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1 Introduction

The quest for a fully covariant hamiltonian formulation of classical field theory has a
long history. In particular, the search for a first order formalism analogous to that for
classical mechanics in terms of concepts from symplectic geometry has stimulated the
development of new geometric tools usually referred to as “multisymplectic” or “poly-
symplectic” structures whose real significance is emerging only gradually. In fact, for
many years there has not even been a convincing general definition, although a standard
class of examples in terms of duals of jet bundles has long been known and widely used.!
This defect has recently been overcome [1}, and it has been realized that both multi-
symplectic and polysymplectic structures (which are not the same thing) play an impor-
tant role in the formalism; in particular, a multisymplectic structure always induces a
special kind of polysymplectic structure by means of a construction called the “symbol”.
But the fact that both types come together to form a pair has been anticipated almost 20
years ago [2], when it became apparent that the covariant hamiltonian formulation of first
order classical field theories requires the simultaneous use of two types of “multiphase
space” that we shall refer to as “ordinary multiphase space” and “extended multiphase
space”, respectively.

To be more precise, let us briefly recall the cornerstones of the construction of the two
types of multiphase spacé for first order lagrangian field theories; for more details, the
reader is referred to [2-4]. The starting point is the choice of a fiber bundle E over the
space-time manifold M called the configuration bundle because its scctions represent the
basic fields of the theory at hand. Next, one takes the first order jet bundle JE of E to
accomodate first order derivatives of these fields: this is an affine bundle over F and is also
the domain of definition of the lagrangian. Besides, one also considers the linearized first
order jet bundle JE of E: this is a vector bundle over E defined as the difference vector
bundle of JE. Finally, as in mechanics, one uses appropriate versions of the Legendre
transformation induced by the given lagrangian to pass to the (twisted) affine dual J®E
of JE and to the (twisted) linear dual J®E of JE: the former is the extended multiphase
space and the latter is the ordinary multiphase space of the theory. Note that the former
is an affine line bundle over the latter and that the hamiltonian obtained from the given
lagrangian through Legendre transformation is not a function but rather a section of this
affine line bundle, so both of these multiphase spaces are essential ingredients for defining
the concept of a hamiltonian system in field theory! Moreover, it is well known that J®E
carries a naturally defined multisymplectic form w. However, what does not seem to have
been so widely noticed is the fact that J®E carries a naturally defined polysymplectic
form @ — even though this form alrcady appears explicitly in Ref. [5]. As has been shown
more recently (1}, it can be derived from the multisymplectic form w on J®E by taking its
symbol, which turns out to be degenerate precisely along the fibers of the aforementioned

IThis situation has been strikingly similar to that in classical mechanics before it was realized that
symplectic manifolds, rather than just cotangent bundles, provide an adequate framework if one wants
to accomodate phenomena such as half-integral spin within classical mechanics.



affine line bundle, and then passing to the corresponding quotient of J®E by the kernel
of w, which is precisely J®E. Note that this polysymplectic form & on J®E is canonical,
whereas the form wy on J®E obtained as the pull-back of w by means of a hamiltonian
section H : J®E — JOE is not, since it depends on the choice of hamiltonian.?

In terms of adapted local coordinates (z*,¢', p¥,p) for J®E and (z*,¢', p¥) for JeE,
induced by local coordinates z# for M, local coordinates ¢* for the typical fiber Q of E
and a local trivialization of E [4], we have

extended multiphase space JOE
adapted local coordinates (z#, ¢', p¥, p) 1)
multisymplectic form w = d¢'adpiad™z, — dpad"z

and .
ordinary multiphase space J®E

adapted local coordinates (z#, ¢', pY) (2)
polysymplectic form & = d¢*adp} e d™z,

where p is (except for a sign) a scalar energy variable and d™z is the (local) volume form
induced by the 2* while d™z,, is the (local) (n—1)-form obtained by contracting d"z with
0, = 0/0z*:
n , n
d'z, = za“d T.

The same picture prevails in the general case if we replace adapted local coordinates
by Darboux coordinates; see [1]. Ezrtended multiphase space is multisymplectic, ordinary
multiphase space is polysymplectic.

A crucial role in the development of the hamiltonian formalism is played by the notion
of a hamiltonian vector field. According to the picture outlined above, this comes in two
variants: a multisymplectic one and a polysymplectic one. We shall deal with the two
versions scparately, beginning with the pertinent definitions.

2 The multisymplectic case

According to Ref. [1], a multisymplectic fiber bundle of rank N can be defined as a fiber
bundle P over an n-dimensional base manifold M equipped with a closed, non-degenerate
(n+1)-form w on its total space P which (a) is (n — 1)-horizontal, i.e., such that its con-
traction with any three vertical vector fields vanishes, and (b) admits a multilagrangian
distribution, i.e., an isotropic vector subbundle L of the vertical bundle V P of P of codi-
mension N and dimension Nn+1. (It then turns out that P has dimension (N +1)(n+1).)
Assuming this distribution to be involutive, which is automatic as soon as n > 3 but
has to be imposed as a separate condition when n = 2, Darboux’s theorem assures that

21t should be noted that the form wy is closed and non-degenerate but not multisymplectic in the
sense of the definition given in Ref. [1].



there exist local coordinates, called canonical local coordinates or Darboux coordinates,
in which w assumes the form

w = dg'adp¥adz, - dpadiz. (3)

Locally, w'is exact, i.e.,
w = —db, (4)

where d denotes the exterior derivative, with
0 = pldgadz, + pdiz. (8

The standard example is that of the extended multiphase space J®FE mentioned above,
for which w is also globally exact, i.e., the so-called multicanonical form 8 in equations (4)
and (5) is globally defined, and L is the vector subbundle of V P gencrated by the vec?or
fields 8/0p” and O/8p, that is, the vertical bundle for the projection of J ®F onto E (with
respect to which J®E is a vector bundle).

Given this situation, we say that a vector field X on P is locally hamiltonian if ixw is
closed, or equivalently, if
Lyw = 0. (6)
It is called globally hamiltonian if iyw is exact, that is, if there exists an (n ~ 1)-form f
on P such that

'l;xw = df . (7)
In this case, f is said to be a hamiltonian form associated with X. Finally, when w is
exact and given by equation (4), X is called eract hamiltonian if

Ly = 0. 8)

The main theorem states that these vector fields can be classified in terms of their com-

ponents with respect to canonical local coordinates, which are given by the expansion
7] ) d 0

= Xr__ o X — + Xy 9

X X@x“+xﬁq"+ ;apét-*— Oapv ()

whereas, locally, the hamiltonian form corresponding to such a vector field, which is

determined up to an arbitrary closed form, can be assumed to have an expansion of the

form _
f = fu dnl‘p + %f,‘w dq‘/\ dnx/w ) (10)

where
d"z,, = ia, %0, d"z .
An easy calculation gives
ixw = XV dg'ndp?ndrz,, ~ X! dgind s, + X dpfadz,

+ X*dp ad™z, — Xyd™z,

(11)
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and in the exact case
ixd = (X' + pX*)d z, — piX¥ dg'nd"zy (12)
These formulas constitute the starting point for the proof of the following

Theorem 1 A vector field X on P is locally hamiltonian if and only if its components
X*#, X%, X¥ and X, with respect to canonical local coordinates, as defined by equation (9),
sattsfy-ite folivbity  vonditions:

1. the coefficients X* and X* are independent of the multimomentum variables pg
and of the energy variable p, with the coefficients X* depending only on the local
coordinates x* of the base manifold M as soon as N > 1,

2. the remaining coefficients X! and X, can be expressed in terms of the previous
ones and of new coefficients f§ which are also independent of the multimomentum
variables pf and of the energy variable p, according to

oxH . 0X3 , 0X* oxv  off

: - 3 1
+ pi 5o o e + o (13)

Xt = —P—aq—i—Pj'qu

(the first term being absent as soon as N > 1) and

ox» X' 0ff

Xy = TP TPigm T B (14)
The components of the corresponding hamiltonian form f are given by
ffo=pfX +pXE + S (15)
and
fIY = piX* - piX”. (16)

In addition, when w is ezact and given by equation (4), X is exact hamiltonian if and
only if the coefficients f§ vanish.

This theorem has been explicitly stated in Ref. [6] and an explicit proof of a more general
theorem (where vector fields are replaced by multivector fields) can be found in Ref. [7].

3 The polysymplectic case

According to Ref. [1], a polysymplectic fiber bundle of rank N can be defined as a fiber
bundle P over an n-dimensional base manifold M equipped with a vertically closed,
non-degenerate vertical 2-form & on its total space P which (a) takes values in (the
pull-back 7*T" to P of) some given #-dimensional cocfficient vector bundle T over M
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and (b) admits a polylagrangian distribution, i.e., an isotropic vector subbundle L of the
vertical bundle VP of P of codimension N and dimension N. (It then turns out that
P has dimension NA + N + A.) Assuming this distribution to be involutive, which is
automatic as soon as 7 > 3 but has to be imposed as a separate condition when 7 = 2,
Darboux’s theorem assures that given any basis {é,/1 < a <@} of local sections of T,
there exist local coordinates, called canonical local coordinates or Darboux coordinates,
in which & assumes the form
@ = di*adpi e é, . (17)
Locally, w is vertically exact, i.e.,
& = —dvf, (18)
where dy denotes the vertical exterior derivative, with
0 = pldi eé,. (19)

The standard example is that of the ordinary multiphase space J®E mentioned above,
with T = /\"_IT‘M and e, = d"z,, for which & is also globally vertically exact, i.e.,
the so-called polycanonical form 6 in equations (18) and (19) is globally defined, and L
is the vector subbundle of V P generated by the vector fields 8/0p!’, that is, the vertical
bundle for the projection of J®E onto E (with respect to which J®E is a vector bundle).

Given this situation, we say that a vertical vector field X on P is locally hamiltonian
if iy is vertically closed, or equivalently, if

It is called globally hamiltonian if iy is vertically exact, that is, if there exists a section
f of the vector bundle n*T over P such that

ix® = dyf. (21)

In this case, f is said to be a hamiltonian section associated with X. Finally, when @ is
vertically exact and given by equation (18), X is called ezact hamiltonian if

L.\'é =0. (22)

The main theorem states that these vector fields can be classified in terms of their com-
ponents with respect to canonical local coordinates, which are given by the expansion
0 0

X = Xi= 4 X¢

. a__ 23
aqz 1 apta ( )

whereas, locally, the hamiltonian section corresponding to such a vector field, which is
determined up to (the pull-back to P of) an arbitrary section of T', can be assumed to
have an expansion of the form

f=r1%,. (24)
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An easy calculation gives
iy = —Xtdi'eé, + X' dpleé,, (25)

and in the exact case R
ixd = X'pté, . (26)

These formulas constitute the starting point for the proof of the following

Theorem 2 A vector field X on P is locally hamiltonian if and only if its components
X' and X! with respect to canonical local coordinates, as defined by equation (23), satisfy
the following conditions:

1. the coefficients X* are independent of the multimomentum variables pf,

2. the remaining coefficients X¢ can be expressed in term of the previous ones and of
new coefficients f¢ which are also independent of the multimomentum variables pf,
according to

0xXi  ofy
Xt = —p®— S, 2
t p.? aqz + 6(]1 ( 7)
The components of the corresponding hamiltonian section f are given by
o= X+ g (28)

In addition, when & is vertically ezact and given by equation (18), X is ezact hamiltonian
if and only if the coefficients f§ vanish.

The proof of this theorem is entirely analogous to that of the previous one, except that
it is much simpler. The essence of the argument can already be found in Ref. (8,9], but
the proper global context of the result is not adequately treated there.

4 Outlook

The analogous problem of determining hamiltonian vector fields with respect to the form
wye on ordinary multiphase space mentioned in the introduction has been addressed and
solved in Ref. [10], but the results are somewhat complicated and not very enlightening.
We now believe this to be related to the fact that, according to the structurally natural
definition given in Ref. [1], wg, is not multisymplectic.

One problem that, for the time being, remains open is to give a global, coordinate
independent formulation of the results of Theorems 1 and 2. This question is presently
under investigation.
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