= 1 − m sn2(x |m), (140)

where m is called the elliptic modulus. The second class
of solutions is obtained using this equation.11 Trivially, it
follows that

am(x |0) = x . (141)

Additionally, the Jacobi amplitude obeys

am(0|m) = 0. (142)

In this work, the elliptic modulus is always positive, so we set
m = κ2, where κ ∈ R. Depending on whether 0 < κ2 < 1
or 1 < κ2 the Jacobi amplitude is either periodic or quasi-
periodic function. In the special case κ2 = 1 it follows that

am(x |1) = 2 arctan
(
ex

) − π

2
. (143)

The function is neither periodic nor quasi-periodic and inter-
polates monotonically from −π/2 to π/2. This is the famous

11 The reader should be aware that it is quite common to find this
differential equations in the form

(
d

dx
am(x |m)

)2

= 1 − m2sn2(x |m),

In this work we follow the conventions of Wolfram Mathematica.
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Fig. 8 The Jacobi amplitude for κ2 = 1.25 (left panel), κ2 = 1 (mid-
dle panel) and κ2 = 0.95 (right panel). The dashed horizontal lines on
the left panel mark the extremal values of the function. These values are
obtained periodically. On the contrary, on the middle panel, the extremal

values are obtained asymptotically. Finally, the dashed blue line of the
right panel is the average value of the function over a large number of
periods. The plots on the left and right panel clearly show the periodic
and quasi-periodic behaviour of the function, respectively

kink of the sine-Gordon equation. In this case the elliptic
functions degenerate to hyperbolic ones, namely

sn(x |1) = tanh(x), cn(x |1) = sech(x). (144)

In order to proceed, let us consider a simple pendulum.
This physical system will reveal all features of the Jacobi
amplitude. The energy conservation of the pendulum reads

1

2

(
dφ

dt

)2

+ ω2 (1 − cos φ) = E . (145)

The energy is normalized so that the (stable) equilibrium
point φ = 0 corresponds to E = 0. Trivially, this equation
assumes the form

1

2E

(
dφ

dt

)2

= 1 − 2ω2

E
sin2 φ

2
, (146)

which is solved by

φ(t) = 2am

(√
E

2
(t − t0)

∣∣2ω2

E

)
(147)

If E < 2ω2, the pendulum oscillates between the angles

−φ0 and φ0, where φ0 = arcsin
(√

E
2ω2

)
. This behaviour

is general, if κ2 > 1, the Jacobi amplitude is bounded. In
particular, it follows that

− arcsin(1/κ) ≤ am
(
x |κ2

)
≤ arcsin(1/κ), κ ≥ 1. (148)

If E > 2ω2, the motion of the pendulum is no longer oscil-
latory. The pendulum rotates, but its motion is modulated by
the gravitational force. On average the angle grows linearly
with time. Of course, as the energy grows, the modulation
becomes less significant. Finally, if E = 2ω2 the motion of
the pendulum is aperiodic. Starting from the unstable equilib-
rium point φ = −π , after an infinite amount of time, the pen-
dulum reaches the unstable equilibrium point φ = π . In the
main text, solutions corresponding to κ2 > 1 are referred to

as oscillating, whereas solutions corresponding 0 < κ2 < 1
as rotating.

Elliptic functions are doubly periodic on the complex
plane. The elliptic functions appearing in the solutions
derived in this work have one real and one imaginary period.
These periods form a lattice on the complex plane. Denoting
the real half-period as ω1, it turns out that

ω1 =
{
K (κ2), 0 ≤ κ2 ≤ 1
K (κ−2)

κ
, 1 ≤ κ2

, (149)

where K (m) is the complete elliptic integral of the first kind,
defined as

K (m) =
∫ π/2

0

dφ√
1 − m sin2 φ

. (150)

If κ2 = 1 the real period diverges. The first case of (149) is
the usual definition of the real period, whereas the second one
follows from the properties of the complete elliptic integral
and corresponds to a modular transformation on the complex
plane. Using the above definition, the quasi-periodicity and
periodicity of the Jacobi amplitude reads:

am
(
x + 2ω1|κ2

)
= am

(
x |κ2

)
+ π, 0 ≤ κ2 ≤ 1, (151)

am
(
x + 4ω1|κ2

)
= am

(
x |κ2

)
, 1 ≤ κ2. (152)

Figure 8 depicts examples of the different kinds of behaviour
of the Jacobi amplitude.
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