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Abstract 

We present a new simple cycle shrinking technique called ,lepen­
dence reduction. It consists of a transformation of the dependence 
graph to reduce the nwnbcr of execution steps as well as the communi­
cation between processors. Compared to the well-known GSS method 
( Generalized Selective Cycle S/1rinking) the proposed method presents 
the advantage of a simpler analysis and better result. Comparison with 
other well known methods are also shown through illustrative examples. 
We gave simple and sufficient conditions for the dependence reduction 
method to be better than other methods 

Key-words: cycle shrinking, dependence reduction, loop parallelization, 
data dependence analysis, scheduling. 

1 Introduction 

In parallel computing, nested loop structures offer rich implicit parallelism. 
Several Lechniques based on loop transformation, called cycle ahrinking, to 
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extract parallelism in loops are known [9, 13). Simple cycle shrinking, selec­
tive cycle shrinking and true dependence cycle shrinking were introduced by 
Polychronopoulos [8]. These methods transform sequential loops into paral­

lel loops. A generalization of selective cycle shrinking is genemlized selective 
cycle shrinking (GSS}) [10, 12]. Index shift method {ISM) was introduced 

by Liu, Ho and Sheu (5). It can be viewed as a refinement of GSS. Robert 

and Song proposed a method that combines GSS with ISM [10]. Affine by 
Statement was proposed by Robert and Darte [2, 3, 4). In this paper we 

propose a new cycle shrinking technique that transforms the dependence 

graph, with the goal of reducing the number of communication between the 

processors and the number of computing steps. It identifies the essential 

dependencies and allows a simpler scheduling analysis. This paper is orga­

nized as follows. In section 2 we define the terminology and discuss GSS. In 
section 3 we present the new technique through two examples. We compare 
the results with other methods by using the well-known example from Peir 

and Cytron (7). In section 4 we formalize the new technique. Finally we 
conclude in section 5. 

2 Terminology and preliminary results 

To facilitate and simplify the following presentation, we make some restric­
tion to the class of perfect nested loop algorithms. Also we adopt simple 
scheduling and mapping models. For example we will use GSS for schedul­
ing. 

2.1 RVN(Regular Uni/onn Nest) algorithm model 

for i1 = U to N1 do 
for i2 = U to N2 do 

for i" = 0 to Nn do 
command S1 

command sk 

where N1, ... , Nn are constant. The set of indices for this algorithm is de­
fined as: 
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Dom= { f = (ii, ... , in) I O $ i; S N;, I $ j :5 n} 

We use the definition of dependence and dependence vector according to 
Banerj<->e and Polychronopoulos [l, 9, l4J. In RUN the dependence vector 
between two commands independs on the indices or the particular instance. 
The importance or uniformity is due to the following two main reasons. I. 
Many algorithms for scientific applications have this structure. 2. Its regular 
structure allows the exploitation or implicit parallelism. 

Example 1 

for i = 0 to N do 
for j = 0 to N do 

command S1: a(i,j) = b(i,j - G) + e(i - l,j + 3) 
command S2: b(i + l,j - 1) = c(i + 2,j + 5) 
command S:r,: c(i + 3,j - I) = a(i,j - 2) 
command S4: e(i,j - 1) = a(i,j - I) 

For this example the set or indices is 
Dom= {(i,j) E z2IO S i,j SN}. 
We have five dependence vectors: 

S1-+ S3: d1 = (0,2) S3-+ S2: d2 = (1,-6) S2-+ S1: d3 = (1,5) 
S1 -+ S4 : d◄ = (0, I) S◄ -+ S1 : ds = (I, -4) 

We have the following dependence matrix: 

(
0 1 1 0 l) D = 
2 

_
6 5 1 

_
4 

We have two dependence cycles as shown 

by the dependence graph of Figure l. 

2.2 Scheduling 

Given a RUN, scheduling is a function F : zn -+ Z such that the com­

putation (i1, ... ,in) is executed at step F(i1,, .. 1 in) (2). For a function 
F : zn -+ Z to be a scheduling, it must satisfy thP. following r.ondition: 
Tf S.,(j,, ... ,jn) depends on Su(i1, ... , in) then F'(i1, ... , in) < F(i1, ... , j,.). 

The parallel execution of a RUN is the following: 
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<:= .,. .. c, 

Figure 1: Dependence graph of Example 1 

for t = timemin to timemax do 
execute all (i,, ... ,in) E Dom such that F(i,, ... ,in) = t 
The total number of ste~s will be timemax - timemin + I. We use 

typically the scalar product for scheduling, as in GSS, to be seen later. 

2.3 Mapping 

Given a RUN, mapping is a function G : zn ➔ zm such that the computa­
tion (i 1, ... ,in) is executed at the processor G(i,, ... ,in). If F(i,, ... ,in) = 
F(j,, ... ,jn} then G(i,, ... ,in)-::/:- G(j,, ... ,jn) so that the computations 
scheduled at the same step be mapped to different processors. The typical 
mapping is a projection along a vector and in this case m = n - 1. When 
Dom is projected to zn-1, G(Dom) will be a network of processors and the 
projected dependence vectors will represent communication between pro­
cessors in the network. The exception is when the dependence vectors are 
parallel to the projection vector. These vectors will not represent commu­
nication because the data will be in the same processor. 

Let 

Comm= unit of time for communication between processors 
Comp= unit of time to compute a command 
T= total number of steps in parallel execution 

Then the total time will be in general T x (Comp+ Comm). However, 
if all the dependence vectors are parallel to the projection vector, then the 
total time will be only T Comp. 
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f he GSS method 

l'he GSS method is a generalization of Liu! .~efrdiue cycle sltri11ki11!J rrwthod 
used in a parallelizing compiler [12]. 

Consider a RUN wilh dimension n. Let D = (d1, ••• , d1) Im a depc11de11cc 
matrix n x l. Let 1r = (1r 1, ... , 1r") be a vector such that 1r • D > 0 a11d 
gcd(,rl' ... '1r") = 1. 

7r will be denoted scheduling vector. LcL the rnduclion factor Ju: dis71( 1r) = 
min{ 7r • d; 11 $ j $ l}. All the points l and J in Dam that aru on the same 
hyperplane perpendicular to vector 7r, i.e. 1r • l = 1r • .I, will he executed 
simultanL'Ously at step ldi:,;(1riH=ldi;~(.,.)J). Such hyperplanes will he called 

time hyperplanes. Find 1r0 that minimizes GSS(,r) = mnx(w-ldi::i~(EfJom}_ 

2.5 Explicit domain 

To show the dependences in Dom explicitly we will use lhc following defi­
nition: 

ED= explicit domain ={S1, ••. ,Sk} x Dom 
The definition of the dependence vector will abo change: 
Si ➔ S,: d = (d1, ... ,d") becomes d = (Si - Si,d1, ••• ,cf') 
Thus for example 1 we have: 
ED= {(Sh,i,i)ll $ h $ 4,0 $ i,j $ N} 
di becomes (S3 - Si, 0, 2). 
and d2 becomes (S2 - S3, L, -6). 
For its representation ED will always be identified as a subset of R"+1. 

Also, each sh X Dom will be identified as subset or {h} X D<nn aml all lhe 
points of ED will be connected by dependence vectors explicitly. 

This representation is similar to the Augmented Dependence Gmph (ADG) 
proposed by Kyriakis-Bitzaros and Goutis [6}, but it is simpler. For loops 
of dimension n with k commands, the dimension of ADG is u + k + 1 while 
the dimension of ED is always n + I, indcpe111lent of k. This facilitates the 
visual representation. In the case of a two-dimensional RUN, we can project 
each {Sh} x Dam to R2 with each point slightly dislocated in relatio11 to tl11i 
other {Sji} x Dam, h =/= h, to avoid superposition. In this way, all the de­
pendences will be shown explicitly in R2• This representation will illustrate 
the idea of dependence reduction. Throughout this paper w1i use Dom and 
ED depending on the convenience. 
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Figure 2: Dmn and t.hc rliip1md1inc1! graph of Example 2 

3 Examples 

3.1 First case 

This Grsl example is very simple and serves to illustrate the usefulness of 
cxplidt domain ED. (See Figure 2.) 

Example 2 

J or i = 0 to N do 
J or j = 0 to N do 

S1: a(i,j) = J(b(i - 1,j)) 
S2: b(i,j) = 9(c(i,j - l)) 
Sl: c(i,j) = h(a(i - l,j)) 

Instead of using Dom we now consider ED= {S1, S2, S3} x Dom. The 
two-dimensional representation of ED with its explicit dependence vectors 
are shown in Figure 3. 

Observe that we have in Figure 3 several "zig-zags" of dependences that 
do not interfere with one another. This gives us more freedom to do the 
scheduling. 

For example, consider the "zig-zag" constituted by cycle S1 (2, 3) -+ 
S3(3, 3) -+ S2(3, 4) -+ S1 (4, 4). The dependences involve different com­
mands. Now let us forget for the moment their location in ED, and instead 
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Figure 3: DE for Example 2 
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Figure 4: New dependence graph 

join the computations S3(3, 3) and S2(3, 4) to Si(4, 4). In other words, con­
sider that in (4, 4) we have a macro command S that corresponds to the 
sequence of commands: 
Sa: c(i - l,j - l) := h(a(i - 2,j - I)) 
S2 : b(i - l,j) := g(c(i - l,j - I)) 
S1 : a(i, j) := f(b(i - I, j)) 
Now we perform this same transformation to all the points of ED. We will 
have the followin~. 

l. The maao command Swill be mapped to a processor. 

2. The macro command S will take more time since it now involv1is in 
fact the execution of three commands. 

3. The dependence vector of the macro command S will be simpler: d = 
d1 + d2 + d3 = (1, 0) + (0, I) + (1, 0) = (2, I) (see Figure 4). In other 
words, the dependence vectors of a cycle are reduced into one single 
vector, thus the name dependence reduction. 

From Figure 4 it is easy to observe that the total number of steps required 
is N/2. 
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Figure 5: Dom and the dependence graph of Example 3 

Each step consists of the computation of three functions and one com­
munication (if it exists}. 

Since we can project along vector d, the time will be :lf Comp. 

3.2 Second case 

In the second example ED gives some intuitive base for the dependence 
graph transformation to be shown in next section. 

Example 3 

f ori = 0 to N do 
/or j = 0 to N do 

S1: a(i,j) = /(b(i - l,j - 3) + d(i - l,j + 2)) 
S2: b(i,j) = g(c(i - l,j + 1)) 
S3: c(i,j} = h(a(i - l,j - l)) 
S4: d(i,j} = k(a(i,j -1}} 

Dom and the dependence graph are in Figure 5. 
We construct ED = { S1, .•• , s◄} x Dom and project the four planes to 

R2• We obtain Figure 6. 
Figure (j is decomposed into Figure 7 and 8 that. show the rlepend1•11ces of 

the cycles Ci and C2. Figure 9 shows the dependences in relation to S1 (i, j) 
in particular. 
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Figure ti: DE for Example 3 

c, C, 

Figure 7: Dependences or cycle C1 
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Figure 9: Dependences for S1 ( i, j) 
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Figure 10: N1:w d1~pm1dm1cl' fur S1(i,j) 

Figure 11: New dependence graph for Example 3 

In Figures 7 and 8, we again have independent "zig-zags". Each of these 
can be ln:ated as in Example 2. However, Example 3 is more restrictive than 
Exam phi 2. The scheduling of cycle I must be compatible to the scheduling 
of cycle 2 because of the intersection point (Figure 9). The positions of the 
S1 's (interse,·tion points of the two cycles) arc essential for scheduling. We 
thus want to analyze the dcpcnderu:es only in terms of S1 . As was done in 
8xampl1' 2. we join the computations of S2(i - l,j - 3), S3 (i - 2,j - 2) and 
S4 ( i - I. j + 2) into S 1 ( i, j). Thus we consider S as a macro command for 
a poi11t of Dom. Figure 10 is obtain,:d from the transformation of Figure 9 
with this rnnsideration. The dependence with this macro is shown in Figure 
11. 

Ob.~eruatioru 

I. Both in Examples 2 amt 3 the macros for the points situated on the 
border of the domain am incomplete (for examph!, in Figure ,1 for 
Example 2, the macros 011 the right border arc composed only of S2 
and S1), 
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Figure 12: New dependence graph for Example I 

2. For the resultant network of processors, the creation of the macro 
command means I.he transfer of some •nter-processor con11nu11icaLion 
into the same processor. This contributes to the n><luction of the total 
time spm1t. In the 11ext section we tri•at this a.'ipect in moni dutails. 

3. The number of dependence vectors is reduced after the transformation 
of the dependence graph through dcpcndrncc reduction. This rnsults 
in a reduction of communication b1•tw1!tm processors. For example, in 
Example 2, inst<!ad of three communications for a, b, and c we now 
have only one for a. The co111mu11icatio11 for band c an• now "hidclm1" 
in the processors. 

3.3 Third case 

Let us now go back to Example 1, the well-known examplt! used in many 
papers (e.g. [2, 3, 10]). Notice that, with the exception uf some indices, 
Example I is practically equal to Example 3, They present the same cycles 
(right side of Figure 5) with different dependences. By applying dependence 
reduction in a similar way to Example 3, we have the graph of Figure 12. 

For this graph 11'0 = ( 4, - I) is the optimal solution for GSS with the 
number of steps equal to ~N. Thus the total time will be ~(NComm + 
4NComp). 

The time spent by GSS is 8N(Comm + Comp). The time by GSS com­
bined with ISM is 2N(Comm + Comp) (10]. On the other hand, the time 
spent by a.ffine by statement is ~2 N(Comm + Comp) (see (JJ which also 
shows the necessity of at least one communication). 

The following table summarizes the results of the several methods for 
Example 1. 

II I Computation I Communication II 
GSS HNCcnnp HNCcnmn 
GSS combined with ISM 2NCcnnp 2NComm 
AHine by Statement '.f NCamp '.fNCamm 
Dependence reduction ~NComp ~NComm 
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We cmu:luclc that, if Comm > ~ Comp, then dependence reduction presents 

the lwst time of all. 

4 Dependence reduction 

In thii; i;ection we formalize the transformations performed in the cxamplr.s 

or Lim previoui; liL'Ction. The Ca8e or the dependence graph with only one 

cycle is trivial. We discuss the case of dependence graph with more than 

one cycle. 

4.1 Dependence graph with more than one cycle 

Let A he a RUN algorithm. Let G = (V, E) Le the dependence graph for 

A where V and E correspond to the set of commands S1, ••• Sm and to the 

dependence between commands, respectively. Each edge of E is labeled by 

its dependence v<--ctor. We use the notation u ~ " to denote the edge from 

node u to node v with dependence vector d. We will divide V into two sets: 

the set of S<!condary nodes (VS) and the set of principal nodes (VP). 

VS={v E VI v has exactly one edge entering the node and one edge 

leaving it } 
VP=V-VS 
See Example 3 (Figure 5). For this example, VS = { S2, S3, S4} and 

VP= {Si}. 
Let G = (V, E) be a transformed graph in which V = VP and E is 

defined as follows: 

E={ v ~ ,/ju, v' E VP and in G there exists a path between v and v' 

whose intermediate nodes all belong to VS and d is the sum of the depen­

dence vectors of this path } . 

The commands corresponding to the secondary nodes in this path will be 

incorporated into a macro command of v'. Clearly if we have another path 

of this type for v' then the commands corresponding to the secondary nodes 

in this path will be incorporated too. We denote this transformation by the 

name of dependence reduction. After obtaining G by dependence reduction, 

we ap;>ly the GSS method to obtain 1ro that minimizes GSS(1r) using the 

dependences of G. Let T be the number of steps for G. Then the total 

time for the original algorithm will be T Comm+ (l + l)T Comp where l is 
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the maximum number of secondary nodes that were incorporated into one 
principal node. 

Obsenmtions 

The process of incorporating secondary nodes into principal nodes reduces 
the number of dependence vectors and, consequently, after applying map­
ping, reduces the communications between pror.cssors. Tim basic idea of 
the transformation is the following. To find a good sd1eduli11g, what we 
really care is the dependence helwuen principal nmles. The dc!pc111l1mws 
between secondary nodei11 as well as those between a St.-comlary and a prin­
cipal node, are not important. In other words, the location of tlw points P 
of ED corresponding to these nodes (PE S x Dmn where SE 1'8) an: not 
important. 

Another advantage of this new method is the following. The rcd11ctio11 
of the number of dependence vectors fac:ilitati:s the application of llH! GSS 
method which, in general, is very complex [11 J. With this reduction it may 
even be possible to perform the computation by hand. 

Naturally we can question the proprn;cd method: "The proposed method 
intends to reduce the communication time between processors, increasing 
however the computation time. The total time can even increase." Tu a fu .. 
ture work, we show a new method, lo be called partial dependence reduction, 
that pursues balance between communication and computation. 

4.2 Effect of the transformation on the choice of 1r 

Let G be the original dependence graph and G the transformed graph ac­
cording to section 4.1. 

Le b h h • • • GSS( ) max ,r-/-,r-J I JEf)um . t 1r0 e t e vector t at m1111m1zes 1r = mm 1r·d; d:Ev 111 
G. We want to answer the qu<>.stion whether 1ro can serve as a sdwd111i11g 
vector al.so for G. 

As 1ro is a scheduling v<.-ctor for G, we have gcd(1r~, ... , 1r{I) = l and 
1r0 • di > 0 for V"-i E D. On the other hand, each d; i!i the sum of some d, 's 
of D. Thus 1r0 • d; > 0, for Vd1 E D and therefore 11"0 is a scheduling vector 
for G. 

Le - b h h · · · GSS( ) max{,r-/-,r•JI/ JEVmn) t 1ro e t e vector t at 111m1m1z1:s 1r = . { d 
1
ud D} mn man ,r- i aE 

G. 
Consider the questions: What is lhe relation between 1ro and 7fjj! What 

is the value of GSS(1ro)? 
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We i;huw that GSS(1r0 ) ~ GSS(1r0 ). That is, the number of steps of the 

dependence reduction method is never greater to that or the GSS method. 

Without loss or generality, let d 1 lie the dependence v1!dor for which 

1To·d1 is minimum hetw1ien 11'1J'di, ford; E D. Thcreforn 1To·d1 $ 1ro•di, Vdi E 

D a111I 1ro-d1 $ 11'o•dj, for VrlJ E D. In this way we have GSS(1ro) $ GSS(1ro) 

and,'" /"rtim·i, GSS("ffii) ~ GSS(1ro). 
On tlw other ha111I, the bad ras1! ~if GSS(1r0 ) = GSS(1ro) will only occur 

if d1 = di wl11!rn ,J1 is the vect.or that minimizes 1ro · ,I; for ,I; E D. Even in 

this cai-;1! tl11!fe is chance of finding 7To such that GSS(1ro) > GSS(7To), since 

W<! hav1! lciss restrictions to search for 1ro than 1ro. 

4.3 Applicability 

To se<' whe11 it is advantageous to apply the cfopendence rrnluction methocl, 

we compare a "floar'' or the total time SJ)('nt in of.her methods with a "cr.il­

in,q" of t.111: tot.al Linm of the d1•Jll!1tdP11C1! tl'chu:t.ion mdhod. This "Jlnm:' is 

given liy th1! lor1p;Pst path in ED. If the l1•ngth of this path is 'Ii, Llll'n, l!X­

cept the c,L'ie with no communication, the total time is always larger or equal 

than 'li(Comm + Comp). As for the "ceiling", the following fact ensures 

that w1! liav1, a good chance or computing such a value easily. 

Fact 

The dependence vectors before reduction arc all lexicographically positive. 

When w,i perform dependence reduction, we sum lexicographically positive 

vectors. Therefore we increa.<;c the possibility of having a direction along 

which all the resulting 1lepcnclence vectors present positive clements. If 

such a direction exists, then we can parallelize along this direction. 

Let us sue an example. 

Example 4 

for i = 0 to N do 

for j = 0 to N do 

/or k = 0 lo N rlo 
command S1: a(i,j,k) = Ji(d(i - l,j - l,k)) 

command S2: b(i,j,k) = h(a(i,j -1,k- 1)) 

r:ommaurl S:1: r:(i,j,k) = f:,.(d(i,j,k - I)) 

command S1: d(i,j,k) = f1(b(i,j,k - l),c(i,j - 2,k + 1)) 

l(j 



S4 ➔ 8 1: d11 = (I, 1,0) S, ➔ S2: d12 = (0, I, I) S2 ➔ S1: di:1 = (11,0, I) 
S4 ➔ S3: d21 = (U,0, I) S:i ➔ S4: d22 = (0, 2, -1) 

The longest path will have ·1: steps. This is the number of steps nec­
essary to complete the cycles S4 ➔ S1 ➔ S2 ➔ S4 along direction j or 
direction k. Therefore a "floor' will be 3!} (Comm+ Com11). 

On the other hand, when we perform dependence reduction, we have: 
d1 = d11 + d12 + d13 = (I, 1,0) + (0, 1, I)+ (0,0, 1) = (1,2,2) and d2 = 

d21 + d"l'1 = (0, 0, 1) + (0, 2, -I) = (0, 2, 0). 
Both vectors have positive elmncnts along dirnctio11 j a111l tlni 111inimu111 

of these elements is 2. By parallelizing along thi:,; direction, the number of 
steps will he 1- Thu:,; a "r.dling" will he 1 (Comm+ -ICom11). 

By comparing the "floor' a11<l the "ceili11fi', wt: have ~Comm+ 1:J ( :m,171 < 
3!} Ccnmn + 3!} Comp. We can conclude that the dependence reduction 
method will be guaranteed to be better if Comp< 2Comm. 

We emphasize that the comparison give:,; only a sufficient condition. The 
fact that the inequality is not satisfied or impossibility to obtain a "criling" 
does not imply that the depenrlenc:e reduction method will be disadvanta­
geous. 

5 Conclusion 

We have presented a new simple technique for cycle shrinking called depen­
dence reduction. It identifies and distinguishes, in the dependence graph, 
the nodes corresponding to crucial commands and the nodes corresponding 
to non crucial commands for scheduling. Based on such information, this 
technique defines efficiently macro commands in the processors, with the 
purpose of reducing the number or execution steps and number of commu­
nication steps between processors. The new technique also :,;implifics sub­
stantially the application of the GSS method, due to 1 Im reduction of tlni 
number of dependence vectors. A comparison with other method:,; has been 
done by using the same example, showing its efficiency and simplicity. Fi­
nally we gave simple and sufficient conditions for the dependence reduction 
method to be superior to other methods. We arc developing a generalized 
dependence reduction method which is applicable to a dependence graph 
constituted only of principal vertices. 
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