

Cycle shrinking by dependence reduction*

Kunio Okuda

Universidade de Sdo Paulo

Instituto de Matematica ¢ Estatistica
Departamento de Ciéncia da Computacio
Rua do Matio, 1010
CEP 05508-900 Sio Paulo, SP, Brazil
Tel. + 55 11 818 6135 Fax + 55 11 814 4135
email: kunio@ime.usp.br

Abstract

We present a new simple cycle shrinking technique called depen-
dence reduction. It consists of a transformation of the dependence
graph to reduce the number of execution steps as well as the communi-
cation between processors. Compared to the well-known GSS method
(Generalized Selective Cycle Shrinking) the proposed method presents
the advantage of a simpler analysis and better result. Comparison with
other well known methods are also shown through illustrative examples.
We gave simple and sufficient conditions for the dependence reduction
method to be better than other methods

Key-words: cycle shrinking, dependence reduction, loop parallelization,
data dependence analysis, scheduling.
1 Introduction

In parallel computing, nested loop structures offer rich implicit parallelism.
Several techniques based on loop transformation, called cycle shrinking, to

*Supported by FAPESP (Fundagao de Amparo A Pesquisa do Estado de Sio Paulo)
- Proc. No. 94/4544-2, 95/0767-0, and CNPq (Conseiho Nacional de Desenvolvimento
Cientifico e Tecnoldgico) - PROTEM-2-TCPAC Proc. No. 680060/94-4, and Commission
of the European Communities through Project ITDC-207.

extract parallelism in loops are known [9, 13]. Simple cycle shrinking, selec-
tive cycle shrinking and true dependence cycle shrinking were introduced by
Polychronopoulos [8]. These methods transform sequential loops into paral-
lel loops. A generalization of selective cycle shrinking is generalized selective
cycle shrinking (GSS)) [10, 12]. Indez shift method (ISM} was introduced
by Liu, Ho and Sheu [5]. It can be viewed as a refinement of GSS. Robert
and Song proposed a method that combines GSS with ISM [10]. Affine by
Statement was proposed by Robert and Darte [2, 3, 4]. In this paper we
propose a new cycle shrinking technique that transforms the dependence
graph, with the goal of reducing the number of communication between the
processors and the number of computing steps. It identifies the essential
dependencies and allows a si.upler scheduling analysis. This paper is orga-
nized as follows. In section 2 we define the terminology and discuss GSS. In
section 3 we present the new technique through two examples. We compare
the results with other methods by using the well-known example from Peir
and Cytron [7]. In section 4 we formalize the new technique. Finally we
conclude in section 5.

2 Terminology and preliminary results

To facilitate and simplify the following presentation, we make some restric-
tion to the class of perfect nested loop algorithms. Also we adopt simple
scheduling and mapping models. For example we will use GSS for schedul-

ing.
2.1 RUN(Regular Uniform Nest) algorithm model

for i = 0 to N, do
for i; = 0 to N3 do

for i, = 0 to N, do
command S

command Si

where N),..., N, are constant. The set of indices for this algorithm is de-
fined as:

We use the definition of dependence and dependence vector according to
Banerjee and Polychronopoulos [1, 9, 14]. In RUN the dependence vector
between two commands independs on the indices of the particular instance.
The importance of uniformity is due to the following two main reasons. 1.
Many algorithms for scientific applications have this structure. 2. Its regular
structure allows the exploitation of implicit parallelism.

Example 1

Jori=0to N do
Jori=01t N do
command Sy: a(1,7) = b(1,7 - 6) +e(i - 1,7+ 3)
command Sy: bt + 1,5 — 1) =c(i + 2,5 +5)
command Sz: c(i+ 3,5 — 1) =a(i,j - 2)
command Sy: e(i,j - 1) =a(i,j - 1)

For this example the set of indices is
Dom = {(i,j) € Z°[0 <i,j < N}.
We have five dependence vectors:

Sl—-)S;;: d1=(0,2) Sg—)Sz: d2=(l,—6) Sg—?Sl:d3=(l,5)
St 2 84:dy=(0,1) S4— Sy:ds={(1,-4)

We have the following dependence matrix:

0 110 1
i 2 -6 51 -4
by the dependence graph of Figure 1.

We have two dependence cycles as shown

2.2 Scheduling

Given a RUN, scheduling is a function F : Z® — Z such that the comn-

putation (iy,-...,1,) is executed at step F(i1,...,is) [2]. For a function

F : Z® - Z to be a scheduling, it must satisfy the following condition:

If Su(j1s--.,Jn) depends on Sy(iy, ..., i) then F(iy, ... 4) < F(j1, ..., Jn).
The parallel execution of a RUN is the following:

<= e

Figure 1: Dependence graph of Example 1

for t = timemin to timemaz do
execute all (3),...,i,) € Dom such that F(i\,...,i,) =t

The total number of stens will be timemaz — timemin + 1. We use
typically the scalar product for scheduling, as in GSS, to be seen later.

2.3 Mapping

Given a RUN, mapping is a function G : Z" — Z™ such that the computa-
tion (i1,...,1s) is executed at the processor G(3,...,i5). If F(i1,...,is) =
F(j1,...,Jn) then G(i),...,1,) # G(j1,-..,Jn) so that the computations
scheduled at the same step be mapped to different processors. The typical
mapping is a projection along a vector and in this case m = n — 1. When
Dom is projected to Z2"~!, G(Dom) will be a network of processors and the
projected dependence vectors will represent communication between pro-
cessors in the network. The exception is when the dependence vectors are
parallel to the projection vector. These vectors will not represent commu-
nication because the data will be in the same processor.

Let

Comm= unit of time for communication between processors
Comp= unit of time to compute a command
T= total number of steps in parallel execution

Then the total time will be in general T x (Comp + Comm). However,
if all the dependence vectors are parallel to the projection vector, then the
total time will be only T Comp.

fhe GSS method

I'he GSS method is a generalization of the selective cycle shrinking method
used in a parallelizing compiler [12].

Consider a RUN with dimensionn. Let D = (dy, ..., d;) be a dependence
matrix n x . Let # = («!,...,7") be a vector such that 7 - D > 0 and
ged(x!,...,7") = L.

7 will be denoted scheduling vector. Let the reduction factor be disp(r) =
min{m - d;|1 <5 <l}. All the points I and J in Dorn that are on the same
hyperplane perpendicular to vector m, i.c. #-T = w-.J, will be executed

simultancously at step [ﬁ%j(:lﬁ{'—)” Such hyperplanes will be called
time hyperplanes. Find mg that minimizes GSS(r) = m“z("";;':(l:)“’e Dom}

2.5 Explicit domain

To show the dependences in Dom explicitly we will use the following dcfi-
nition:

ED= explicit domain ={S),...,S;} x Dom

The definition of the dependence vector will also change:

Si— S;:d=(d",...,d") becomes d = (S; - S,,d',...,d")

Thus for example 1 we have:

d; becomes (S3 — 51,0,2).

and d; becomes (S, — S3, 1, —6).

For its representation ED will always be identified as a subset of R**!,
Also, each Sj x Domn will be identified as subset of {h} x Dotn and all the
points of ED will be connected by dependence vectors explicitly.

This representation is similar to the Augmented Dependence Graph (ADG)
proposed by Kyriakis-Bitzaros and Goutis [6], but it is siinpler. For loops
of dimension i with & commands, the ditnension of ADG is n + & + 1 while
the dimension of ED is always n + 1, independent of k. This facilitates the
visual representation. In the case of a two-dimensional RUN, we can project
each {S;} x Dom to R? with each point slightly dislocated in relation to the
other {S3} x Dom, h # h, to avoid superposition. In this way, all the de-
pendences will be shown explicitly in R2. This representation will illustrate
the idea of dependence reduction. Throughout this paper we use Dom and
ED depending on the convenience.

o
i ® 5
f v\d_/

Figure 2: Dom and the dependence graph of Example 2

3 Examples

3.1 First case

This first example is very simple and serves to illustrate the uscfulness of
explicit domain ED. (Sce Figure 2.)

Example 2

fori=0¢t N do
forj=0to N do
Si: ali, 5} = f(b(i - 1,5))
S2: bli, j) = gle(i,j — 1))
S3: C(‘l,]) = h(a(i - ls]))

Instead of using Dom we now cousider ED = {5}, S5, S3} x Dom. The
two-dimnensional representation of ED with its explicit dependence vectors
are shown in Figure 3.

Observe that we have in Figure 3 several “zig-zags” of dependences that
do not interfere with one another. This gives us more freedom to do the
scheduling.

For example, consider the “zig-zag” constituted by cycle §1(2,3) —
S53(3,3) = S52(3,4) > S1(4,4). The dependences involve different com-
mands. Now let us forget for the moment their location in ED, and instead

‘%13:1.’.3-0‘.:.‘.’.3-0—.:33-5::3." Eads Vo

[/] |
%4—"C0 >0, ﬁ!fodrrf’cdf:!f’oo-f?_f’oo
[/ /]
i Yt P 2 °05::.'..°05::!&D¢!.°00-"°00

YT g e e S Sy

!
!
)

Figure 3: DE for Example 2

Figure 4: New dependence graph

join the computations S3(3,3) and S3(3,4) to 51(4,4). In other words, con-
sider that in (4,4) we have a macro command S that corresponds to the
sequence of commands:

Sz:c(i—1,7—1):=h(a(i -2,5-1))

Sy :b(i = 1,5) := gle(i — 1,5 — 1))

S :a(i,) == f(b(i — 1,5))

Now we perform this same transformation to all the points of ED. We will
have the following.

1. The macro command S will be mapped to a processor.

2. The macro command S will take more time since it now involves in
fact the execution of three commands.

3. The dependence vector of the macro command S will be simpler: d =
dy +dy +d3 = (1,0) + (0,1) + (1,0) = (2,1) (see Figure 4). In other
words, the dependence vectors of a cycle are reduced into one single
vector, thus the name dependence reduction.

From Figure 4 it is easy to observe that the total number of steps required
is N/2.

Figure 5: Dom and the dependence graph of Example 3

Each step consists of the computation of three functions and one com-
munication (if it exists).
Since we can project along vector d, the time will be % Comp.

3.2 Second case

In the second example ED gives some intuitive base for the dependence
graph transformation to be shown in next section.

Example 3

Jori=0to N do
Jorj=0to N do
Si:a(i,j) = f(b(i - 1,5 - 3) +d(i - 1,5 +2))
S2:b(1,5) = g(c(i = 1,5 + 1))
S3: C(i,j) = h(a(’: -1,5-1))
S4 : d(i,5) = k(a(i,5 - 1))

Dom and the dependence graph are in Figure 5.

We construct ED = {§|,..., 54} x Dom and project the four planes to
R?. We obtain Figure 6.

Figure 6 is decomposed into Figure 7 and 8 that show the dependences of
the cycles C and C,. Figure 9 shows the dependences in relation to S (i, 7)
in particular.

Figure 6: DE for Example 3

N H
S e

ul.\.uu..\. ams oa <
o0 e ° o °o o o/\w u/m"

e \\\\ o
et o - \\\\...
Se~03—.gs~_3*

Figure 7: Dependences of cycle C)

10

::.\. |

BAGNE\G S\ g
AVAVAVAVANANYARY;
em \o- os \‘ Y ol_‘. \ om Ol“. \‘ oa
° l\\\ \o/': \\ \.l‘:/:\ '.‘\ \‘:/2.\‘:\‘-\:‘.:/: \.\ \: :l\\\\. t.i/ll’ .\..'\ .\.:/2
./'.’\ \:/2\\-. \:si‘\‘\\':/s \‘\/ \"‘-.\"‘:/2 /
oo \ -/n \\\‘-/n \ \o/n .‘\‘- ‘."‘- a \ “\"o/n ."‘\ \‘.'o/u "\\ ‘..\o/n
s \\o-".\ \ ° \\.‘ol“‘ \.\ o-.". '\,_.". o-“. \ o-_\ ‘\"‘\ om
°/¢.'\ \:/2"- \:/2 \\ \;/2 \‘ n:/e ".\‘. \:/‘.’.‘\ '\;/g'\'t;/=

Figure 8: Dependences of cycle C,

> L

new

Figure 9: Dependences for 8, (3, 7)

11

Figure 10: New dependence for S (i, 5)

N @G OWIH

Figure 11: New dependence graph for Example 3

In Figures 7 and 8, we again have independent “zig-zags”. Each of these
can be treated as in Example 2. However, Example 3 is more restrictive than
Example 2. The scheduling of cycle 1 must be compatible to the scheduling
of cycle 2 because of the intersection point (Figure 9). The positions of the
Si’s (intersection points of the two cycles) are essential for scheduling. We
thus want to analyze the dependences only in terms of S;. As was done in
Example 2, we join the computations of Sp(5 - 1,7 - 3), S3(i — 2,7 —2) and
Si(t = 1.7 + 2) into S;(z,j). Thus we consider S as a macro command for
a point of Dom. Figure 10 is obtained from the transformation of Figure 9
with this consideration. The dependence with this macro is shown in Figure
1.

Observations

1. Both in Examples 2 and 3 the macros for the points situated on the
border of the domain are incomplete (for example, in Figure 4 for
Example 2, the macros on the right border are compased only of So
and S3).

12

G- CTEO GHOC)

Figure 12: New dependence graph for Example |

2. For the resultant network of processors, the creation of the macro
command means the transfer of some inter-processor communication
into the same processor. This contributes to the reduction of the total
time spent. In Lhe next section we treat this aspect in more details.

J. The number of dependence vectors is reduced after the transformation
of the dependence graph through dependence reduction. This results
in a reduction of communication between processors. For example, in
Example 2, instead of three communications for a,b, and ¢ we now
have only one for a. The communication for b and ¢ are now “hidden”

in the processors.

3.3 Third case

Let us now go back to Example 1, the well-known example used in many
papers (e.g. [2, 3, 10]). Notice that, with the exception of some indices,
Example 1 is practically equal to Example 3, They present the same cycles
(right side of Figure 5) with different dependences. By applying dependence
reduction in a similar way to Example 3, we have the graph of Figure 12.

For this graph my = (4, ~1) is the optimal solution for GSS with the
number of steps equal to %N. Thus the total time will be %(NComm +
4NComp).

The time spent by GSS is 8N (Comm + Comp). The time by GSS com-
bined with ISM is 2N(Comm + Comp) [10]). On the other hand, the time
spent by affine by statement is 17""N(Comm + Comp) (see [3] which also
shows the necessity of at least one communication).

The following table summarizes the results of the several methods for
Example 1.

Computation | Communication

GSS 8NComp 8NComm
GSS combined with ISM | 2N Comnp 2NComm
Afline by Statement =NComp =NComnm

Dependence reduction <L NComp ;N Comm

13

We conclude that, if Comin > f—}.Comp, then dependence reduction presents

the best time of all.

4 Dependence reduction

In this section we formalize the transformations performed in the examples
of the previous section. The case of the dependence graph with only one
cycle is trivial. We discuss the case of dependence graph with more than

one cycle.

4.1 Dependence graph with more than one cycle

Let A be a RUN algorithm. Let G = (V, E) be the dependence graph for
A where V and E correspond to the set of commands Sy, ...Sn and to the
dependence between commands, respectively. Each edge of E is labeled by
its dependence vector. We use the notation u 9, » to denote the edge from
node u to node v with dependence vector d. We will divide V into two sets:
the set of sccondary nodes (V'S) and the set of principal nodes (V P).

VS={v € V| v has exactly one edge entering the node and one edge
leaving it }

VP=V -VS§
See Example 3 (Figure 5). For this example, VS = {S2,853,84} and
VP = {5}

Let G = (V,E) be a transformed graph in which V = VP and E is
defined as follows:

E={v 4 v|v,v’ € VP and in G there exists a path between v and v’
whose intermediate nodes all belong to V.S and d is the sum of the depen-
dence vectors of this path }.

The commands corresponding to the secondary nodes in this path will be
incorporated into a macro command of v’. Clearly if we have another path
of this type for v’ then the commands corresponding to the secondary nodes
in this path will be incorporated too. We denote this transformation by the
name of dependence reduction. Alter obtaining G by dependence reduction,
we apply the GSS method to obtain T that minimizes GSS(w) using the
dependences of G. Let T be the number of steps for G. Then the total
time for the original algorithm will be T Comm + (I +1)T Comp where [is

14

the maximum number of secondary nodes that were incorporated into one
principal node.

Observations

The process of incorporating secondary nodes into principal nodes reduces
the number of dependence vectors and, consequently, after applying map-
ping, reduces the communications between processors. The basic idea of
the transformation is the following. To find a good scheduling, what we
really care is the dependence between principal nodes. The dependences
between secondary nodes, as well as those between a secondary and a prin-
cipal node, are not important. In other words, the location of the points P
of ED corresponding to these nodes (P € § x Dom where S € VS) are not
important.

Another advantage of this new method is the following. The reduction
of the number of dependence vectors facilitates the application of the GSS
method which, in general, is very complex [11]. With this reduction it may
even be possible to perform the computation by hand.

Naturally we can question the proposed method: “The proposed method
intends to reduce the communication time between processors, increasing
however the computation time. The total time can even increase.” Tn a fu-
ture work, we show a new method, Lo be called partial dependence reduction,
that pursues balance between communication and computation.

4.2 Effect of the transformation on the choice of 7

Let G be the original dependence graph and G the transformed graph ac-
cording to section 4.1.

Let my be the vector that minimizes GSS(n) = m“f;:;f;{}i’é%"""} in
G. We want to answer the question whether mg can serve as a scheduling
vector also for G.

As mp is a scheduling vector for G, we have ged(nf,...,7%) = 1 and
mo - d; > 0 for Vd; € D. On the other hand, each d—_, is the sum of some d,'s
of D. Thus =, d_J > 0, for VI € D and therefore mp is a scheduling vector
for G.

Let g be the vector that minimizes GSS(n) = "'"f'::{_ﬂ’_'fl;i’éff}"""} em
G.

Consider the questions: What is the relation between mp and 737 What
is the value of GS5(ng)?

15

We show that GSS8(mg) < GSS(m). That is, the number of steps of the
dependence reduction method is never greater to that of the GSS method.

Without loss of generality, let d; be the dependence vector for which
mp-d) is minimum between mo-d;, for d; € D. Therefore mp-dy < mg-d;,Vd; €
D and my-d; < mo-d;, for Vd; € D. In this way we have GSS(my) < GSS(m)
and, a fortiori, GSS(7g) < GSS(my).

On the other hand, the bad case of GSS(mp) = GSS(mp) will only occur
if d; = dy where dy is the vector that minimizes mg ﬁ; for F,- € D. Even in
this case there is chance of finding g such that GSS(T) > GSS(mo), since

we have less restrictions to search for 7 than mg.

4.3 Applicability

To see when it is advantageous to apply the dependence reduction method,
we compare a “floor” of the total time spent in other methods with a “cetl-
ing’ of the total time of the dependence reduction method. This “flanr” is
given by the longest path in ED. I the length of this path is Ty, then, ex-
cept the case with no communication, the total time is always larger or equal
than Ty (Comm + Comp). As for the “cetling”, the following fact ensures
that we have a good chance of computing such a value easily.

Fact

The dependence vectors before reduction are all lexicographically positive.
When we perform dependence reduction, we sum lexicographically positive
vectors. Therefore we increase the possibility of having a direction along
which all the resulting dependence vectors present positive elements. If
such a direction exists, then we can parallelize along this dircction.

Let us see an example.

Example 4

fori=0toN do
Jor j=0to N do
for k=0 to N do
command Si: a(i,5,k) = [i(dli — 1,5 — 1,k))
command Sy: b(i,3,k) = fo(a(i,j — 1,k —=1))
command Sy: c(i, §, k) = [3(d(, J, &k — 1))
command Sy: d(i, §, k) = [4(b(i, 3,k = 1),c(s, 5 — 2,k + 1))

16

S4 -—)S|: d” = (1,1,0) S| — Sg: dlz = (”,I,]) Sz - S4: d|;; = (“,(),l)
Sy = Sy: dyy = (0,0,1) §3 = Sg: dp = (0,2,-1)

The longest path will have lz)! steps. This is the number of steps nec-
essary to complete the cycles 54 = Sy = S = S¢ along direction j or
direction k. Therefore a “floos” will be 3—2’!(Comm + Comp).

On the other hand, when we perform dependence reduction, we have:

di =di +dia+di3=(1,1,0) 4+ (0,1,1) + (0,0,1) = (1,2,2) and d; =
day +dse = (0,0,1) + (0,2, —1) = (0,2,0).

Both vectors have positive elements along direction j and the minimum
of these clements is 2. By parallelizing along this direction, the nunber of
steps will be % Thus a “ceiling” will be —.z'!(C'mmn + AComp).

By comparing the “floor” and the “cedling”, we have %Cmmn+ %(fmup <
%Cmnm + %Cmnp. We can conclude that the dependence reduction
method will be guaranteed to be better if Comnp < 2Comm.

We emphasize that the comparison gives only a suflicient condition. The
fact that the inequality is not satisfied or impossibility to obtain a “ceiling”
does not imply that the dependence reduction mmethod will be disadvanta-
geous.

5 Conclusion

We have presented a new simple technique for cycle shrinking called depen-
dence reduction. Tt identifics and distinguishes, in the dependence graph,
the nodes corresponding to crucial commands and the nodes corresponding
to non crucial commands for scheduling. Based on such information, this
technique defines cfficiently macro commands in the processors, with the
purpose of reducing the number of execution steps and number of commu-
nication steps between processors. The new technique also simplifies sub-
stantially the application of the GSS method, due to the reduction of the
number of dependcence vectors. A comparison with other methods has been
done by using the same example, showing its efficiency and simplicity. Fi-
nally we gave simple and sufficient conditions for the dependence reduction
method to be superior to other methods. We are developing a gencralized
dependence reduction method which is applicable to a dependence graph
constituted only of principal vertices.

17

Acknowledgment

The author wishes to thank Prof. Siang Wun Song for suggestions, Prof.
Carlos Eduardo Ferreira for his help and the members of GCPD/DCC/IME/USP

for the encouragement.

References

[1] Banerjee, U. An introduction to a formal theory of dependence analysis.
J. Supercomput. 2(1988) 133-149.

[2] Darte, A. and Robert, Y. Scheduling uniform loop nests. Technical
Report, Laboratoire de PInformatique du Parallélisine-TMAG, Lyon,
1992.

[3] Darte, A. and Robert, Y. Mapping uniform loop nests onto distributed
memory architectures. Paraticl Computing 20(1991) 679-710.

[4] Darte, A. and Robert, Y. Affine-by-statement scheduling of Uniform
and affine loop nests over parametric domains. Journal of Parallel and
Distributed Computing 29, 13-59(1995).

[5] Liu, L. S., Ho, C W. and Sheu, J. P. On the parallelisin of nested
for-loops using index shift method. Proc. Internat. Conf. on Parallel
Processing (Aug. 1990) 11-119-11-123.

[6] Kayriakis-Bitzaros, E. D. and Goutis, C. E. An efficient decomposition
technique for mapping nested loops with constant dependencics into
regular processor array. Journal of Parallel and Distributed Computing
16, 258-264(1992).

[7] Peir, J. K. and Cytron, R., Minimum distance: a method for partition-
ing recurrence for multiprocessors. [EEE Trans. Comput. 38(8) (Aug.
1989) 1203-1211.

[8] Polychronopoulos, C. D. Compiler optimization for enhancing paral-
lelism and their impact on architecture design. IEEE Trans. Comput.

37(8) (Ang. 1988) 991-1004.

[9] Polychronopoulos, C. D. Parallel Programming and Complers. Kluwer
Academic Publishers, 1988.

18

[10] Robert, Y. and Song, S.W. Revisiting cycle shrinking. Parallel Com-
puting, 18(1992) 481-496.

(11} Shang, W. and Fortes, J. A. B. Time optimal linear schedules for algo-
rithms with uniform dependencies. I[EEE Trans. Comput. 40(G) (Jun.
1991) 723-742.

(12] Shang, W., O’Keefe, M. T. and Fortes, J. A. B. Generalized cycle
shrinking. Parallel Algorithms and VLSI Archilecture II. P. Quinton
and Y. Robert (editors), North Holland, 1991.

[13] Wolfe, M. Optimizing Supercompilers for Supercomputers. MIT Press,
Cambridge, MA, 1989.

[14]) Wolfe, M. Data dependence and program restructuring. J. Supercom-
put. 4(1990) 321-344.

19

RELATORIOS TECNICOS
DEPARTAMENTO DE CIENCIA DA COMPUTACAO

& M dtica ¢ Estatistica da USP
A listagem contendo os relatérios téenicos anteriores a 1993 poderd ser ltada ou solickada 3 § a do
Dep T | por carta ou ¢-maikmac@ime.usp .br).

Imre Simon
THE PRODUCT OF RATIONAL LANGUAGES
RT-MAC-9301, Mao 1993, 18 pp.

Fldvio Soares C. da Silva
AUTOMATED REASONING WITH UNCERTAINTIES
RT-MAC-9302, Maio 1993, 25 pp.

Flivio Soures C. da Silva
ON PROOF-AND MODEL-BASED TECHNIQUES FOR REASONING WITH UNCERTAINTY

RT-MAC-9303, Maio 1993, 11 pp.

Carlos Humes Jr., Ledmdas de O.Brandio, Manucl Pera Garcia

A MIXED DYNAMICS APPROACH FOR LINEAR CORRIDOR POLICIES

(A REVISITATION OF DYNAMIC SETUP SCHEDULING AND FLOW CONTROL IN
MANUFACTURING SYSTEMS)

RT-MAC-9304, Junho 1993, 25 pp.

Ana Flora P.C.Humes ¢ Carlos Humes Jr.
STABILITY OF CLEARING OPEN LOOP POLICIES IN MANUFACTURING SYSTEMS (Revised Version)

RT-MAC-9305. Julho 1993, 31 pp.

Maria Angela M.C. Gurgel e Yoshiko Wakabayashs
THE COMPLETE PRE-ORDER POLYTOPE: FACETS AND SEPARATION PROBLEM
RT-MAC-9306, Julho 1993, 29 pp.

Tito Homem de Mello ¢ Carlos Humes Jr.

SOME STABILITY CONDITIONS FOR FLEXIBLE MANUFACTURING SYSTEMS WITH NO SET-UP
TIMES

RT-MAC-9307, Julho de 1993, 26 pp.

Carlos Humes Jr. ¢ Tito Homem de Mello

A NECESSARY AND SUFFICIENT CONDITION FOR THE EXISTENCE OF ANALYTIC CENTERS IN
PATH FOLLOWING METHODS FOR LINEAR PROGRAMMING

RT-MAC-9308, Agosto de 1993

Flavio 8. Corréa da Silva
AN ALGEBRAIC VIEW OF COMBINATION RULES
RT-MAC-9401, Janeiro de 1994, 10 pp.

Rt

Flavio S. Corréa da Silva @ Junior Barrera
AUTOMATING THE GENERATION OF PROCEDURES TO ANALYSE BINARY IMAGES

RT-MAC-9402, Junciro de 1994, 13 pp.

Junior Barrera, Geruld Jean Francis Banon e Roberto de Alencar Lotufo
A MATHEMATICAL MORPHOLOGY TOOLBOX FOR THE KHOROS SYSTEM
RT-MAC-9403, Janciro de 1994. 28 pp.

Flavio S. Corréa da Silva
ON THE RELATIONS BETWEEN INCIDENCE CALCULUS AND FAGIN-HALPERN STRUCTURES

RT-MAC-9404, abril de 1994, 11 pp.

Junior Barrera; Flivio Soares Corréa da Silva ¢ Gerald Jean Francis Banoa
AUTOMATIC PROGRAMMING OF BINARY MORPHOLOGICAL MACHINES
RT-MAC-9405, abril de 1994, 15 pp.

Valdemar W. Setzer; Cristine G. Fernandes; Wania Gomes Pedrosa ¢ Flavio Hirata
UM GERADOR DE ANALISADORES SINTATICOS PARA GRAFOS SINTATICOS SIMPLES
RT-MAC-9406, abril de 1994, 16 pp.

Siang W. Song

TOWARDS A SIMPLE CONSTRUCTION METHOD FOR HAMILTONIAN DECOMPOSITION OF
THE HYPERCUBE

RT-MAC-9407, maio de 1994, 13 pp.

Julio M. Stern
MODELOS MATEMATICOS PARA FORMACAO DE PORTFOLIOS
RT-MAC-9408, maio de 1994, 50 pp.

Imre Simon
STRING MATCHING ALGORITHMS AND AUTOMATA
RT-MAC-9409, maio de 1994, 14 pp.

Valdemar W. Setzer e Andrea Zisman
CONCURRENCY CONTROL FOR ACCESSING AND COMPACTING B-TREES*
RT-MAC-9410, junho de 1994, 21 pp.

Renata Wassermana ¢ Flévio S. Corréa da Silva
TOWARDS EFFICIENT MODELLING OF DISTRIBUTED KNOWLEDGE USING EQUATIONAL AND

ORDER-SORTED LOGIC
RT-MAC-9411, junho de 1994, |5 pp.

Jair M. Abe, Fldvio S. Corréa da Silva ¢ Marcio Rillo
PARACONSISTENT LOGICS IN ARTIFICIAL INTELLIGENCE AND ROBOTICS.
RT-MAC-9412, junho de 1994, 14 pp.

Flivio S. Corréa da Silva, Daniela V. Carbogim
A SYSTEM FOR REASONING WITH FUZZY PREDICATES
RT-MAC-9413, junho de 1994, 22 pp.

Flévio S. Corréa da Silva, Juir M. Abe, Marcio Rillo
MODELING PARACONSISTENT KNOWLEDGE IN DISTRIBUTED SYSTEMS
RT-MAC-9414, julbo de 1994, 12 pp.

81 Asac i 00

Nami Kobayashi
THE CLOSURE UNDER DIVISION AND A CHARACTERIZATION OF THE REC! OGNIZABLE

Z-SUBSETS
RT-MAC-9415, jutho de 1994, 29pp.

Flévio K. Miyuzawa ¢ Yoshiko Wakabayashi

AN ALGORITHM FOR THE THREE-DIMENSIONAL PACKING PROBLEM WITH ASYMPTOTIC
PERFORMANCE ANALYSIS

RT-MAC-9416. novembro de 1994, 30 pp.

Thomaz I. Setdman e Carlos Humes Jr.
SOME KANBAN-CONTROLLED MANUFACTURING SYSTEMS: A FIRST STABILITY ANALYSIS

RT-MAC-9501, janeiro de 1995, 19 pp.

C.Humes Jr. and A.F.P.C. Humex
STABILIZATION [N FMS BY QUASI- PERIODIC POLICIES
RT-MAC-9502, margo de 1995, 31 pp.

Fabio Kon ¢ Amaldo Mandel
SODA: A LEASE-BASED CONSISTENT DISTRIBUTED FILE SYSTEM
RT-MAC-9503, margo de 1995, 18 pp.

Junior Barrera, Nina Sumiko Tomita, Fldvio Soares C. Silva. Routo Terada
AUTOMATIC PROGRAMMING OF BINARY MORPHOLOGICAL MACHINES BY PAC LEARNING

RT-MAC-9504, abril de 1995, 16 pp.

Flévio 8. Corréa da Silva e Fabio Kon
CATEGORIAL GRAMMAR AND HARMONIC ANALYSIS
RT-MAC-9505, junho de 1995.17 pp.

Henrique Mongelli ¢ Routo Terada
ALGORITMOS PARALELOS PARA SOLUCAO DE SISTEMAS LINEARES

RT-MAC-9506. junho de 1995, 158 pp.

Kunio Okuda
PARALELIZACAO DE LACOS UNIFORMES POR REDUCAO DE DEPENDENCIA

RT-MAC-9507, julho de 1995, 27 pp.

Valdemur W. Setzer e Lowell Monke
COMPUTERS IN EDUCATION.: WHY, WHEN, HOW
RT-MAC-9508, julho de 1995, 21 pp.

Flivio 8. Corréa da Silva
REASONING WITH LOCAL AND GLOBAL INCONSISTENCIES
RT-MAC-9509. jutho de 1995, 16 pp.

Julio M. Stemn
MODELOS MATEMATICOS PARA FORMAGAO DE PORTFOLIOS
RT-MAC-9510. julho de 1995, 43 pp.

Fernando luzzetta ¢ Fabio Kon
A DETAILED DESCRIPTION OF MAXANNEALING
RT-MAC-9511, agosto de 1995, 22 pp.

Flivio Keidi Miyazawa ¢ Yoshiko Wakabayashi

POLYNOMIAL APPROXIMATION ALGORITHMS FOR THE ORTHOGONAL
Z-ORIENTED 3-D PACKING PROBLEM

RT-MAC-9512, agosto de 1995, pp.

Junior Barrera ¢ Guillermo Pablo Salas

SET OPERATIONS ON COLLECTIONS OF CLOSED INTERVALS AND THEIR APPLICATIONS TO
THE AUTOMATIC PROGRAMMINIG OF MORPHOLOGICAL MACHINES

RT-MAC-9513, agusto de 1995, 84 pp.

Marco Dimas Gubitoso e Jorg Cordsen
PERFORMANCE CONSIDERATIONS IN VOTE FOR PEACE
RT-MAC-9514, novembro de 1995, 18pp.

Carlos Eduardo Ferreira ¢ Yoshiko Wukabayashy

ANAIS DA 1 OFICINA NACIONAL EM PROBLEMAS COMBINATORIOS: TEORIA. ALGORITMOS E
APLICAGCOES

RT-MAC-9515, novembro de 1995, 45 pp.

Markus Endler and Ansl D'Souza
SUPPORTING DISTRIBUTED APPLICATION MANAGEMENT IN SAMPA
RT-MAC-9516, novembro de 1995, 22 pp.

Junior Barrera, Routo Terada,

Flivio Corréa da Silva and Nina Sumiko Tomita
AUTOMATIC PROGRAMMING OF MMACH'S FOR OCR*
RT-MAC-9517, dezembro de 1995, 14 pp.

Hashi

Junior Barrers, Guillermo Pablo Salas and R ldo Fumio } wo

SET OPERATIONS ON CLOSED INTERVALS AND THEIR APPLICATIONS TO THE AUTOMATIC
PROGRAMMING OF MMACH'S

RT-MAC-9518, dezembro de 1995, 14 pp.

Danicla V. Carbogim and Flivio S. Corréa da Silva
FACTS, ANNOTATIONS, ARGUMENTS AND REASONING
RT-MAC-9601, janciro de 1996, 22 pp.

Kunio Okuda
REDUCAO DE DEPENDENCIA PARCIAL E REDUCAO DE DEPENDENCIA GENERALIZADA

RT-MAC-9602, feverciro de 1996, 20 pp.

Junior Barrera, Edward R. Dougherty and Nina Sumiko Tomita

AUTOMATIC PROGRAMMING OF BINARY MORPHOLOGICAL MACHINES BY DESIGN OF
STATISTICALLY OPTIMAL OPERATORS IN THE CONTEXT OF COMPUTATIONAL LEARNING
THEORY.

RT-MAC-9603, abril de 1996, 48 pp.

Junior Barrera ¢ Guillerma Pablo Salas

SET OPERATIONS ON CLOSED INTERVALS AND THEIR APPLICATIONS TO THE AUTOMATIC
PROGRAMMINIG OF MMACH'S ’

RT-MAC-9604, abril de 1995, 66 pp.

Bt miar sain e

Kunio Okuda
CYCLE SHRINKING BY DEPENDENCE REDUCTION
RT-MAC-9605. maw de 1996, 25 pp.

