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1 Introduction 

The quest for a fully covariant hamiltonian formulation of classical field theory has a 

long history. In particular, the search for a first order formalism analogous to that for 

classical mechanics in terms of concepts from symplectic geometry has stimulated the 

development of new geometric tools usually referred to as "multisymplectic" or "poly­

symplectic" structures whose real significance is emerging only gradually. In fact, for 

many years there has not even been a convincing general definition, although a standard 

class of examples in terms of duals of jet bundles has long been known and widely used.1 

This defect has recently been overcome [1], and it has been realized that both multi­

symplectic and polysymplectic structures (which are not the same thing) play an impor­

tant role in the formalism; in particular, a multisymplectic structure always induces a 

special kind of polysymplectic structure by means of a construction called the "symbol". 

But the fact that both types come together to form a pair has been anticipated almost 20 

years ago [2] ,' when it became apparent that the covariant hamiltonian formulation offirst 

order classical field theories requires the simultaneous use of two types of "multiphase 

space" that we shall refer to as "ordinary multiphase space" and "extended multiphase 

space", respectively. 

To be more precise, let us briefly recall the cornerstones of the construction of the two 

types of multiphase space for first order lagrangian field theories; for more details, the 

reader is referred to [2-4]. The starting point is the choice of a fiber bundle E over the 

space-time manifold M called the configuration bundle because its sections represent the 

basic fields of the theory at hand. Next, one takes the first order jct bundle J E of E to 

accomodate first order derivatives of these fields: this is an affine bundle over E and is also 

the domain of definition of the lagrangian. Besides, one also considers the linearized first 

order jct bundle JE of E: this is a vector bundle over E defined as the difference vector 

bundle of J E. Finally, as in mechanics, one uses appropriate versions of the Legendre 

transformation induced by the given lagrangian to pass to the (twisted) affine dual J®E 

of JE and to the (twisted) linear dual f®E of fE: the former is the extended multiphase 

space and the latter is the ordinary multiphase space of the theory. Note that the former 

is an affine line bundle over the latter and that the hamiltonian obtained from the given 

lagrangian through Legendre transformation is not a function but rather a section of this 

affine line bundle, so both of these multiphase spaces are essential ingredients for defining 

the concept of a hamiltonian system in field theory! Moreover, it is well known that J@E 
carries a naturally defined multisymplectic form w. However, what does not seem to have 

been so widely noticed is the fact that f®E carries a naturally defined polysymplectic 

form w - even though this form already appears explicitly in Ref. [5]. As has been shown 

more recently [1], it can be derived from the multisymplectic form won J®E by taking its 

symbol, which turns out to be degenerate precisely along the fibers of the aforementioned 

1 This situation has been strikingly similar to that in classical mechanics before it was realized that 

symplectic manifolds, rather than just cotangent bundles, provide an adequate framework if one wants 

to accomodate phenomena such as half-integral spin within classical mechanics. 
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affine line bundle, and then passing to the corresponding quotient of J@ E by the kernel 

of w, which is precisely f®E. Note that this polysymplectic form won f®E is canonical, 

whereas the form w:J-( on f®E obtained as the pull-back of w by means of a hamiltonian 

section '.J{: J@E-+ J®E is not, since it depends on the choice of hamiltonian.2 

In terms of adapted local coordinates (xµ,qi,pi,P) for J®E and (xµ,qi,p[') for f®E, 

induced by local coordinates xµ for M, local coordinates qi for the typical fiber Q of E 
and a local trivialization of E [4], we have 

and 

extended multiphase space J®E 

adapted local coordinates ( xµ, qi, pf, p) 

multisymplectic form w = dr/" dpf" dnxµ - dp "dnx 

ordinary multiphase space f®E 

(1) 

adapted local coordinates (x1', qi, pr) (2) 

polysymplectic form w = dqi" dpf ® dnxµ 

where p is (except for a sign) a scalar energy variable and dnx is the (local) volume form 

induced by the xµ while dnxµ is the (local) (n-1)-form obtained by contracting dnx with 

aµ= 8/8x": 
dn • dn 

X 1, = za,, X. 

The same picture prevails in the general case if we replace adapted local coordinates 

by Darboux coordinates; see [I]. Extended multiphase space is multisymplectic, ordinary 
multiphase space is polysymplectic. 

A crucial role in the development of the hamiltonian formalism is played by the notion 

of a hamiltonian vector field. According to the picture outlined above, this comes in two 

variants: a multisymplectic one and a polysymplectic one. We shall deal with the two 

versions separately, beginning with the pertinent definitions. 

2 The multisymplectic case 

According to Ref. [I], a multisymp!ectic fiber bundle of rank N can be defined as a fiber 

bundle P over an n-dimensional base manifold M equipped with a closed, non-degenerate 

(n+ 1)-form won its total space P which (a) is (n-1)-horizontal, i.e., such that its con­

traction with any three vertical vector fields vanishes, and (b) admits a multilagrangian 

distribution, i.e., an isotropic vector subbundle L of the vertical bundle VP of P of codi­

mcnsion N and dimension Nn+ l. (It then turns out that P has dimension (N +l)(n+l).) 
Assuming this distribution to be involutive, which is automatic as soon as n ~ 3 but 

has to be imposed as a separate condition when n = 2 , Darboux's theorem assures that 

2lt should be noted that the form w:x is closed and non-degenerate but not multisymplectic in the 

sense of the definition given in Ref. [lj. 
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there exist local coordinates, called canonical local coordinates or Darboux coordinates, 

in which w assumes the form 

(3) 

Locally, w is exact, i.e., 
w = -dB, (4) 

where d denotes the exterior derivative, with 

(5) 

The standard example is that of the extended multiphase space J@ E mentioned above, 

for which w is also globally exact, i.e., the so-called multicanonical form 0 in equations (4) 

and (5) is globally defined, and Lis the vector subbundle of VP generated by the vector 

fields 0/0'ft and 0/op, that is, the vertical bundle for the projection of J®E onto E (with 

respect to which J®E is a vector bundle). 

Given this situation, we say that a vector field X on Pis locally hamiltonian if ixw is 

closed, or equivalently, if 
(6) 

It is called globally hamiltonian if ixw is exact, that is, if there exists an (n - 1)-form f 

on P such that 
ixw = df. (7) 

In this case, f is said to be a hamiltonian form associated with X. Finally, when w is 

exact and given by equation (4), Xis called exact hamiltonian if 

(8) 

The main theorem states that these vector fields can be classified in terms of their com­

ponents with respect to canonical local coordinates, which are given by the expansion 

x xµ 0 i 
O xµ 0 x 8 

= ~µ+Xn-+ in1,+ o-;:i-, 
vx vq' upi up 

(9) 

whereas, locally, the hamiltonian form corresponding to such a vector field, which is 

determined up to an arbitrary closed form, can be assumed to have an expansion of the 

form 

where 

An easy calculation gives 

ixw = X" dqi II dp:' 11 dnxµ 11 - X; dqi II dnxµ + Xi dp'/' 11 dnx1, 

+ Xµ dp II dnxµ - X 0 dnx , 
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and in the exact case 

ixO = (pf xi + p Xµ) dnxµ - pf X" dl /\ dnxl"' . (12) 

These formulas constitute the starting point for the proof of the following 

Theorem 1 A vector field X on P is locally hamiltonian if and only if its components 

Xµ, Xi, Xf and X 0 with respect to canonical local coordinates, as defined by equation (9), 

s attsj 'ff" tire· f di i'D'lhHC!J" "Co'n'diti ans: 

1. the coefficients Xµ and Xi are independent of the multimomentum variables Pk 

and of the energy variable p, with the coefficients Xµ depending only on the local 

coordinates x" of the base manifold M as soon as N > 1, 

2. the remaining coefficients Xt' and X 0 can be expressed in terms of the previous 

ones and of new coefficients JC which are also independent of the multimomentum 

variables Pk and of the energy variable p, according to 

axµ axi axµ DX" a1
0µ 

µ + II µ + J1 

p oqi Pi /)qi P, ox" P, ox" oqi ' XI'= • 

(the first term being absent as soon as N > 1) and 

/JXµ µ axi /JJC 
Xo = - p oxµ - Pi oxµ + oxµ . 

The components of the corresponding hamiltonian form f are given by 

r = pf xi+ pXµ +JC' 

and 

(13) 

(14) 

(15) 

ft" = pr Xµ - pf X" . (16) 

In addition, when w is exact and given by equation (4), X is exact hamiltonian if and 

only if the coefficients JC vanish. 

This theorem has been explicitly stated in Ref. [6] and an explicit proof of a more general 

theorem (where vector fields are replaced by multivector fields) can be found in Ref. [7]. 

3 The polysymplectic case 

According to Ref. [l], a polysymplectic fiber bundle of rank N can be defined as a fiber 

bundle P over an n-dimensional bA.Se manifold M equipped with a vertically closed, 

non-degenerate vertical 2-form w on its total space P which (a) takes values in (the 

pull-back 1r•T to P of) some given ii-dimensional coefficient vector bundle i' over M 
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and (b) admits a polylagrangian distribution, i.e., an isotropic vector subbundle L of the 
vertical bundle VP of P of codimension N and dimension Nii. (It then turns out that 
P has dimension Nii+ N + ii.) Assuming this distribution to be involutive, which is 
automatic as soon as ii ;;,: 3 but has to be imposed as a separate condition when ii = 2, 
Darboux's theorem assures that given any basis {ea/ 1 :,.:; a :,.; ii} of local sections of T, 
there exist local coordinates, called canonical local coordinates or Darbou.x coordinates, 
in which C,; assumes the form 

Locally, C,; is vertically exact, i.e., 

w = -dv0, 

where dv denotes the vertical exterior derivative, with 

0A adi A = P; q @ea· 

(17) 

(18) 

(19) 

The standard example is that of the ordinary multiphase space J@ E mentioned above, 
with T = I\ n-ly• M and e

0 
= dnxµ, for which C,; is also globally vertically exact, i.e., 

the so-called polycanonical form 0 in equations (18) and (19) is globally defined, and L 
is the vector sub bundle of VP generated by the vector fields 8 / fJpf, that is, the vertical 
bundle for the projection ·of f®E onto E (with respect to which f®E is a vector bundle). 

Given this situation, we say that a vertical vector field X on P is locally hamiltonian 
if i xw is vertically closed, or equivalently, if 

(20) 

It is called globally hamiltonian if i xW is vertically exact, that is, if there exists a section 
J of the vector bundle 1r*T over P such that 

(21) 

In this case, J is said to be a hamiltonian section associated with X. Finally, when C,; is 
vertically exact and given by equation (18), X is called exact hamiltonian if 

L_.,:O = 0. (22) 

The main theorem states that these vector fields can be classified in terms of their com­
ponents with respect to canonical local coordinates, which are given by the expansion 

X = X; .!!.._ + X?- !!.._ 
oqi , opf (23) 

whereas, locally, the hamiltonian section corresponding to such a vector field, which is 
determined up to (the pull-back to P of) an arbitrary section of T, can be assumed to 
have an expansion of the form 

(24) 
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An easy calculation gives 

(25) 

and in the exact case 
ix0 = Xipf Ca . (26) 

These formulas constitute the starting point for the proof of the following 

Theorem 2 A vector field X on P is locally hamiltonian if and only if its components 

Xi and X; with respect to canonical local coordinates, as defined by equation {23}, satisfy 

the J allowing conditions: 

1. the coefficients Xi are independent of the multimomentum variables Pk, 

2. the remaining coefficients Xf can be expressed in term of the previous ones and of 

new coefficients fo which arc also independent of the multimomentum variables pk, 

according to 
a oXi of0 

Xf = -pi oqi + oqi · 

The components of the co.rresponding hamiltonian section f are given by 

r = pfXi +Jg, 

(27) 

(28) 

In addition, when w is vertically exact and given by equation {18), X is exact hamiltonian 

if and only if the coefficients fo vanish. 

The proof of this theorem is entirely analogous to that of the previous one, except that 

it is much simpler. The essence of the argument can already be found in Ref. [8, 9], but 

the proper global context of the result is not adequately treated there. 

4 Outlook 

The analogous problem of determining hamiltonian vector fields with respect to the form 

wx on ordinary multiphase space mentioned in the introduction has been addressed and 

solved in Ref. [10], but the results are somewhat complicated and not very enlightening. 

We now believe this to be related to the fact that, according to the structurally natural 

definition given in Ref. [1], w9{ is not multisymplect.ic. 

One problem that, for the time being, remains open is to give a global, coordinate 

independent formulation of the results of Theorems 1 and 2. This question is presently 

under investigation. 
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