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Global mild solutions for the nonautonomous 2D
Navier-Stokes equations with impulse effects

E. M. Bonotto* J. G. Mesquita' and R. P. Silval

Abstract

The present paper deals with existence and uniqueness of global mild solutions
for the 2D Navier-Stokes equations with impulses. Using the framework of nonau-
tonomous dynamical systems, we extend previous results considering the 2D Navier-
Stokes equations with impulse effects and allowing that the nonlinear terms are explic-
itly time-dependent. Additionally, we present sufficient conditions to obtain dissipa-
tivity (boundedness) for solutions starting in bounded sets.

1 Introduction

The Navier-Stokes equations (NSEs) represent a formulation of the Newton’s laws of
motion for a continuous distribution of matter in a fluid state, characterized by an inability
to support shear stresses, see [13]. The NSEs allow to determine the velocity field and the
pressure of fluids confined in regions of the space, and they are used to describe many different
physics phenomena as weather, water flow in tubes, ocean currents and others. Moreover,
these equations are useful in several fields of knowledge such as petroleum industry, plasma
physics, meteorology, thermo-hydraulics, among others (see [29] for instance). Due to this
fact, these equations have been attracted to the attention of several mathematicians since
they play an important role for applications. See [1,5,8-10,13-17,19-30] and the references
therein.

On the other hand, the theory of impulsive dynamical systems has been shown to be a
powerful tool to model real-world problems in physics, technology, biology, among others.
Because of this fact, the interest in the study of impulsive dynamical systems has increasing
considerably. For recents trends on this subject we indicate the works [2-4,11,12,18,31, 32]
and the references therein.
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fSupported partially by CNPq #440371/2014-7 and FAPESP #2014/16165-1.



However, the study of Navier-Stokes equations with impulse effects is really scarce, there
are few papers concerning with this topic in the literature. The most of them are con-
cerned with impulsive control problems for stochastic Navier-Stokes equations (see [25-27],
for instance). Therefore, motivated by this fact, in this paper, we investigate existence and
uniqueness of mild solutions for the impulsive NSEs

( Foo
2_1; +q(t)(u- V)u—vAu+Vp=¢(t,u), ()€ ((0, +00) \ U{tk}> x £,
k=1
divu =0, (t,z) € (0,+00) x Q, (1.1)
u=0, (t,x) € (0, +00) x 09, '
u(0, ) = ug x € ),
Cu(tl, ) —ulty, ) = I(u(ty, ), re, k=1,2,...,

where  is a bounded smooth domain in R?. Here u = (uy, up) denotes the velocity field of

a fluid filling €2, p is its scalar pressure and v > 0 is its viscosity. We will assume that ¢ is

a bounded function, ¢ is a nonlinearity which will be specified later, {t;}ren C (0, +00) is

a sequence of impulse times such that lim ¢, = 400, u(ty, ) = u(t},-) = lim u(ty +9,),
t—+oo 6—0+

u(ty,,-) = 51ir51+u(tk —4,-) and Iy, k € N, are the impulse operators.

Besides to impulsive actions in the system (1.1), we also allow that the external force ¢
is not continuous and depends on the solution w.

We point out that the Navier-Stokes equations with impulses make sense physically
and allow to describe more precisely the phenomena modeled by these equations, since
u represents the velocity of the field of a fluid and moreover, the external force ¢ in this
case does not need to be continuous. It is well known that the phenomena which occur in
the environment have impulsive behavior and the functions which model them have several
discontinuities. Therefore, with this impulsive model, we intend to give a more precisely
description of the Navier-Stokes equations.

The system (1.1) without impulse conditions was studied in the classical monograph [6],
where ¢ is a function of time ¢ € R. More precisely, the author studies existence and
uniqueness of global mild solutions for the non-impulsive equation

ou
¢ Ta)(w- Vyu—vAu+Vp=¢(t),
subject to the conditions divu = 0 and u|gq = 0, where Q) is a bounded smooth domain in
R2,

Our goal here is to write a weaker formulation of the system (1.1) and then, we intend to
investigate the existence and uniqueness of mild solutions. In order to do this, we start by

considering some notations which can be found in [28] and [29], for instance. Let L?(Q2) =



(L2(2))* and H}(Q) = (H(Q))? endowed, respectively, with the inner products

2
(u,v) = Z/ wj vy dr,  u= (u,up), v=(vy,v9) € L*Q),
=179

and ,
((u,v)) = Z/ Vu; - Vojdz, u= (ug,up), v = (vy,v2) € Hy(€2)
j=1"%
and norms |- | = (-,-)Y2 and || - || = ((-, )2

Now, we consider the following sets:
E={ve(C()?: V-v=0in Q},

V = closure of £ in H}(Q)

and
H = closure of £ in L2(9).

The space H is a Hilbert space with the scalar product (-,-) induced by L2?(2) and the
space V is a Hilbert space with the scalar product ((u,v)) induced by H} ().

The space V' is contained in H, it is dense in H and by the Poincare’s Inequality, the
inclusion ¢ : V — H is continuous. Denote by V' and H’ the dual spaces of V and H,
respectively. The adjoint operator i* is linear and continuous from H' to V', i*(H') is dense
in V" and i* is one to one since (V') = V is dense in H. Moreover, by the Riesz representation
Theorem, we can identify H and H' and write

VcCH=H cV,

where each space is dense in the following one and the injections are continuous.
As a consequence of the previous identifications, the scalar product in H, (f,u), of f € H
and u € V is the same as the duality product between V' and V', (f, u), i.e.,

(fyu) = (f,u), forall fe H andforallu e V.
Also, for each u € V, the form
veVir((uv) €R

is linear and continuous on V. Therefore, there exists an element of ¥V’ which we denote by
Aw such that
(Au,v) = v((u,v)), for allv € V.

Notice that the mapping v — Auw is linear, continuous and it is an isomorphism from V'
to V.



Based on it, we consider the following weak formulation of (1.1):

i(u,v) + v((u,v)) + b(t)(u,u,v) = (Pp(t,u),v), veV,t>0,t#t,

dt
ult) — ulty) = Lu(ty)), keN,
u(0) = ug € H,

where ¢(t,u) € V' and b(t) : V x V x V — R is given by

b(t)(u,v,w) = q(t) Z /Quig—;)iwjdx.

ij=1
The weak formulation (1.2) is equivalent to the impulsive system

u 4+ Au+ B(t)(u,u) = ¢, in V', t>0,t#t,
u(te) —ully) = Le(u(ty)), keN,
u(0) =ug € H,

where v = du/dt, A:V — V' is the Stokes operator defined by
(Au,v) = v((u,v)), for all u,v € V,
and B(t) : V x V — V' is a bilinear operator defined by
(B(t)(u,v), w) = b(t)(u,v,w), for all u,v,w € V.

In Section 2, we consider the following general impulsive system

w4+ Au+ Blo(,w))(u,u) = f(-,0(,w),u), t>0,tel, t#ty, keN,

u(ty) —u(ty) = L(ulty)), keN,
u(0) = up € H,

(1.2)

(1.3)

(1.4)

where f: I x M x H — H is a piecewise continuous function with respect to t € R, non-
stationary and also depends on the solution u. All the conditions of system (1.4) will be
specified later. We prove the existence and uniqueness of global mild solutions for the system
(1.4) when M is compact, see Theorems 2.3 and 2.4. The case when M is not compact is

considered in Theorem 2.5.

In Section 3, we prove existence and uniqueness of global mild solutions for the 2D NSEs
with impulses (1.1) via system (1.4). We also give sufficient conditions to obtain dissipativity

for the system (1.1). All the results from this paper hold for the non-impulsive case.



2 Preliminaries

Let (M,d) be a metric space and (M,R, o) be a dynamical system on M, i.e., o :
R x M — M is a continuous mapping which satisfies the following properties:

i) o(0,w) =w, weM;
it) o(s,o(t,w)) =o0(s+t,w), t,seR weM.

Let H be a real or complex Hilbert space and L(H) = {T' : H — H : T is linear
and bounded} equipped with the operational norm. Let A : D(A) C H — H be a self-
adjoint operator such that

Re (Au,u) > alul3, (2.1)

for all w € D(A) and a > 0. It follows by [5, Lemma 6.20] that C\ (—oo, a] C p(A) (resolvent
of A), and there exists a constant M > 1 such that

_ M
A= A) Mz < D—a A E Xy, A Fa,

where ¥,, = {A € C: |arg (A — a)| < ¢}, ¢ < 7. In particular, A is sectorial. It follows
that —A generates an analytic semigroup {e~4! : ¢ > 0} C £(H) which satisfies

||e_At||£(H) < Ke ™, (2.2)

for some constant K > 0, where a > 0 comes from (2.1).

Assuming that 0 € p(A), we consider the scale of Hilbert spaces X* = D(A®) of fractional
power of the operator A endowed with the norm ||« ||xo = ||A%-||g (X = H). If 3 > a > 0,
it is well known that X? is a dense subspace of X with continuous inclusion and

lle™ | (xa x8y < Capt® e (2.3)

Consider F' a Hilbert space such that H C F with inclusion dense and continuous. Denote
by L(F,H) ={T : F — H : T is linear and bounded} equipped with the operational norm.
We will assume that the semigroup {e=4! : ¢ > 0} satisfies:

i) e~ e L(F,H), forallt>0;
i1) There exists 0 < o < 1, such that

e || crmy < Kyt~ e, for allt > 0. (2.4)

We denote by L£2(H, F) the space of all continuous bilinear operators B : H x H — F
equipped with the norm

1Bl 21,7y = sup{|B(u, v) | : [ulu <1, |vlz <1}

5



and by C(M, L2(H, F)) the space of all continuous mapping B : M — L?(H, F).

Let {t1}ren be a strictly increasing sequence in (0, +00) such that tli+m tr, = +00. Let
— 400

I C R be an interval and f: I x M x H — H and I, : H — H, k € N, be functions
satisfying the following conditions:
(C1) For each fixed t € I, f(t,-,-) is continuous on M x H.

(C2) Let we M and u € H. Then lirr% f(s,w,u) = f(t,w,u) for all t # ty, k € N, the limit
s—

81_1)%1_ f(s,w,u) exists and sl_l)glJrf(s,w,u) = f(tg,w,u), for all k£ € N.

(C3) There is a bounded function M : R — R, such that for any interval [a,b] C I, we
have

b b
/ 16(5) |1 (5, w0, 0) rds < / M(s)|6(s)|ds
for all ¢ € L'[a,b], w € M and u € H.

(C4) There is a bounded function L : R — R, such that for any interval [a,b] C I, we have

/ ()1 (5,1, 1) — F(5, 00, u2) 1z ds < / L(3)| ()] (d(wr, wz) + us — ua]r)ds

for all ¢ € L'{a,b], wi,ws € M and uy,uy € H.
(C5) There exists a constant K3 > 0 such that

sup sup |1 (u)|g < K.
keN ueH

(C6) There exists a constant K3 > 0 such that
|1 (u) = Ix(v) | < Kslu —v|u
for all u,v € H and for all k € N.

Now, given w € M and assuming all the conditions above, we consider the following
impulsive system in the state space H:

v+ Au+ B(o(,w))(u,u) = f(-,0(,w),u), t>0,tel, t#t, keN,

u(ty) — u(ty) = Lu(t;)), keN, (2.5)
U(O) =wuy € H.
Remark 2.1. Since klim t), = +o00, it is clear that given a closed interval [0, T, there exists
—+00
at most a finite number of moments of impulses t1, 5, ..., t, € [0,T] such that 0 < t; < t5 <

... <t, <T. Thus, given T > 0 there is an integer np > 0 such that ¢, < T <{t,,41.

6



Given T > 0, we consider the space PC*([0,T], H) = {u : [0,T] — H : wu is continuous at
t # tx, right-continuous at ¢ = t; and the limit lim u(t) exists for allk = 1,... nr}. It is

t—t,

well known that the space PC*([0, 7], H) endowed with the norm ||u||pc+ = sup |u(t)|g is
te[0,7
a Banach space.
In the sequel, we present the definition of a mild solution for the system (2.5).

Definition 2.2. Let [0,7] C I. We say that u € PC*([0,T], H) is a mild solution of (2.5)
if u satisfies the following integral equation:

( t
e~ Mg + / e A g (s, w, u(s))ds, if 0<t<ty,
0

t
e—A(t_tl)[u(tl_)—|—Il(u(t1_))]+/ e Mg (s, w,u(s))ds, it <t <ty

t1

0= A+ L)+ [N s, <<, @9

)

t

e~ At [u(ty) + I(u(t;))] —|—/ e M g(s,w,u(s))ds, if t, <t<T,

123

\

where 0 < t; < ... < tp < T < tgy41 are the impulse times (k = nr) and g(s,w,u(s)) =
—B(o(s,w))(u(s),u(s)) + f(s,o(s,w),u(s)), s € [0,T]. System (2.6) can be rewritten in the
following way

t
u(t) = e g —i—/ e A= g(s,w, u(s))ds + Z e A L (u(t))).
0 0<t;<t
Given K C H, we consider the following space of functions:
PCH[0,T] x K x M,H)={p:[0,T] x K x M — H : for all (u,w) € K x M,
o(-,u,w) € PCT([0,T],H) and for all t € [0,T], ¢(t,-,-) : K x M — H is continuous}.
In our first result, namely Theorem 2.3, we assume that the space M is compact. In this
case, (C(M,EQ(H, ), - ||oo> is a Banach space, see [6], where

|Bllos = sup || B(w)l|c2(1,r)-
weM
Also, note that for all u,v € H and w € M, we have that

|B(w)(u, u) = Bw)(v,0)|r < || Blloo(|ulu + [v]a)|u — vlu, (2.7)

and also
| B(w)(u, u)|p < ||Blloo|ulf- (2.8)

Theorem 2.3 ensures that the nonautonomous system (2.5) admits a unique mild solution in
the sense of Definition 2.2.



Theorem 2.3. Let ug € H, r > 0 and M be compact. Assume that (2.2), (2.4), (2.7)
and conditions (C1) - (C6) hold. Then there exist positive numbers § = 0(ug,7) > 0,
T = T(ug,r) > 0 and a function ¢ : [0,T] X B(ug,0) x M — H satisfying the following
conditions:

i) ©(0,ug,w) = ug, for allw € M;
i) |(t, u,w) —uplg < r for all (t,u,w) € [0,T] x B(uo, J) x M;

iii) o € PCY([0,T] x B(ug,d) x M, B(ug,1)).
Moreover, the function u : [0,T] — H defined by u(t) = p(t, ug, w) is the unique mild solution
of system (2.5).

Proof. Let 6 > 0 and T > 0 be such that [0,7] C I. Given ¢ € PC}([0,T] x B(ug,d) x
M, H), we define

t
So(t,u,w) :eAtu—i-/ e A9 g(s,w, p(s))ds + Z e A L (o(t)),
0

0<t; <t

where ¢(s) = ¢(s,u,w) and g(s,w,¢(s)) = —B(a(s,w))(¢(s), p(s)) + f(s,0(s,w),9(5)),
for all s € [0,T], u € B(ug,d) and w € M. Since functions in PC; ([0,T] x B(ug,d) X
M, B(ug,r)) are bounded, we can consider the distance

doo(@h ()02) = Sup{|901(t7u7w> - (p2(t7u7w)‘H 10 < t T u e B(u07 ) w € M}

for @1, pa € PCY ([0, T] x B(ug, 0) x M, B(ug,7)). It is not difficult to see that (PC; ([0, T] x
B(ug,d) x M, B(ug,7)),ds) is a complete metric space. For convenience, let us denote
Lo, T,r) = PC’;F([O,T] X B(ug,0) x M, B(ug,r)) and I'(0,T) = PC’;L([O,T] X B(ug,0) X
M, H).

Assertion 1: S € C(I'(0,T,7),L'(5,T)).

In fact, at first note that S € I'(9,T') for all ¢ € I'(6, T, 7).
Now, let v1,p9 € T'(5,T,7) and (t,u,w) € [0,T] x B(ug,d) x M. By Condition (C4)
there is a bounded function L : R — R, such that

| eI 500 (5) = s (5,) () ds <

<AL®M@ 22(3) i ds < NTdoo(i01,05), (2.9)

where N = sup |L(s)].
s€[0,7T



Then, using (2.2), (2.4), (2.7), (2.9) and Condition (C6), we have

’SgOl(tauaw) - S@Q(tauﬂ"))’H <

/A

/0 ‘e’A(t*S) [B(o(s,w))(p1(s), 01(s)) — Blo(s,w))(pa(s), p2(s ‘Hd8+

[ 050 a(5) - Fls, 00 (o] s
+ D e EILa(t7) = Lilpa(t))]a <

0<t;<t

¢
< QHBHooKl(?”—i-‘U0|H)doo(g01,gp2)/ (t — )" et ds 4
0

+ENTdoo (1, 02) + K Ksdoo(ip1,02) Y e 07 <
0<t; <t
—a1+1

+1
where np is the number of impulses on the interval [0, T]. Hence, S € C(T'(6,T,r),T(5,T)).

T

Assertion 2: There are 6; = d1(ug,r) € (0,0) and Ty = Ty (ug,r) € (0,7 such that
S F(él,TI,T) — F(61,T1,T).

In fact, let ¢ € ['(6,T,r) and (t,u,w) € [0,T] x B(ug,d) x M. By (2.2) and Condition
(C4), one can obtain a bounded function L : R — R, such that

/O e A9 [f(s,0(5,w), 0(3)) — f(5.0(5,w).0)]ds| <

H

/O Ko £ (s, 0(s,w), (s)) — (5 0(5,w),0) s <

K/‘ §)uds < KN(Juolu + )T, (2.11)
where N = sup |L(s)].
s€[0,T
Let m(6,T) = Sup{|e_Atu—u0\H: tel0,T], ue B(u0,5)} and M = sup |M(s)],
s€[0,T]

where M is the function given by Condition (C3). Then, using (2.2), (2.4), (2.8), (2.11),
Condition (C3) and Condition (C5), we obtain

1Sip(t, 1) — gl < e .

H

/0 e~ A9 B(o (s, w))(p(s), o(s))ds

U_UO‘H"i_

9



> ()

0<t;<t

<
H

- -

H

/0 e_A(t_S)f(s, o(s,w),p(s))ds

t
<61+ [ Kae 0= o) Bl s
0

+
H

+
H

¢
+ / e A= f(s,0(s,w),0)ds
0

/0 e A [f(s,0(5,w), 0(5)) — £(5,0(5,w), 0)] ds
+ Z Kefa(tfti)

o<t <t

Li(p(t))| <

—aq+1

T
<m(5,T)+K1||B||oo(|U0|H+T)21 + K Kong+

t
+KNT(|uolg + 7) +/ Ke )M (s)ds <
0

—aq+1

T
<m(0,T) + K[| Bllso(Juolm +7)*5 + KN (Juolm + )T+

YKMT + K Kong := dy(ug, .0, T).
Now, we note that dy(ug,7,6,7) — 0 as § — 0 and T" — 0. Thus, there are §; =

01 (ug, ) > 0,61 < 9§, and T = Ti(ug,r) > 0,7y < T, such that dy(ug,r,d,T") < r for all
8 € (0,61] and T" € (0, T1].

Assertion 3: There exist Ty = Ty(ug,r) > 0 and 09 = dp(ug,7) > 0 such that
S : T'(6g, Ty, ) — T'(do, To, r) is a contraction.

In fact, take T5 > 0 such that

—aq1+1

T.
2|| Bl oo K1 (7 + |uo| ) ———

1 +KNTQ+KK37LT2 < 1.

It is enough to take dp = 0; and Ty = min{T}, T>} to conclude Assertion 3.
In conclusion, by the Banach fixed point Theorem, there exists a unique function ¢ €
['(g, To, r) satisfying the system (2.6) on the interval [0, Tp] and the result follows. O

Theorem 2.4 gives sufficient conditions for the mild solution of system (2.5) to be pro-
longated on R, .

Theorem 2.4. Suppose that I = R, and the conditions of Theorem 2.3 hold. If the muld
solution ¢(t,ug,w) of system (2.5) is bounded, then it may be prolonged on R, .

10



Proof. By Theorem 2.3, ¢(t, ug,w) is the unique solution of system (2.5) passing through the
point ug € H at time ¢ = 0. This solution is defined on some maximal interval [0, Qug,w))-
Let o(t, up,w) be bounded and suppose that a(y, .y < 00. If gy 7 ti for all k € N, then

defining p(v(uyw), Uo,w) = Hal(im . o(t, ug,w), it follows that ¢(t, up, w) may be extend on
uQ,w

the interval [0, oy, )] Which is a contradiction. Now, suppose that a(y,.) = t, for some
k € N. Since the limit tlign o(t, ug,w) = p(t; , ug, w) exists and I(¢(t, , up,w)) € H, then
—lp—

we may use the proof of Theorem 2.3 and extend ¢(t,ug,w) in some interval [ty,tx + €),
e > 0, with @(tx, uo,w) = @(t;, uo,w) + I(@(t; , up,w)) which is a contradiction. Hence,
O (ypw) = T00. O

Next, we deals with the case when M is not necessarily compact. Following the proof of
Theorem 2.3, one can see that the compactness of M is used just when we work with the norm
|“llc- So, if we suppose that M is a metric space such that || Bl = sup || B(w)||z2(u,r) < 00,

weM

then we can drop the compactness of M in Theorem 2.3. In Theorem 2.4, we used the
compactness of M just to assure the existence of the mild solution according to Theorem
2.3. Thus, we can state the next result which deals with existence and uniqueness of global
mild solutions for the system (2.5) when M is not necessarily compact. The proof follows
by the proofs of Theorems 2.3 and 2.4.

Theorem 2.5. Let ug € H andr > 0. Assume that (2.2), (2.4), (2.7) and conditions (C1) -
(C6) hold. Suppose that M is a metric space such that || B||c = sup e || B(W) || c2(m,r) < 00.
Then there ezist positive numbers § = §(ug,r) > 0, T = T(ug,r) > 0 and a function

¢ :[0,T] x B(ug,d) x M — H satisfying the following conditions:
i) (0, up,w) = ug for all w € M;

)
M’) |90(tau7w) - uOlH < r fOT’ all (t,u7w) € [O,T] X B(U0,5> X M,‘
)

iti) o € PC([0,T] x B(ug,d) x M, B(ug,r)).

Moreover, the function u : [0,T] — H defined by u(t) = p(t, up,w) is the unique mild solution
of system (2.5). If u(t) is bounded and I = R, then it can be prolonged on R,

Remark 2.6. Suppose that (2.2), (2.4), (2.7) and conditions (C1) - (C4) hold. By the proofs
of the previous results we obtain the existence and uniqueness of global mild solutions for
the following non-impulsive system:

{ w4+ Au+ B(o(t,w))(u,u) = f(t,o(t,w),u), t>0,
U(O) =up € H.

11



3 The 2D Navier-Stokes equations with impulses

In this section, we present conditions to obtain the existence and uniqueness of global
mild solutions for the following 2D Navier-Stokes equations with impulses

2_1; +q(t)(u- Vu—vAu+ Vp=¢(t,u), (tz)e ((0, +00) \ U{tk}) x 4,
divu = 0, (t,z) € (0, +00) x €, (3.1)
u =0, (t,z) € (0,400) x 09,
u(0,-) = up(-) x €,
Lt ) —ulty, ) = L(u(ty, ), re k=12, ..,

where € is an open and bounded set in R? with 9Q € C?, u = (uy, us) is the velocity field of
a fluid, p is the scalar pressure, v > 0 is the kinematic viscosity of the fluid, ¢ = ¢(t,u) € R?
is the external body force, ¢(t) is a bounded function, {tx}reny C (0,+00) is a sequence of
impulses such that tlifrnoo ty = 400 and [ is the impulse operator for each k € N.

Let
E={uec(Cr)?*: V-u=0inQ},

V = closure of £ in H(f2)

and
H = closure of £ in L?(Q),

where L2(Q) = (L*(Q))? and H{(Q) = (H(Q))? are endowed, respectively, with the inner

products

2
(u,v) = Z/ wj vy dr,  u= (u,up), v=(vy,v9) € L*Q),
=179

and )
((u,v)) = Z/ Vu; - Voydz, u= (uy,uz), v=(vy,v2) € Hy(Q),
j=1"¢
and norms | [ = (-,-)/? and || - || = ((-,))"/%.

We assume the following general hypotheses throughout this section:

(H1) ¢ : R, x R? — R? is a bounded function such that for each fixed t € R, ¢(t,-) is
continuous on RZ.
(H2) Let z € R? Then lin}gb(s,x) = ¢(t,x) for all t # ty, k € N, the limit lim ¢(s,x)
5—

s—tp—

exists and lim ¢(s,x) = ¢(tg, x), for all k € N.
s—tp+
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(H3) There is C' > 0 such that |¢(s,z) — ¢(s,y)] < Clzr — y| for all s € R, and for all
x,y € R2

(H4) There exists a constant C; > 0 such that

sup sup |I(z)| < C}.
keN zeR?

(H5) There exists a constant Cy > 0 such that
(i (x) = Ie(y)] < Colz —y|
for all 2,y € R? and for all £ € N.

Now, denote by P the corresponding orthogonal projection P : L?(Q2) — H and set the

operators
A=—-vPA

and

B(t)(u,v) = q(t)P((u - V)v).

It is well known that the Stokes operator A is positive self-adjoint with domain D(A) dense
in H,0 € p(A) and A™! is compact. Also, there exists « > 0 such that

(Au,u) > afulz, (3.2)

for all w € H. We also have the following orthogonality property of the nonlinear term which
is fundamental and expresses the conservation of energy by the inertial forces:

<B(t)(uav)vv> =0 (33)

for all u,v € H and for all t € R,. For the above properties see, for instance, [6], [7] and [30].
We set the Hilbert spaces X%, a € (0, 1], as the domain of the powers of A and we have

V =Xz and luly = |Vul.
Applying P in the equation

b ) V)~ vt Vp = o(t,u),
we obtain the evolution equation
u' + Au+ B(t)(u,u) = F(t,u), (3.4)

where F(t,u) = Pp(t,u) for all t > 0 and u € H, (Au,v) = v((u,v)) for all u,v € H and

2
ou;
(B(t)(u,u), w) = q(t) Z /Quia—liwjdx for all w,w € H.

t,j=1

We also assume that:

13



(A) F € PC+(R, x H, H);
(B) Be C(R,, L% H,F)), where F' = D(A™?) for some 0 < § < 1.

Denote Y by C(R, L*(H, F))x PCT (R, x H, H) and let (Y, R, o) be the semidynamical
system of translations, that is, o(t,g) = ¢; for all g € Y and ¢t > 0. Now, set

M :=HB,F)={(B.. F): T €R.},

where B, (t) = B(t +7) for all t € Ry and F,(t,u) = F(t +7,u) for all t € R, and u € H.
If (B,F) € M and 7 > 0 we consider B,(t) = B(t + 7) and F,(t,u) = F(t + 7, u) for all
(t,u) e Ry x H.

According to [6], the equation

u + Au+ B(t)(u, u) = F(t,u), (3.5)

where (B, F) € H(B, F), is called the H—class along with the equation (3.4).
Define the mapping B : M — L*(H, F) by

B(w) = B(B, F) := B(0)
and the mapping f: R, x M x H — H by
Flt,w,u) = f(t, (B, F),u) = F(0,u).

Then equation (3.5) can be rewritten in the form
W+ Au+ Blo(t,w)(u,u) = £t 0(t,w), ) (3.6)
From (3.3), we obtain
(B(w)(u,v),v) =0 (3.7)

for all u,v € H and for all w € M.
With the above conditions, we cannot assure that M is compact. However, the space M
is such that sup || B(w)||z2(m,r) < 00 as shows the next result.
weM

Lemma 3.1. sup ||B(w)| z2(m,r) < 0.
weM

Proof. Since ¢(t) is bounded, there is L > 0 such that |¢(¢)| < L for all ¢ > 0. Then

sup || B(w)l|c2(m,r) = sup |1B(W)llc2(m,r) = sup ||B(T)||c2rr) =
weM we{(Br,Fr): TERL} TERL
=sup  sup [B(7)(w,v)[p=sup  sup [q(7)P((u-V)v)|F <
TERY |u|p<1, [v|g<1 TER+ |ulp<1, [v|p<1
<L osup (- V)llg <L sup lulla|Volls <
lula <1, |v[g<1 [ul <1, [v|p<1
<L osup Nullgllolly =L sup - Jlullgllofly < L.
lul <1, o] p<1 lul <L, |vly <1
Therefore, we have the desired result. O
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Since ¢ is bounded and we have Lemma 3.1, we may consider in M the metric dy given
by
dm(wr, w2) = dp((Br, Fi), (B2, F2)) = |Br — Baloo + [[F1 — Fallpet s

where || F|| pos = sup | F(t,u)| and ||Blle = sup ||Bw)|l 2.
(t,u)€[0,4+00)x H weM

Let us consider the following impulsive system associated to (3.6):
u' + Au+ B(U(t7w>>(u7u) = f(t,O'(t,W),U), u € H7 t> 07 t 7é Uk,

u(ty) —u(ty) = I(u(ty)), keN, (3.8)
u(0) = o,

which is a weak formulation of (3.1). In the next lines, we show that f satisfies the conditions
(C1), (C2), (C3) and (C4) presented in Section 2. This will help us to show that system
(3.8) admits a unique global mild solution, see Theorems 3.4 and 3.5 in the sequel.

Lemma 3.2. The mapping f : Ry x M x H — H satisfies the conditions (C1), (C2), (C3)
and (C4).

Proof. First, let us show that f satisfies condition (C1). Let t € R, be fixed. Take
(Wny Up ),y (Wo,up) € M X H,n=1,2,..., such that

dp(wp,wo) = 0 and  |u, —ugly — 0
as n — 4oo. Note that wy = (g, J%) and w, = (gn,]?n), n=1,2,3,.... Moreover,
|Fn = Fllper =0 as n— +oc.

Now, since (gn,fn),(g, .7?) € M, n =1,23,..., then there are sequences {7}'}ren and
{sk}ren in Ry such that

Fo(ryu) = lim Fon(r,u) and F(ru) = lim F, (r,u)

k—+o0 k—+o0

for each (r,u) € Ry x H and n € N. Then,
‘f(tvwmun) - f<t7w07u0)|H = |ﬁn<ouun) - f(07u0>|H = kEIJPoo |F<Tl?>un) o F(‘Slﬁuo)’H

< lim | F(rg un) — F(1uo) g + Um | F (77, wo) — F(Sk, wo)|ur
k—+o0 k—+o00

= lim [Po(r, un) — PO(i,u0) | + | Fn(0,10) — F(0,u0)|

k——+o0

<N PIC un — ol + | Fu(0,u0) = F(0,u0)
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where the last inequality follows by Condition (H3). Hence, | f(t, wn, u,) — f(t, wo, uo)|g — 0
as n — +oQ.

The Condition (H2) implies in Condition (C2).

In order to show that Condition (C3) holds, we define the function M : R — R, by
M(t) = sup{|o(s,u)|lg : s € Ry,u € H} for all t € R, which is well defined since ¢ is
bounded by Condition (H1). Note that M is constant. Given w = (B, F) € M, there is a
sequence {7, }nen in Ry such that

flt,w,u) = FO0,u) = lim F, (0,u) = lim Po(r,,u),

n—-+o0o n—-+00

for all t > 0 and w € H. Then, for [a,b] C Ry, we have

/ ()1 f (5, w, ) rds = / [6(8)] | F(0, )| s < / M (s)|t(s)ds,

for all ¢ € L'(a,b], w € M and u € H.
Finally, we need to verify the Condition (C4). Define L : R — R, by L(t) = C' + 1,
t € R, where C' is the constant of the Condition (H3). Then, given [a,b] C Ry, we have

b b - -
/ ()1 (5,01, 1) — F(5, 002, o) rds = / ()| F2(0, 1) — a0, un) s <

N

< [ WO (F01) - 0wl + 1F0.1) - F(0,wl) ds
b ~ ~
< / 0] (CIPNs =l +1Fs = Bl e ) ds <

</ L(s) | (s)[(dm(wr, wa) + |ur — uz|w)ds

for all ¢ € L'a,b], w; = (fl,gl),wg = (ﬁg,gg) € M and uy,us € H. O

Lemma 3.3. sup{|f(t,w,u)|g: t > 0,w € M,u € H} < oc.

Proof. 1ft >0, u € H and w = (B, F) € M, we have

f(tw 0l = [FO,u)lg = lim |F (0,u)|i = lim |[P(rnu)lu < [|[Plln <7

n—-+00 n——+00

where > 0 is a bound of ¢ since it is bounded by Condition (H1). Hence, the result
follows. 0
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By Lemma 3.3, we may define || f||; = sup{|f(t,w,u)|g: t > 0,w € M,u € H}.
From Theorem 2.5, we have the following straightforward result of existence and unique-
ness of mild solutions when M is not necessarily compact.

Theorem 3.4. Under conditions (H1)-(H5), (A) and (B), the system (3.8) admits a unique
mild solution u : [0,T] — H defined in some interval [0,T] satisfying u(0) = uo.

The mild solution of system (3.8) may be prolonged on R, see Theorem 3.5.

Theorem 3.5. Suppose that Z |Ii(u)|lg =T < oo for allu € H. Then:

=1

a) The solution ¢(t,up,w) of the impulsive system (3.8) is bounded and therefore, it may
be prolonged on R, ;

b) |o(t,ug,w)|lm < 2C(luolg) + T, for allt >0, we M and uy € H, where

i r> UL
«
C(r) =
ISl /1]
« Zf " «

and « is given by (3.2).

Proof. a) Let up € H and w € M. By Theorem 3.4, there exists a unique solution ¢(t, ug, w)
of equation (3.8) passing through uy at time ¢ = 0 and defined on some interval [0, T{y, ) )-
Let 1(t; 0, up,w) be the solution of the non-impulsive equation (3.6) such that ¥ (0) = uy.
Note that

@(t,up,w) =P (t;0,up,w) for t € [0,Tuyw) N[0, t1).
Define 7(t) = |¢(¢;0, up, w)|3; for ¢ € [0, T(uyw)) N [0,¢1) and denote ¥(¢;0,ug,w) by (t).
Using (3.2) and (3.7), we obtain
' (t) =2('(1), ¢ (1) = =2(AP(t), (1)) — 2(B(o(t, w)) (¥ (1), (1)), ¥ (t)+

+ 2(f(t, 0(t,w), (1)), ¥(t)) < =2al(t)|F + 2[ fll ()] a-
Thus,
i < =2am+2|| fllin'”?

which implies that 7(t) < v(t) for all ¢ € [0, T{uw)) N [0,%1), where v(t) is an upper solution
of v' = —2aw + 2| f||1v!/? such that v(0) = 1(0) = |ug|%. Then

1< (b - LY. at+mr
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that is,

ot ol = 10660, 10, )l < (Juol = Y et I e o,y o,

Now, if t € [0, T(uyw)) N [t1,t2), we use the previous argument and we obtain

Up,W)|H X 1;0,ug,w) + 14 10, up, w))|lg ——— | e 4 I
lo(t, uo, w)|ln < <\w(t,0, Jw) + L (0t 0, ug, w))| ||J;||1> —alt—t1) HJ;||1

S <‘U0’H - ”Qh) e+ |11 (1h(t1; 0, ug, w)) [ e~ + _H];Jh

Continuing with this reasoning, if ¢ € [0, T{yyw)) N [tk tes1), We get

ot < (Juola — 121 *mzu (titioruf )o@ + 100 5.

o

where we denote tg = 0, uj = ug and v = VY(t;;tiq,ul |, w) + LWt ti1, v, w)) for
1=1,2,....
+oo
Since there exists a finite number of impulses on the interval [0, T{y, ) and Z | (u)| g =

I' < oo for all w € H, then by (3.9) we get that ¢(t, ug,w) is bounded. Consequently, by

Theorem 2.5, it can be prolonged on R,.
b) Note that |p(t, up,w)|y < |uo|lg + —— Hful + I, foralt >0, u € Hand w e M.
Therefore, the result holds. O

The system (3.8) is called bounded dissipative if there is a nonempty bounded set By C H
such that for each bounded set B C H there exists T' = T'(B) > 0 such that ¢(t,ug,w) € By
forall t > T, up € B and w € M. In this case, By is called a bounded attractor for the
system (3.8). In the next result, we obtain dissipativity for the system (3.8).

—+00

Theorem 3.6. Suppose that Z |I;(u)|g =T < 0o for allu € H. Then the system (3.8) is

=1
bounded dissipative.

Proof. By the proof of Theorem 3.5, we have

lim sup lo(t, ug, w) | < H + T,

t—+o0 |ug| g <ry, weEM «Q

for all » > 0. Hence, the set By = {u € H: |ulg < (Bl + F} is a bounded attractor for
a

the system (3.8). O
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In the last result, we present an estimative between two solutions with different initial
data in the same fiber w € M.

+o0
Theorem 3.7. Suppose that Z\I Ju =T < oo foralluw e H. Letr Hle

=1

Then, for each k € N, we have

ot ur,w) — ot uz, w)| g < (1+ Co)re (O 21Bllecro=O gy gy,

for allt € [tg,tpr1), ur,us € B(0, a7 f]l1) and w € M.

Proof. Let t € Ry, w € M, uj,us € B(0,a7t|f]|1) and define n(t) = ¥(t;0,u;,w) —
¥ (t;0,uz,w), where 1; := ¥(t;0,u;,w) is the solution of equation (3.6) without impulses
defined on R, and passing through u; at time t =0, ¢ = 1,2. By Theorem 3.5, we have

||fH1

|i ()| i +0=mry forall t€]0,t1] and i=1,2.

Given w = (B,F) € M, there is a sequence {s,tnen C R, such that F(t,u) =
lim F;, (t,u) for all (t,u) € Ry x H. By the definition of f, we have

n——+00
|f(t70—(t7w)7¢1) - f(tvo—(tvw)awZ)lH = |ﬁ%(07¢1) - ﬁ(oan)’H =
= T B () = Fo, (b o)l = lim [P(su+t,161) = Po(su+t,u2) | < IPICTn()]n.

n—+00

Then, using (3.2) and the above estimative, we have

%!n(t)ﬁ{ = —2(An(t),n(t)) + 2(B(o(t,w)) (b2, ¥2) — Blo(t,w)) (¢, ¢1), n(t))+

< 20é|77( )i+ 4rol| Blloo|n(#) 3 + 2C11 PllIn(t) |
< =2 (a = 2||Blloro = C) In(t)[3 = —2B8In(t) [,
for all t € [0,¢], where 8 = a — 2||B||70 — C and ||P|| < 1. Hence, |n(t)|% < e 2 n(0)|%,
that is,
1 (t; 0, u1,w) — (t; 0, ug,w) |y < e P luy — usly (3.10)
for all t € [0,¢1]. Thus, if 0 <t < t;, we get
lp(t,ur, w) — ot ug, w)|g = [Pt 0,u1,w) — Pt 0,uz, )|y < € uy — ug|p.

Let t; <t < ty and mi(t) = o(t,ur,w) — @(t, ug,w) = Y(t;t1,uf,w) — Y(t;ty,ug,w),
where 9 (t; 1, u; ,w) is the solution of (3.6) such that 1 (¢;) = u; and u} = ¥(t1; 0, u;, w) +
L ((t1;0,u;,w)), i = 1,2. Following the steps above to show (3.10), we obtain

Im®) | < e P (0|, forall ¢ >t
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On the other hand, we have

m)le = [t 0,u,w) + Li(Y(t; 0, ur,w)) — (50, uz, w) — Li((t; 0, ug, w)) [
[(t1;0, w1, w) — (1 0,u2, w)|g + [ (0 (t;0,ur, w)) — L ((1: 0, u2, w)) | g
(1+ Co)|w(t1;0,u1,w) — P(t1; 0, u2, w) |y

(1+ Co)e P uy — ug|y,

NN N

where Cy comes from Condition (H5). Consequently,
lo(t, ur,w) — p(t, ug,w)|g < (1+ C’g)e_’gt\ul — us|y, forall t; <t <ts.
Continuing with this process, if t;, <t < tpy1 we get

plt,u,w) — et u,w) g < 2) e ur — us|m,
lp(t ) —(t )i < (14 Cy)fe™|

for all uy,us € B(0, a7 Y| f]]1) and w € M. O

Remark 3.8. Theorems 3.4, 3.5, 3.6 and 3.7 also hold for the non-impulsive system

{ u 4+ Au+ B(o(t,w))(u,u) = f(t,o(t,w),u), uwe H, t>0,
u(0) = up,

with the obvious adaptations.
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