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ABSTRACT
The standard cosmological model is inherently relativistic, and yet a wide range of cosmological observations can be predicted
accurately from essentially Newtonian theory. This is not the case on ‘ultralarge’ distance scales, around the cosmic horizon
size, however, where relativistic effects can no longer be neglected. In this paper, we present a novel suite of 53 fully relativistic
simulations generated using the gevolution code, each covering the full sky out to z ≈ 0.85, and approximately 1930 deg2

out to z ≈ 3.55. These include a relativistic treatment of massive neutrinos, as well as the gravitational potential that can be
used to exactly calculate observables on the past light cone. The simulations are divided into two sets, the first being a set of
39 simulations of the same fiducial cosmology (based on the Euclid Flagship 2 cosmology) with different realizations of the
initial conditions, and the second that fixes the initial conditions, but varies each of seven cosmological parameters in turn.
Taken together, these simulations allow us to perform statistical studies and calculate derivatives of any relativistic observable
with respect to cosmological parameters. As an example application, we compute the cross-correlation between the Doppler
magnification term in the convergence, κv , and the CDM + baryon density contrast, δcb, which arises only in a (special)
relativistic treatment. We are able to accurately recover this term as predicted by relativistic perturbation theory, and study its
sample variance and derivatives with respect to cosmological parameters.

Key words: cosmological parameters – large-scale structure of Universe.

1 IN T RO D U C T I O N

The large-scale distribution of matter in our Universe will be studied
at ever greater detail with upcoming astronomical surveys such as
LSST (Abell et al. 2009), Euclid (Laureijs et al. 2011), DESI (Levi
et al. 2013), and the Roman Telescope (Spergel et al. 2015). The
complicated astrophysical feedback processes that plague the dy-
namics of galaxies and clusters become subdominant at cosmological
distance scales, making large-scale structure an ideal laboratory for
probing gravity, which is effectively the only important force at those
scales. This is usually done by extracting summary statistics such as
power spectra, bispectra, etc. (Yoo, Fitzpatrick & Zaldarriaga 2009;
Bonvin & Durrer 2011; Leclercq, Pisani & Wandelt 2014). As the
volume of surveys increases, these will be measured more accurately
and for an increasing number of modes. As a result, previously
unconstrained small effects can be detected with high significance.

Cosmological N-body simulations provide a powerful and versatile
means to predict these summary statistics, given a cosmological
model. These simulations commonly use Newtonian theory (Teyssier
2002; Springel 2005), which is sufficient for many purposes, in
particular in the context of the �CDM concordance model. At
extremely large distance scales, the interpretation of such simulations

� E-mail: l.j.c.coates@qmul.ac.uk

becomes subtle, however (Chisari & Zaldarriaga 2011; Green & Wald
2012; Rigopoulos & Valkenburg 2015). One way of maintaining
consistency with general relativity at leading order is by using so-
called Newtonian motion gauges (Fidler et al. 2017), but the full
machinery for analysing simulations in this context still needs to be
developed.

Alternatively, general relativity can be implemented in the simu-
lations explicitly. Employing techniques from numerical relativity,
this has been explored e.g. in Giblin, Mertens & Starkman (2016)
and Macpherson, Lasky & Price (2017). The main drawback of
this formulation is the requirement to keep track of the wave-like
solutions of the gravitational field, which needs extremely fine time
resolution and thus leads to practical limitations. In the weak-field
regime relevant for cosmology, however, one can easily perform
a scalar-vector-tensor decomposition of the gravitational field in
order to isolate these wave-like components. They can then be
treated with fast approximate methods that completely remove the
limitation on the time-stepping. Such an approach is implemented
in the weak-field relativistic N-body code gevolution (Adamek et al.
2016a,b) that we employ in this work. Relativistic effects that appear
at extremely large distance scales are naturally included in our
numerical simulations. Physical quantities, whenever they are gauge-
dependent, are computed in the Poisson gauge, which is widely
employed in practical calculations. Furthermore, using ray tracing,
we can compute physical observables exactly and directly.
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While the final observables (i.e. the observed summary statistics)
in actual surveys contain the fully aggregated information of how
matter is distributed and observed on our past light cone, in the
weak-field regime, it can often be useful to study different effects
separately. In the literature, one often finds that any effects that
are not explained by weak lensing or specifically the Kaiser-type
redshift-space distortions (Kaiser 1987) are called relativistic effects,
even though confusingly some of them would still be captured in
Newtonian simulations, and even though weak lensing and redshift-
space distortions are both arguably relativistic in nature as well. Some
examples include corrections in the two-point correlation function,
which can be as large as 10 per cent (Bertacca et al. 2012; Yoo
& Desjacques 2013; Bonvin 2014; Raccanelli et al. 2016; Lorenz,
Alonso & Ferreira 2018; Tansella et al. 2018; Beutler & Di Dio 2020),
or in bispectra where the signal-to-noise ratio for the relativistic part
is ∼10 for a survey like Euclid (Umeh et al. 2017; Bertacca et al.
2018; Jolicoeur et al. 2018; Clarkson et al. 2019; De Weerd et al.
2020; Jolicoeur et al. 2020; Maartens et al. 2020). Such corrections
are also relevant for the study of non-Gaussianity and bias (Bruni
et al. 2012; Alonso et al. 2015; Camera, Maartens & Santos 2015;
Fonseca et al. 2015; Umeh et al. 2019; Wang, Beutler & Bacon
2020). The benefit of inherently relativistic simulations is that all
such effects are transparently included, and so there is no ambiguity
in the predictions for observable quantities.

In this paper, we present the UNITY simulations, a set of 53 fully
relativistic N-body simulations for which we have retained ∼35 TB
of data in the form of HEALPIX maps of different fields as a function
of comoving distance from a chosen observation point, and many
power spectra, etc., derived from these fields. A large portion of our
simulations are run using the same fiducial cosmology, but using a
varying random seed to generate the initial conditions, so as to give
us multiple random realizations of the same underlying cosmology.
The rest of the simulation suite contains pairs of simulations with
the same random initial conditions, but each of the cosmological
parameters varied by some percentage around the fiducial value. This
allows us to compute numerical derivatives to determine the effect
of each parameter on various summary statistics and observables. A
full ray-tracing procedure can be applied to the stored data in order
to produce light cones, or more selective treatments can be used
to study particular fields and observables in isolation. The data are
available on request.1

The layout of this paper is as follows. In Section 2, we describe
the simulations in more detail, including the data products that are
available. We then show some examples where the simulation data
are used to extract a relativistic signal in Section 3, and then finally
we conclude in Section 4.

2 SI M U L AT I O N S

For our simulations, we use the N-body code gevolution. The code
is described in full in Adamek et al. (2016a), but we will give a brief
overview of its workings here. gevolution employs the Friedmann–
Lemaı̂tre–Robertson–Walker (FLRW) metric with perturbations in
Poisson gauge and a weak-field setting where all gravitational fields
(φ, ψ , Bi, and hij) are small. These metric quantities are stored on a
Cartesian grid and are evolved together with the N-body ensemble
that describes the cold dark matter (CDM) in phase space. The joint
evolution is therefore computed using a particle-mesh approach,
keeping a fixed and uniform resolution on the mesh. The metric

1http://philbull.com/unity.

Figure 1. Schematic representation of the pencil-beam light cone construc-
tion. The observer is located at the vertex of the cone, with the line of sight
along the diagonal of the simulation box (depicted by the red-dotted line and
arrow). The opening half-angle of the pencil-beam light cone is 25◦.

quantities can be saved on spatial hypersurfaces at any redshift
alongside a full particle snapshot. The newest version of gevolution2

also allows the data to be saved on a series of light cones, given a
specific (or several) observers. In this case, the metric quantities are
saved on a series of HEALPIX3 (Górski et al. 2005; Zonca et al. 2019)
maps in an approach that is better adapted to the geometry of the
problem.

2.1 The UNITY suite of simulations

Our simulations have a box volume of (4032 Mpc h−1)3, where all
of the metric quantities are calculated on a Cartesian grid with 23043

grid points. This means that we have spatial and mass resolutions of
1.75 Mpc h−1 and ≈ 4.6 × 1011 M� h−1, respectively. We use 23043

particles to sample CDM and baryons, while the massive neutrino
species are treated with a grid-based approach similar to the one
described in Brandbyge & Hannestad (2009) that uses the linear
transfer functions. For the case where we explore a non-standard
equation-of-state parameter of dark energy, w0 = −0.9 instead of w0

= −1, we use a very similar approach to account for the perturbations
of the dark energy fluid; see Dakin et al. (2019) and, in particular,
Hassani et al. (2019) for details. As these perturbations are often
neglected in Newtonian simulations of evolving dark energy, we also
run a simulation for comparison where the dark energy is perfectly
homogeneous (in Poisson gauge).

Each simulation has two light cones with the same observer at the
corner of the box. The first light cone extends out to a distance
of 2015 Mpc h−1 and covers the full sky4occupying a corner of
the box, whereas the second one, illustrated in Fig. 1, extends
further out to a distance of 4690 Mpc h−1 with a disc-shaped survey
area of approximately 1932 deg2.The pointing at the centre of the
disc is towards the opposite corner of the box to allow us the

2https://github.com/gevolution-code/gevolution-1.2.
3http://healpix.sourceforge.net.
4To build the full-sky case, we use periodic boundary conditions, with each
eighth of the sphere then.
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Table 1. Details of the UNITY simulations.

No. sims Varied parameter Values Gauge

34 Initial conditions (random seed) Poisson
5 Initial conditions (random seed) N-Body
2 ns 0.69 ± 5 per cent Poisson
2 As 2.1 × 10−9 ± 5 per cent Poisson
2 h 0.67 ± 5 per cent Poisson
2 ωb 0.021 996 ± 10 per cent Poisson
2 ωcdm 0.121 203 ± 5 per cent Poisson
2 Mν (0.1, 0.2) eV Poisson
2 w0 −0.9 Poisson

Notes. The first row is based on the fiducial cosmology, with multiple different
realizations. This gives the ability to study the covariance. The second row
is also run using the fiducial cosmology, but gevolution is run in the N-body
gauge. These can be used to compare and determine gauge effects in our
simulation. Finally, we list a series of pairs of simulations where we vary one
of the parameters around the fiducial value. This allows us to calculate finite
differences on different statistics.

maximum distance without repeating data, which could add spurious
correlations (especially on large scales).

The UNITY simulations consist of a total of 53 simulations, the
parameters of which are summarized in Table 1. Of these, 39 use
the same fiducial cosmology of ns = 0.96, As = (2.1 × 10)–9, h =
0.67, ωb = 0.021 996, ωcdm = 0.121 203, Mν = 0.06 eV, and w0 =
−1. These parameters match the fiducial cosmology of the Euclid
Flagship 2 simulations (Knabenhans et al. 2019). For each of these
simulations, we vary the random seed, which gives us a different
realization of initial conditions for the same cosmology.

For the remaining simulations, we vary several of the parameters
individually, in turn, adding or subtracting a small amount from
the fiducial value in such a way that we can form finite-difference
derivatives with respect to the parameters at a later stage,

∂S
∂θ

� S(θ + �θ ) − S(θ − �θ )

2�θ
, (1)

where S is an observable quantity of interest and θ is the respective
cosmological parameter. We varied each parameter by 5 per cent, as if
�θ is too small, the results for the finite difference will be dominated
by numerical noise, since the difference between the observables will
in many cases be minimal. For ωb and w0, we instead use a larger
variation of 10 per cent. For the simulations where Mν is varied, we
take a slightly different approach, since the neutrino mass scale is
less well constrained and we would therefore like to allow for larger
excursions. We considered cases with a total neutrino mass of 0.1 and
0.2 eV (while ensuring the same squared-mass differences between
the three mass eigenstates). Note that we did not keep �m fixed in
these cases.

2.2 Data products

We retain several different types of data product from the simulations,
giving us enough flexibility to calculate a wide range of observable
quantities, but without needing to retain the full particle catalogue
and metric perturbations on a grid for many snapshots, which would
result in a very large data volume.

2.2.1 HEALPIX maps

Any calculations that we wish to do on the light cone are simplified
by saving the data in spherical shells about a pre-specified observing
location, instead of on a Cartesian grid for many snapshots in time.

We use the HEALPIX pixelization to store the data for each field and
for each shell. These maps are saved at a spatial resolution in radial
slices of comoving width 1.75 Mpc h−1 and cover both the full-sky
and the pencil-beam light cone. The Nside of the maps varies as a
function of the distance from the observer, always maintaining a
sampling of the fields close to the resolution of the simulation and
reaching a maximum of Nside = 2048.

The quantities saved on these maps are the scalar potential
φ, the peculiar velocity field (coarse-grained at the scale of the
pixel) projected on to the line of sight, the CDM + baryon (cb)
density, and the neutrino (ν) density. These quantities are calculated,
as usual in gevolution, on a Cartesian grid, but are interpolated
on to an appropriate set of HEALPIX maps around the observer
at each time-step using trilinear interpolation, and then saved to
disc.

In Fig. 2, we show examples of these HEALPIX maps for both
the δcb and the δν fields. In the left-hand panel, we have these
saved for the full-sky light cone at a redshift of z ≈ 0.1, and in the
right-hand panel, we show the pencil-beam light cone at a redshift
of z ≈ 1.

2.2.2 Power spectra

For each simulation, we also store a set of power spectra for 14
different redshift slices: z = 50, 30, 10, 4, 3, 2.5, 2, 1.5, 1, 0.75,
0.5, 0.25, 0.1, 0. Thanks to gevolution’s ability to calculate all metric
data for the entire simulation, we are able to store power spectra for
a multitude of variables. In this case, we extract power spectra for
both the scalar and vector gravitational potentials, as well as for the
CDM + baryon density and the total matter density (i.e. including
the massive neutrinos). This results in 14 × 4 = 56 power spectra per
simulation, which can be used directly without needing to reanalyse
the simulation data.

In Fig. 3, we plot the mean of all of the CDM + baryon power
spectra over the 34 random realizations of the fiducial cosmology
at z � 0, plus confidence intervals showing the expected sample
variance (estimated from the simulations) and the error on the mean.
We also plot theoretical predictions for comparison, calculated using
a linear power spectrum from CLASS (Blas, Lesgourgues & Tram
2011) and a non-linear power spectrum model from HMcode (Mead
et al. 2016). The deviations at large scales are due to the different
gauges (Poisson gauge for gevolution and the linear prediction of
CLASS, while HMcode uses synchronous gauge), while there is
good agreement on intermediate and small scales (up to the expected
non-linear corrections).

2.2.3 Angular power spectra

For completeness, in Fig. 4, we present the angular power spectra
computed using full-sky light cones from the 34 random realiza-
tions of the fiducial cosmology. We employ the simple quadratic
estimator,

Ĉ
 = 1

2
 + 1


∑
m=−


a
ma∗

m, (2)

where a
m are the spherical harmonic expansion coefficients of some
scalar field A projected on to the unit sphere (Leistedt et al. 2013). For
this example, we took A = δcb and performed the analysis using the
HEALPIX anafast routine, which is suitable for the full-sky case.
The shaded region in Fig. 4 corresponds to the standard deviation of
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Doppler magnification in relativistic simulations 3537

Figure 2. HEALPIX maps for both the CDM + baryon density field and the neutrino density fields. We show these for the full-sky light cone at a redshift of z ≈
0.1, and also for the pencil-beam light cone at a redshift of z ≈ 1. For the pencil beam, we plot a 10◦ × 10◦ section.

Figure 3. Top panel: power spectrum of the CDM + baryon distribution at z

� 0. The solid red line shows the mean value of the 34 random realizations of
the fiducial cosmology, with the standard deviation (and error on the mean)
shown as blue and orange 68 per cent confidence intervals, respectively. The
black solid and dashed lines show theoretical predictions using the CLASS
linear power spectrum, and HMcode non-linear model, respectively. HMcode
uses the synchronous gauge while the other cases are in Poisson gauge, which
explains the different behaviour as one approaches the horizon scale. Bottom
panel: fractional difference between the theoretical predictions and the mean.
The light and dark grey regions show 10 and 5 per cent differences between
the theory and the mean, respectively.

Ĉ
 over the 34 samples, with the theoretical angular power spectrum
C
 computed as

C
(z) = 2

π

∫
k2dk P s

cb(k, z) j 2

 (kr(z)), (3)

Figure 4. Top panel: angular power spectrum of the CDM + baryon field
evaluated on the past light cone at z ≈ 0.58. The mean and standard deviation
over the 34 random realizations of the fiducial cosmology are shown as the
solid red line and blue shaded region respectively, while the orange region
shows the corresponding standard error of the mean (as in Fig. 3). We also
show theoretical predictions based on the linear power spectrum for CDM
and baryons from CLASS, and the non-linear power spectrum from HMcode,
convolved with the CIC kernel (see Section 3.2). Bottom panel: fractional
difference between the theoretical predictions and the mean. The light and
dark grey regions show 10 and 5 per cent differences between the theory and
the mean respectively.

where P s
cb(k, z) is the power spectrum accounting for baryons

and CDM only, smoothed by the cloud-in-cell (CIC) ker-
nel, as discussed in Section 3.2. We projected each map at
z ≈ 0.58, which is equivalent to a comoving distance of
r(z) = 1500 Mpc h−1.
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3538 L. Coates et al.

In this case, the theoretical calculations are broadly consistent with
the measured angular power spectrum, but a slight amplitude offset
can be seen, particularly for the non-linear theoretical curve at 
 �
100. From several consistency checks, we have found a contribution
coming from the mildly and fully non-linear scales that leaks to
large angular scales from the projection integral (equation 3). By
comparing the output angular power spectrum from CLASS, for
CDM + baryons, the same offset was observed. However, as we can
see, both linear and non-linear predictions match the mean value of
the simulations at a level of 10 per cent for 
 � 100. On the other
hand, the discrepancies at higher 
 are primarily caused by resolution
effects.

2.2.4 Ray-traced quantities

Given a set of HEALPIX maps of the gravitational potential φ on
the light cone, it is straightforward to construct other interesting
quantities that are linearly related to φ or its time derivative. Examples
include the integrated Sachs–Wolfe effect and the weak-lensing
potential. Using the Born approximation, HEALPIX maps of these
quantities can be computed directly in pixel space by adding together
maps of φ with appropriate weights. For instance, the weak-lensing
potential, which is defined in Lewis & Challinor (2006) as

�(θ , z) ≡ −
∫ r(z)

0
dr ′ r(z) − r ′

r(z)r ′ (φ + ψ), (4)

can be constructed by such a procedure, explained in more detail
in Lepori et al. (2020). Here we make the assumption that ψ ≈ φ,
which is an excellent approximation here, and neglect the effect of
frame dragging. The HEALPIX maps can then be easily converted into
linear weak-lensing convergence and shear maps by using

κg = −1

2
��, (5)

γ1 + iγ2 = −1

2
(∇1∇1 − ∇2∇2) � − i∇1∇2�, (6)

where � is the Laplacian, and the derivatives are taken on the map.
The convergence κg (we use the subscript ‘g’ to distinguish this term
from Doppler magnification, as discussed below) and the shear γ

parametrize the amplification matrix,

A =
(

1 − κg − γ1 −γ2

−γ2 1 − κg + γ1

)
, (7)

which relates lensed images to unlensed ones if lensing is treated
linearly (Bartelmann & Schneider 2001). It is worth pointing out
that non-linear ray tracing is also possible with the data, e.g. using
the full machinery developed in Lepori et al. (2020), although we do
not pursue this here.

3 R ESULTS

In this section, we show one of the many ways these simulations can
be used to construct relativistic observables by using the Doppler
magnification effect as an example. This was first highlighted and
investigated as an observable in its own right by Bonvin, Durrer &
Gasparini (2006) and Bonvin (2008). Later works have shown that
this signal should be detectable with modern day optical and radio
surveys (e.g. Bonvin et al. 2017; Andrianomena et al. 2019).

A perturbative expression was derived for the cross-correlation
between the Doppler magnification signal and the matter density in
Bacon et al. (2014). Doppler magnification is a relativistic effect that

is caused by the relative motion of the source and the observer, which
correlates with matter density as sources will tend to fall towards
areas of high density. It is an inherently (special) relativistic effect,
and while it is also possible to derive it from Newtonian simulations,
this requires a more careful handling of gauge issues, etc., than is
needed here. To illustrate their utility, we will go through the steps
in calculating this signal within our suite of simulations and then
compare with the perturbative results from Bacon et al. (2014).

3.1 Doppler magnification

In the linear weak-lensing regime, the true shape of the source is
related to the observed image through the Jacobi map,

J = D̄A(r)A, (8)

where D̄A is the angular diameter distance to the source in the
background metric, and A is the amplification matrix given in
equation (7). Doppler magnification appears if one uses the observed
redshift as a distance indicator, i.e. the Jacobi map is written at fixed
observed redshift as

J = D̄A(zs)

(
1 − ∂ ln D̄A

∂z
δz

)
A

� D̄A(zs)

(
1 − κg − κv − γ1 −γ2

−γ2 1 − κg − κv + γ1

)
, (9)

where one defines

κv = ∂ ln D̄A

∂z
δz =

(
1 + zs

H rs
− 1

)
vs · n. (10)

Here vs is the peculiar velocity of the source, and zs and rs are the
redshift and the comoving radial distance to the source, respectively.
We define the direction of n to be pointed from the observer to the
source.

It can be seen that galaxies that have a velocity vector directed
towards the observer will create a negative κv at low redshift, which
means that they will appear smaller in angular size and dimmer
when compared to a typical source at the same observed redshift.
In contrast, if the source is moving away from the observer, the
κv will be positive, which means it will appear brighter with a
larger angular size. This effect comes about because a surface of
fixed observed redshift does not coincide with a surface of fixed
comoving distance. Here and in the following, we assume that the
Doppler contribution from the source peculiar motion is the only
relevant redshift perturbation, i.e. we neglect gravitational redshift
and other subdominant corrections. Note that all such corrections can
be included by combining the appropriate fields when ray-tracing,
however.

Another important point to note from equation (10) is that at
high redshifts the term in brackets will decrease, causing a lower
amplitude of Doppler magnification. Using this fact and the estimate
|v| ∼ H0δ/k, one expects that the Doppler magnification is only
important on large scales and at low redshift (Bolejko et al. 2013;
Bacon et al. 2014). Fig. 2 of Bacon et al. (2014) does indeed show
that the Doppler magnification term is dominant at medium-to-low
redshifts and wavenumbers (
 � 1000 at z = 0.2, and l � 100 at
z = 0.4).

The relative importance of the different contributions to the
observed convergence can also be judged from Fig. 5, where we show
the Doppler magnification signal and the weak lensing signal within
our simulation. To calculate the Doppler magnification signal, we
use equation (10) together with maps of the redshift space distortion
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Doppler magnification in relativistic simulations 3539

Figure 5. Heat maps for both the Doppler convergence and the weak-lensing convergence. We show the full-sky signal at redshift z ≈ 0.1 and the pencil beam
at z ≈ 1, plotting a 10◦ × 10◦ section. For each redshift, we keep the scale of the colour bars the same to show the difference between the two signals.

field that are included in our data products. For the full-sky maps,
we show the signal at z ≈ 0.1, where it can be seen that the Doppler
magnification is much stronger than the weak lensing signal. When
we look at the pencil beam at z ≈ 2, we see that the weak-lensing
effect dominates instead, as this integrated effect becomes stronger
with increasing distance.

3.2 Density–convergence cross-correlation

Since matter tends to collapse on to massive structures, there is
an obvious correlation between the Doppler magnification and the
density field. At low redshift, the Doppler magnification of sources
on the far side of a large concentration of matter tends to be negative,
while the opposite is true for sources on the near side. In order to
measure this correlation, we take the average density over a small
interval in distance from the observer, [r, r + �r], and compute the
angular cross-power with the Doppler convergence, κv , evaluated
at the far end of the interval. We then compute the average of
the resulting cross-power over a larger distance range in order to
accumulate a larger total signal.

A full derivation of the angular cross-correlation from perturbation
theory is presented in Bacon et al. (2014). We present only the final
result in Poisson gauge here. We obtain

C
δκv




(
r ′) = 16π2

�r

(
H

(
r ′) − 1 + z

(
r ′)

r ′

)
∂D

(
r ′)

∂z

×
∫ ∞

0
dk Pcb(k) k j ′




(
kr ′)

×
∫ r ′

r ′−�r

dr

(
D (r) −

(
3H (r)2

(1 + z (r)) k2

)
∂D (r)

∂z

)
j
(kr),

(11)

where Pcb(k) is the CDM + baryon power spectrum at redshift zero
and D(r) is the linear growth factor,5 defined as δ(k, r) = D(r)δ(k,
0). Note that, in a slight variation to Bacon et al. (2014), we employ
weights that are uniform in comoving distance r instead of weights
that are uniform in redshift.

Matter overdensities only have an appreciable gravitational influ-
ence over short distances, expected to be somewhere in the region
of tens of megaparsecs. Without trying to make an optimal choice,
we set �r = 52.5 Mpc h−1 for the distance window in which the
density is computed, ignoring longer range correlations. The cross-
correlation signal C

δκv


 (r ′) can then be averaged over a broader bin
to get the average angular cross-correlation within the bin, which we
will denote as C

δκv


 .
To compute this value in our simulations, we use the HEALPIX

maps of the line-of-sight peculiar velocity field vs · n and the CDM
+ baryon density as described in Section 2.2. Specifically, for each
radial shell we use maps from the two consecutive simulation time-
steps that together enclose the light cone at the given distance and
per cent. For each of these radial shells, we save two additional
shells at time-steps on either side. This allows us to calculate the
data on the null hypersurface by linear interpolation in conformal
time. From these data, we create a thin bin of �r = 52.5 Mpc h−1

where we sum up the density maps, and then cross-correlate with
the Doppler magnification map directly on the far side of the bin,
which we compute from equation (10). The cross-correlation is
calculated using the HEALPIX anafast function. We then repeat

5In equation (11), scale-independent growth has been assumed for simplicity.
This is a good approximation on scales much smaller than the neutrino free-
streaming scale (and in the case of w0 < −1, the sound horizon scale of dark
energy perturbations), where D is computed neglecting any perturbations in
components other than CDM and baryons. Scale-dependent growth is fully
taken into account in the simulations themselves.

MNRAS 504, 3534–3543 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/504/3/3534/6244251 by FAC
.M

ED
.R

IB.PR
ETO

-BIBL.C
EN

TR
AL-U

SP user on 05 N
ovem

ber 2021



3540 L. Coates et al.

Figure 6. Plot of the mean C
δκv

 across all of the different random realizations of the fiducial cosmology for two different redshift bins. We also plot the standard

deviation and the standard error of the mean that are represented by the shaded areas. The dashed line on the plot shows the theoretical prediction of the signal
from equation (11).

for all thin bins within the thick bin and take the average to
obtain C

δκv


 .
To accurately compare the simulations to the perturbative predic-

tion, it is necessary to convolve the power spectrum in the perturbative
calculation with the CIC kernel (Hockney & Eastwood 1981). This
effectively gives a smoothed power spectrum which accounts for the
fact that the density field in the simulations is coarse-grained at a
finite resolution. The expression for the monopole of this smoothed
power spectrum is

P s
0 (k) = P (k)

1

4π

∫
d2n W 2

CIC (k, n) , (12)

where the CIC kernel WCIC(k) is defined as

WCIC(k) = sinc2

(
πk1

2kN

)
sinc2

(
πk2

2kN

)
sinc2

(
πk3

2kN

)
, (13)

where ki is the ith component of k and kN is the Nyquist wavenumber.
The smoothed monopole power spectrum of equation (12) is then
substituted for Pcb in equation (11).

In Fig. 6, we show the distribution of C
δκv


 measured from all
realizations of the fiducial cosmology, with the mean shown as a solid
red line and the standard deviation shown as a blue shaded region. We
also plot the perturbative prediction calculated from equation (11) as
a black dashed line. The results are shown for two redshift bins, the
first at z ≈ 0.1–0.3, and the second at z ≈ 0.6–0.8.

In the lower redshift bin, perturbation theory overestimates the
signal beyond 
� 30 or so. This difference is mostly due to non-linear
effects on small and intermediate scales that are not included in the
linear power spectrum model, caused by orbit crossings that generate
both vorticity and velocity dispersion and at the same time reduce
the power in the velocity divergence (Pueblas & Scoccimarro 2009;
Hahn, Angulo & Abel 2015; Jelic-Cizmek et al. 2018). As expected,
this effect is also present in the density–velocity cross-correlation.
Since this bin is at relatively low redshift, non-linear effects are
important even at quite low values of 
. In the higher redshift bin,
on the other hand, the value measured from our simulations fits
more closely to the perturbative prediction, although the strength of

the signal has decreased by around an order of magnitude by this
point. Also, note the shift of the peak in the cross-correlation to
correspondingly smaller angular scales.

In Fig. 7, we show the numerical derivatives of C
δκv


 by using finite
differences (equation (1)) of this quantity in the two redshift bins,
z ≈ 0.1–0.3 (upper panels) and ≈0.6–0.8 (lower panels), for seven
pairs of simulations with the same initial conditions but different
values of the cosmological parameters As, ns, h, ωcdm, ωb, Mν , and
w0 as described in Table 1. In the case of varying w0, the pair
of simulations used are the baseline cosmology and the one where
we include perturbations in the dark energy field (see Section 2.1).
Derivatives of this kind are useful for Fisher forecasting studies, and
give a direct measure of the sensitivity of an observable to a given
parameter.

Theoretical predictions of the derivatives from perturbation theory
are also shown as dashed lines in Fig. 7. As in previous figures, we
see differences of a few per cent between the perturbation theory and
simulated quantities in the lowest redshift bin (upper panels), which
is consistent with the growing importance of non-linear effects at
these redshifts, as discussed above. At higher redshift (lower panels),
these effects are subdominant however, and the agreement between
perturbation theory and the simulated quantities is good to within a
couple of percent even on smaller angular scales.

A notable feature of Fig. 7 is the wiggle-like features in some of
the curves for the higher redshift bin. These are due to shifts in the
location of the baryon acoustic oscillations, which could also be seen
(albeit at quite a low level) in Fig. 6. While the signal-to-noise ratio
of any practical measurement of the Doppler magnification signal is
unlikely to be sufficient to detect the BAO feature for the foreseeable
future, it is interesting that they can, in principle, be picked up by
this observable.

4 C O N C L U S I O N S

In this paper, we have presented a suite of novel general relativistic
cosmological simulations. These were run using the gevolution
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Figure 7. Plots of the numerical derivatives of C
δκv

 using finite differences of the density Doppler magnification cross-correlation signal in the redshift bin z

≈ 0.1–0.3 (upper panels) and ≈0.6–0.8 (lower panels). This is done for seven pairs of simulations where θ = As, ns, h, ωcdm, ωb, Mν , and w0 are varied. The
solid lines show the results measured from the simulations, whereas the dashed lines show the perturbative predictions. The right-hand panels are zoomed-in
sections of the left-hand panels so the difference in the selected quantities can be seen more clearly.

N-body code (Adamek et al. 2016a), which takes into account all
relevant relativistic effects, including frame dragging and relativistic
neutrino effects. While most of those effects are small in compar-
ison with the conventional ‘Newtonian’ terms in most large-scale
observables, the rapidly increasing precision of upcoming surveys
will soon make it impractical to ignore them without risking biases
in cosmological parameter estimates.

The suite of simulations contains a total of 53 runs, divided into
subsets that are envisioned to have two main uses. The first subset
contains 39 simulations that all use the same fiducial cosmology, but
vary the random seed used to generate the initial conditions, which
essentially gives us different realizations of the same underlying
cosmology. Possible applications of this subset include statistical
studies of observables, estimators, and data extraction methods, plus
some rudimentary kinds of simulation-based covariance estimation.

The second part of this suite consists of seven pairs of simulations
with cosmological parameters that are systematically varied around
the fiducial cosmology (which matches the Euclid Flagship 2
cosmology), while maintaining the same (random) initial conditions.
These allow us to study the derivatives of any observable that we can
calculate with respect to a set of cosmological parameters. Possible
applications of this suite include Fisher forecasting, where derivatives
of observables are used to estimate the uncertainties on measurements
that can be achieved by future experiments.

We have stored a range of data products for each simulation,
including all of the metric degrees of freedom and other fields needed

to reconstruct any cosmological observable on large scales. These
fields have been determined in a spherical coordinate system about
a fiducial observer, and can be fed into a ray-tracing algorithm to
produce precise predictions of observables on the past light cone. The
geometry of the simulations has been chosen to maximize the sky
area and depth of the light cones that can be simulated, with the full
sky accessible out to z = 0.85 and a large area (1930 deg2) available
out to z = 3.55. These specifications are well matched to a variety of
current and near-future large-scale structure surveys, including the
ESA Euclid mission, the Roman Space Telescope, the VRO Legacy
Survey of Space and Time, and the Square Kilometre Array. While
the simulations do not have sufficient resolution to produce suitable
dark matter halo catalogues for these surveys, biased tracers can be
painted on to the simulations using other means (e.g. Borzyszkowski,
Bertacca & Porciani 2017; Bull 2017; Witzemann et al. 2019; Yip
et al. 2019; Farr et al. 2020; Ramanah et al. 2020).

To showcase the potential use-cases of our suite of simulations, we
calculate the cross-correlation of the inherently special relativistic
Doppler magnification signal, κv , and the matter density contrast,
δcb, from our 34 random realization simulations and compare it
to the perturbation theory result from Bacon et al. (2014). We
find good agreement with the perturbation theory calculation in a
relatively high-redshift bin of z ≈ 0.6–0.8, but find non-negligible
corrections in a lower redshift bin of z ≈ 0.1–0.3, where linear
theory overestimates the signal. This is due to non-linear effects
that appear on small scales that are not included in the linear
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prediction, and which (due to projection effects) affect most of
the relevant angular scales at the low redshifts where the Doppler
magnification signal is largest. While an improvement, replacing the
linear matter power spectrum in the perturbation theory calculation
with a non-linear power spectrum model does not fully capture these
effects (cf. Figs 3 and 4). This highlights the value of having fully
relativistic cosmological simulations on hand to make predictions of
such observables.

We also calculated the Doppler magnification cross-correlation
signal for matched pairs of simulations with the same initial
conditions but different values for the cosmological parameters.
This allowed us to approximate the derivatives of the observable
C

δκv


 and therefore see which parameters it is most sensitive to.
While we again saw generally good agreement with predictions
from perturbation theory, especially in the higher redshift bin, non-
negligible corrections remained. Since reasonably any large-scale
structure observable can be constructed from our suite of simulations,
including many different combinations of cross-correlations and even
high-order statistics, it should be possible to make Fisher matrix-type
forecasts for a very wide range of surveys and observables using these
data.

In conclusion, in this paper, we have described a suite of fully
relativistic N-body simulations, and shown a particular example
(the Doppler magnification term in the density-convergence cross-
correlation) in which such simulations are needed in order to make
accurate predictions for next-generation surveys. While perturbation
theory calculations were able to capture most features of the target
signal, non-linear effects made few per cent differences at low
redshifts. To accurately model these in perturbation theory, one would
likely have to include higher order corrections in redshift-space are
difficult to compute.

C A R B O N F O OTP R I N T

The numerical simulations presented in this paper used about
3900 kWh of electrical energy. Using a conversion factor of
0.681 kg CO2 kWh−1 (typical for the UK grid according to my-
climate.org, c. 2021 February 12), this gives a carbon footprint of
approximately 2.7 t CO2.
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