Cell Reports

The Cancer Genome Atlas Comprehensive
Molecular Characterization of Renal Cell Carcinoma

Graphical Abstract

TCGA Pan-Kidney Cancer Analysis (n=843)

Chromophobe RCC )
Identification of metabolically
divergent (MD-) ChRCCs
associated with extremely
poor survival )

Clear Cell RCC
* Increased ribose metabolism
pathway mRNA expression

associated with poor survival
¢ Increased immune signature

Type 2 Papillary RCC
= * Increased expression of the

, glycolysis, ribose metabolism,
and Krebs cycle genes in
comparison to Type 1 PRCC )

Type 1 Papillary RCC
* PBRM1 mutations associate
with poor survival
Increased mRNA signature for

. » R
RNA splicing and cilium genes /§ :
%

Renal Cell Carcinoma (RCC)

« Increased DNA hypermethylation and CDKN2A alterations
associate with poor prognosis in all RCC subtypes

* Increased Th2 immune signature within each RCC subtype
associates with poor survival

Highlights
e BAP1, PBRM1, and metabolic pathway changes correlate
with RCC subtype-specific survival

e DNA hypermethylation/CDKNZ2A alterations associate with
poor survival in all RCC subtypes

e Immune gene signatures increased in ccRCC and CIMP-RCC

e Increased Th2 gene signature within each RCC subtype
associates with poorer survival

Ricketts et al., 2018, Cell Reports 23, 313-326
April 3, 2018
https://doi.org/10.1016/j.celrep.2018.03.075

Authors

Christopher J. Ricketts,

Aguirre A. De Cubas, Huihui Fan, ...,
Paul T. Spellman, W. Kimryn Rathmell,
W. Marston Linehan

Correspondence
wml@nih.gov

In Brief

Ricketts et al. find distinctive features of
each RCC subtype, providing the
foundation for development of subtype-
specific therapeutic and management
strategies. Somatic alteration of BAP1,
PBRM1, and metabolic pathways
correlates with subtype-specific
decreased survival, while CDKN2A
alteration, DNA hypermethylation, and
Th2 immune signature correlate with
decreased survival within all subtypes.
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SUMMARY

Renal cell carcinoma (RCC) is not a single disease, but
several histologically defined cancers with different
genetic drivers, clinical courses, and therapeutic re-
sponses. The current study evaluated 843 RCC from
the three major histologic subtypes, including 488
clear cell RCC, 274 papillary RCC, and 81 chromo-
phobe RCC. Comprehensive genomic and pheno-
typic analysis of the RCC subtypes reveals distinctive
features of each subtype that provide the foundation
for the development of subtype-specific therapeutic
and management strategies for patients affected
with these cancers. Somatic alteration of BAP1T,
PBRM1, and PTEN and altered metabolic pathways
correlated with subtype-specific decreased survival,
while CDKN2A alteration, increased DNA hyperme-
thylation, and increases in the immune-related Th2
gene expression signature correlated with decreased
survival within all major histologic subtypes. CIMP-

RCC demonstrated an increased immune signature,
and a uniform and distinct metabolic expression
pattern identified a subset of metabolically divergent
(MD) ChRCC that associated with extremely poor
survival.

INTRODUCTION

Renal cell carcinoma (RCC) affects nearly 300,000 individuals
worldwide annually and is responsible for more than 100,000
deaths each year. Our understanding of RCC has evolved over
the past 40 years, from considering RCC as a single entity to
our current understanding that RCC is made up of many different
subtypes of renal cancer, each with different histology, distinc-
tive genetic and molecular alterations, different clinical courses,
and different responses to therapy (Linehan, 2012; Linehan et al.,
2010; Moch et al., 2016). The canonical classification of RCC
consists of three major histologic RCC subtypes (Hsieh et al.,
2017; Linehan et al., 2006; Moch et al., 2016). Clear cell renal
cell carcinoma (ccRCC) is the most common subtype (~75%);
papillary renal cell carcinoma (PRCC) accounts for 15%-20%
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and is subdivided into types 1 and 2; and chromophobe renal cell
carcinoma (ChRCC) represents ~5% of RCC.

The Cancer Genome Atlas (TCGA) Research Network has
conducted a series of comprehensive molecular characteriza-
tions in distinctive histologic types of cancers including ccRCC,
ChRCC, and PRCC (Cancer Genome Atlas Research Network,
2013; Cancer Genome Atlas Research Network et al., 2016; Da-
vis et al., 2014). These studies revealed a remodeling of cellular
metabolism in ccRCC involving downregulation of Krebs cycle
genes, upregulation of pentose phosphate pathway genes, and
decreased AMPK in higher-stage, high-grade, and low-survival
disease. A distinct PRCC subtype was identified that was char-
acterized by a CpG island methylator phenotype (CIMP-RCC)
and associated with early-onset disease, poor survival, and
germline or somatic mutation of the fumarate hydratase (FH)
gene, and a subset of ChRCC with genomic rearrangements
within the TERT promoter region was identified that correlated
with highly elevated TERT expression and manifestation of ka-
taegis, uncovering a distinct mechanism of TERT upregulation
in cancer. A previous study by Chen et al. (2016) compared all
available kidney tumor samples available within TCGA irrelevant
of histologic type using cluster analysis of the multi-platform ge-
netic and genomic data to show that the majority of the histologic
subtypes could be reconstituted. In addition, this study identified
samples that fell outside of the major subtypes and identified
several mutation, methylation, and immune expression profiles
that correlated with histologic subtypes within the complete
TCGA kidney cohort.

The importance of histology cannot be understated in the
study of RCC. To highlight the most meaningful somatic alter-
ations in the entire cohort and within each major histologic
subtype, we performed an integrated comparative genomic
analysis of all available histologically confirmed TCGA samples
of ccRCC, PRCC, and ChRCC to identify shared and subtype-
specific molecular features that will provide the foundation for
the development of disease-specific therapeutic approaches
and prognostic biomarkers for RCC.

RESULTS

Evaluation of RCC Histologic Subtypes

In total, 894 samples of kidney cancer were initially submitted to
TCGA and were available for analysis, including 537 ccRCC,
291 PRCC, and 66 ChRCC. The initial TCGA analyses of each
RCC subtype had excluded several samples due to inconsis-
tent/incorrect histologic classification or therapy prior to sample
collection. This included the removal of a small number of
samples, such as transitional cell carcinomas, that are kidney
cancers that are not classified as RCCs. Additional samples
not utilized in previous studies were also re-evaluated by histo-
logic review and removed if considered inappropriate and 15
samples originally submitted as ccRCC were reclassified as
ChRCC. This resulted in a final cohort of 843 TCGA-RCC con-
sisting of 488 ccRCC, 274 PRCC, and 81 ChRCC. The 274
PRCC were further divided into four subgroups consisting of
160 type 1 PRCC, 70 type 2 PRCC, 34 unclassified PRCC,
and 10 CpG island methylator phenotype-associated (CIMP)-
RCC (Table S1).
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Comparison of Major RCC Histologic Subtypes

Initial comparison of these RCC was performed using chromo-
somal copy number profiles, mMRNA, miRNA, and IncRNA expres-
sion profiles and visualized in a heatmap with the RCCs ordered
by histologic subtype, then stage, then vital status (Figure 1A).
Clear cell RCC demonstrated significant loss of chromosome
3p and gain of 5q, type 1 PRCC demonstrated gains of chromo-
somes 7 and 17, and ChRCC demonstrated a pattern of chromo-
somal losses that included 1, 2, 6, 10, 13, and 17 (Figure 1B).
These data confirmed previous observations concerning the
copy number patterns within the different RCC histologic sub-
types, and somatically gained alterations in chromosomal copy
number patterns provide the clearest distinction between sub-
types. While specific patterns of copy number alteration were
not observed in the CIMP-RCC or the type 2 PRCC, both demon-
strated an increased loss of chromosome 22 that encodes NF2
from the HIPPO pathway and SMARCB1, a fundamental compo-
nent of the SWI/SNF complex, and the CIMP-RCC had loss of
chromosome 13q at a similar rate to ChRCC (60% versus
61.3%) that encodes RB1 and BRCAZ2 (Figure 1B). Analysis of
RNA expression across the combined cohort demonstrated
distinct mRNA, miRNA, and IncRNA clusters that associated
with each histologic RCC type. Two mRNA, three miRNA, and
five IncRNA clusters were enriched in ccRCC, while two mRNA,
two miRNA, and two IncRNA clusters represented the majority
of the PRCC (Figures S1A-S1C). The ChRCC samples demon-
strated a distinct uniformity by being present in a single cluster
for each RNA type, while the CIMP-RCC had a distinct mRNA
cluster and shared a IncRNA cluster with the ChRCC.

Survival Differences across the Major RCC Histologic
Subtypes

The variation between the RCC histologic subtypes extended to
survival outcomes (Figure 1C). Previously, CIMP-RCC was found
to have the poorest PRCC survival but now demonstrated
the worst survival of all RCC subtypes, including ccRCC (p <
0.0001). Clear cell RCC demonstrated the next poorest survival
when compared to all other RCC subtypes, while type 1 PRCC
and ChRCC associated with the best survival that was statisti-
cally indistinguishable (p = 0.9138). These histologic-specific dif-
ferences in survival and the uneven representation of each histo-
logic subtype within the cohort produces a potential confounding
factor for survival associations evaluated across the entire
cohort. With clear distinctions between the histologic subtypes
established, survival associations within histologic subtypes
are likely to be more relevant than those across the entire cohort.

Gene and Pathway Alteration Associates with Survival in
Specific RCC Subtypes

Previous analyses of each histologic RCC subtype had identified
a combined total of 16 significantly mutated genes (SMGs)
including 9 associated with ccRCC, 11 associated with PRCC,
and 2 associated with ChRCC (Figure S2A; Cancer Genome
Atlas Research Network, 2013; Cancer Genome Atlas Research
Network et al., 2016; Davis et al., 2014). Analysis across RCC
types revealed that TP53 and PTEN were the only SMGs shared
by ccRCC, PRCC, and ChRCC (2.6% and 4.5%, 1.5% and
3.4%, and 31.1% and 8.1%, respectively). Across the entire
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Figure 1. Comparison of RCC Histologic Subtypes
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(A) Heatmap representation of chromosomal copy number and RNA expression profiles between the different histologic RCC subtypes. Chromosomal copy
number data are ordered by chromosomal arm in descending order (red, gain; blue, loss). The relative RNA expression was assessed for the most variable probes
within the complete RCC cohort for either mRNA (n = 500), miRNA (n = 249), or IncRNA (n = 178) (red, increased; blue, decreased). RCC samples were arrayed left
to right based on histologic subtype (ccRCC, green; type 1 PRCC, light blue; type 2 PRCC, orange; unclassified [Unc.] PRCC, gray; CIMP-RCC, red; ChRCC,
purple), then tumor stage (stage I, light green; stage Il, yellow; stage lll, orange; stage IV, red), and then vital status (alive, white; deceased, black).

(B) Percentage of chromosomal copy number alterations between the different histologic RCC subtypes.

(C) Differences in patient overall survival between the different histologic RCC subtypes (log-rank p value).

cohort, neither TP53 nor PTEN correlated with poor survival, but
histologic-specific analysis demonstrated that TP53 mutation
correlated with decreased survival in ccRCC (p = 0.0002) and
PRCC (p = 0.0049), while PTEN mutation correlated with
decreased survival in ChRCC (p = 0.0138) (Figures 2A and
S2B). Clear cell RCC and PRCC, but not ChRCC, shared
three chromatin remodeling SMGs: PBRM1 (38.0% and 4.5%,
respectively), SETD2 (13.2% and 6.4%, respectively), and
BAP1 (11.0% and 5.6%, respectively). While BAP1 mutation
correlated with decreased survival across the entire cohort (p =
0.0002) and within the ccRCC group (p = 0.0035), BAP1 mutation
did not correlate with survival in PRCC or ChRCC. Similarly,
PBRM1 mutation, which has been shown to not correlate with
survival in ccRCC, was found to correlate with decreased sur-
vival in PRCC (p = 0.0008) that was specific to type 1 PRCC
(p < 0.0001) (Figures 2A and S2B). CDKN2A mutation, hyperme-
thylation, or deletion was found in 15.8% of tumors, with alter-
ations in each RCC subtype accounting for 16.2% of ccRCC,
5.0% of type 1 PRCC, 18.6% of type 2 PRCC, 100% of CIMP-
PRCC, and 19.8% of ChRCC (Figure 2B). Loss of the region of
chromosome 9p encoding CDKN2A was the most frequent

event across the cohort (11.7%), followed by promoter hyperme-
thylation (4.2%) and mutation (0.7%) (Table S1). CDKN2A alter-
ation provided the sole example of a change that correlated with
decreased survival across the entire cohort (p < 0.0001) and
in each major histologic subtype, ccRCC (p < 0.0001), type 1
PRCC (p = 0.0067), type 2 PRCC (p = 0.0006), and ChRCC
(p = 0.0018) (Figure 2C).

Eight SMGs were frequently mutated (>2.0%) in more than one
RCC subtype. Mutation of at least 1 of the 16 SMGs was found in
81% of ccRCC, 39.1% of PRCC, and 43.2% of ChRCC (Fig-
ure S2A). While the overall mutation rate for ChRCC was found
to be significantly less than either ccRCC or PRCC (p = 0.0254
and p < 0.0001, respectively), the PRCC mutation rate was higher
than ccRCC (p < 0.0001) (Figure S2C). Within PRCC, the most
aggressive subtype, CIMP-RCC, was found to have the lowest
overall rate of mutation. Pathogenic SMG mutations were not de-
tected in several tumors, particularly PRCC and ChRCC. Several
SMGs were members of pathways that contained genes mutated
at lower frequencies. In the VHL/HIF pathway, TCEB1 and CUL2
mutations in ccRCC were mutually exclusive with VHL mutation
(Figure S2D). HIPPO and NRF2/ARE pathway mutations were
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present in both PRCC (9.0% and 7.9%, respectively) and ccRCC
(8.9% and 3.2%, respectively) (Figure S2D). While chromatin
remodeling pathway gene mutations were notably frequent in
both ccRCC (69.3%) and PRCC (53.0%), they were less common
in ChRCC (14.9%) (Figure S2D and Table S2). Mutations of SWI/
SNF complex genes, including PBRM1, ARID1A, and SMARCA4,
were the most common chromatin remodeling complex alter-
ations within ccRCC (47.1%), followed by mutation of the histone
methyltransferases including SETD2 and MLL3 (23.8%), the his-
tone demethylases including KDM5C (13.0%), the BAP1/ASXL1
histone de-ubiquitinase complex (12.1%), and the histone acetyl-
transferases (4.8%), compared with frequencies of 24.1%,
23.7%, 17.3%, 6.8%, and 7.5%, respectively, in PRCCs (Fig-
ure 2D). Chromatin remodeling gene mutations were more
frequent in type 2 PRCC (55.3%) than in type 1 PRCC (40.6%).
While mutations of the PIBK/AKT pathway were frequent both
across (14.6%) as well as within each RCC subtype (16.2% of
ccRCC, 9.8% of PRCC, and 18.9% of ChRCC), they correlated
with decreased survival only in ChRCC (p = 0.0018) (Figures
S2D and S2E and Table S2).

Mitochondrial (mt) DNA mutation analysis, which was previ-
ously performed only in ChRCC (Davis et al., 2014), was con-
ducted in a representative number of tumors from all RCC
subtypes. Nonsense or missense mutations in mitochondria-en-
coded genes with high heteroplasmy (>75%) as well as frame-
shift mutations with >50% heteroplasmy were considered signif-
icant. Mitochondrial DNA mutations were found in 13% of 62
ccRCC, 33% of 99 PRCC (with similar frequencies for type 1
and type 2), and 20% of 65 ChRCC. High-heteroplasmy trun-
cating (nonsense or frameshift) mutations were enriched in
ChRCC (14%) compared to PRCC (6%) or ccRCC (2%) (Fig-
ure S2F) and mtDNA copy number was increased in ccRCC,
PRCC, and ChRCC that carried mtDNA mutations (p = 0.0036,
p = 0.0036, and p = 0.0029, respectively) (Figure S2F).

Hypermethylation Correlates with Decreased Survival

Previous analyses of methylation by Chen et al. (2016) had
demonstrated that a subset of the DNA methylation probes
within the RCC samples highlighted the differences in cell of
origin for the major RCC histologic subtypes. This subset of
probes was subsequently used to evaluate hypermethylation
patterns within the samples but was potentially confounded
by the difference in tumor origin. While hypermethylated ccRCC
and PRCC samples were identified, no hypermethylated
ChRCC samples were observed. An analysis limited to probes
that are unmethylated in all normal tissues identified in 1,532
variably hypermethylated markers that identified a cluster of
240 RCCs with increased DNA hypermethylation (methylation
cluster 1) that associated with significantly poorer survival (p <
0.0001) (Figure 3A and Table S1). This cluster consisted of the
10 CIMP-RCC, 182 ccRCC (37.3%), 23 type 2 PRCC (32.9%),

16 ChRCC (19.8%), and a small number of type 1 and unclassi-
fied PRCC. The remaining two clusters, one containing type 1
and type 2 PRCC (methylation cluster 2) and the other contain-
ing ccRCC and ChRCC (methylation cluster 3), had similar sur-
vival. In contrast to the distinct CIMP-RCC tumors that had
notably high levels of DNA hypermethylation, the remainder of
methylation cluster 1 had a less pronounced increase in hyper-
methylation across the genome. Histologic subtype-specific
analysis confirmed decreased survival with the increased
hypermethylation pattern in every major RCC histologic sub-
type (all p < 0.0001) (Figure 3B). Within the PRCC tumors, this
correlation remained significant after excluding the CIMP-
RCC from the PRCC tumors (p < 0.0001) and when type 1
PRCC (p = 0.0328) and type 2 PRCC (p = 0.0314) were indepen-
dently evaluated (Figures 3B and S3A). Increased hypermethy-
lation was associated with higher-stage disease in ccRCC,
PRCC (with or without CIMP), and ChRCC (all p < 0.0001) and
was associated with SETD2 mutation in ccRCC (p < 0.0001),
either PBRM1 mutation or SETD2 mutation in type 2 PRCC
(p = 0.0053, p = 0.0270, respectively), and TP53 mutation in
ChRCC (p = 0.0119) (Figure S3B). Genes represented by the
1,532 probes that characterized the hypermethylated cluster
were enriched for genes in the WNT pathway. Previous studies
have identified hypermethylation of the WNT pathway regula-
tory genes, SFRP1 and DKK1, in ccRCC (Ricketts et al,
2014). Increased methylation of probes for these two genes
(DKK1, cg07684796; SFRP1, cg15839448) was observed in
the methylated cluster 1 samples (Figure S3C), and hyperme-
thylation of either of these genes correlated with poorer survival
in ccRCC, PRCC, and ChRCC (p = 0.0015, p < 0.0001, and
p = 0.0021, respectively) and in PRCC excluding the CIMP-
RCC tumors (p = 0.0035) (Figures 3C and S3D).

Specific mRNA Signatures Associate with RCC
Histologic Subtypes

A weighted gene co-expression network analysis (WGCNA), per-
formed to identify sets (modules) of highly correlated genes and
to assess their relationships to clinical variables and biological
functions, revealed several gene modules that differentiated
the RCCs by histology, stage, or survival status (Figure 4). Clear
cell RCC showed the expected increase in expression of the
vasculature development signature, due to activation of the
VHL/HIF pathway, and the previously observed increase in
immune response signature (p = 4 x 107%®) in comparison to
PRCC and ChRCC (Figure 4B). The RNA metabolic process
and the mitotic cell cycle signature was specifically increased
inccRCC (p=5 x 1072 and p =5 x 10725, respectively), while
an increased amino acid metabolic process signature (p = 4 X
10735 and retention of cilium signature (p = 3 x 107 %% was
unique to PRCC (Figure 4B). In ChRCC, an increased ion trans-
membrane transport signature was observed (Figure 4). Subtype

(B) Oncoprints for CDKN2A gene deletions, hypermethylation, and mutations for the histologic RCC subtypes (ccRCC, green; type 1 PRCC, light blue; type 2
PRCC, orange; Unc. PRCC, gray; CIMP-RCC, red; ChRCC, purple). Mutations were segregated into nonsense (red) and missense (blue).
(C) Differences in patient overall survival within the histologic RCC subtypes (ccRCC, green; type 1 PRCC, light blue; type 2 PRCC, orange; ChRCC, purple)

dependent upon CDKN2A alteration (log-rank p value).

(D) Chromatin remodeling pathway mutation frequency within histologic RCC subtypes (ccRCC, green; PRCC, blue; ChRCC, purple). Abbreviations: Me, histone

methylation; Ac, histone acetylation; Ub, histone ubiquitination.
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Figure 3. Hypermethylation Patterns Associate with Survival Predictions

(A) Heatmap representation of the clustering of 1,532 highly variable DNA methylation probes that were unmethylated in the normal tissues. A methylation p-value
> 0.3 was considered hypermethylated. Tumors were annotated for histologic RCC subtype (ccRCC, green; type 1 PRCC, light blue; type 2 PRCC, orange; Unc.
PRCC, gray; CIMP-RCC, red; ChRCC, purple), tumor stage (stage |, light green; stage Il, yellow; stage lll, orange; stage IV, red), vital status (alive, white;
deceased, black), and DKK1 (cg07684796) and SFRP1 (cg15839448) hypermethylation (hypermethylated, dark green).

(B) Differences in patient overall survival within the histologic RCC subtypes (ccRCC, green; PRCC, blue; ChRCC, purple) dependent upon methylation cluster
(log-rank p value).

(C) Differences in patient overall survival within ccRCC and ChRCC tumors (ccRCC, green; ChRCC, purple) dependent upon hypermethylation of either SFRP1 or
DKK1 (log-rank p value).
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Figure 4. RCC Histologic Subtypes Associate with Specific mRNA Signatures

(A) Heatmap representation of the comparison of mMRNA expression signatures for major cellular processes between the different histologic RCC subtypes
(ccRCC, green; type 1 PRCC, light blue; type 2 PRCC, orange; Unc. PRCC, gray; CIMP-RCC, red; ChRCC, purple). Tumor stage (stage |, light green; stage I,
yellow; stage lll, orange; stage 1V, red) and vital status (alive, white; deceased, black) are indicated above the heatmap.

(B) Heatmap representation showing the relationship between gene expression modules and clinical features. Red heatmap shading indicates a positive cor-
relation between a gene module and a clinical feature and blue heatmap shading represents a negative correlation.

analysis of PRCC revealed an increased RNA splicing signature
intype 1 PRCC (p = 2 x 107'%) compared to type 2 PRCC, while
the cilium signature was significantly higher in the type 1 PRCC
(p =8 x 107" than in the type 2 PRCC (p =4 x 1077).

Metabolic Gene Expression Associates with Survival

Evaluation of tumor metabolism was performed by comparing
the expression profiles for 12 major metabolic processes across
all samples (Figure 5A and Table S3). Expression of the Krebs
cycle and the electron transport chain (ETC) genes provided a
clear distinction between the major histologic subtypes, with
low expression in ccRCC and CIMP-RCC, high expression in
ChRCC, and intermediate expression in type 1 and type 2
PRCC (Figure 5B). This correlated with increased expression
of the pyruvate dehydrogenase complex (PDC) activation genes
in ChRCC, that would help fuel the Krebs cycle and oxidative
phosphorylation, and the increased expression of PDC sup-
pression genes in ccRCC, which would result in glycolysis-
dependent energy production (Figures 5B and S4A). Subtype
analysis revealed that glycolytic gene expression was consis-
tently higher in ccRCC and type 2 PRCC, while expression of
the Krebs cycle genes was significantly higher in type 2 PRCC
compared to type 1 PRCC (p < 0.0001) (Figure S4A). Although
expression of PDC activation genes was low in all ccRCC, stage
IlI-IV ccRCC demonstrated significantly lower expression than
stage I-Il ccRCC (p = 0.0005) and lower PDC activation gene

expression in ccRCC was associated with decreased survival
(p < 0.0001) (Figures S4A and S4B). Expression of 5 AMP-acti-
vated protein kinase (AMPK), which negatively regulates fatty
acid synthesis and positively regulates mitochondria produc-
tion, was increased in ChRCC and decreased in the CIMP-
RCC (Figure 5B). As previously observed in the TCGA ccRCC
analysis, AMPK expression was significantly lower in stage IlI-IV
ccRCC compared to stage I-Il ccRCC (p = 0.0005), and lower
expression correlated with poorer survival (p = 0.0005) (Figures
S4A and S4B). Ribose sugar metabolism gene expression
was increased in type 2 PRCC compared to type 1 PRCC
(p < 0.0001) and greatly increased in CIMP-RCC in comparison
to all other RCC subtypes (p < 0.0001) (Figure 5C). The
increased ribose sugar metabolism expression previously asso-
ciated with higher stage and poorer survival prognosis in ccRCC
was confirmed in the current study (p = 0.0069), and increased
ribose sugar metabolism expression was found to also be asso-
ciated with decreased survival in PRCC (p = 0.0031) (Figures 5D
and S4B).

Six ChRCC were identified that presented as distinct meta-
bolic outliers within that histologic subtype (Figure S5A).
Compared to the other ChRCC, these samples had low expres-
sion of the Krebs cycle and electron transport chain genes, lower
expression of the AMPK pathway genes, and increased expres-
sion of the genes in the ribose synthesis pathway, and all these
features were associated with poorer prognosis in other RCC
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Figure 5. Metabolic Analysis of RCC Histologic Subtypes
(A) Schematic of metabolic pathway genes selected for metabolic analysis.

(B) Heatmap representation of the comparison of mRNA expression signatures for the selected metabolic processes between the different histologic RCC
subtypes (ccRCC, green; type 1 PRCC, light blue; type 2 PRCC, orange; Unc. PRCC, gray; CIMP-RCC, red; ChRCC, purple). Tumor stage (stage I, light green;
stage I, yellow; stage Ill, orange; stage IV, red) and vital status (alive, white; deceased, black) are indicated above the heatmap.

(C) Comparative expression of the ribose sugar metabolism signature between the different histologic RCC (ccRCC, green; ccRCC stage I/ll, dark blue; ccRCC
stage IlIl/IV, dark red; type 1 PRCC, light blue; type 2 PRCC, orange; Unc. PRCC, gray; CIMP-RCC, red; ChRCC, purple).

(D) Differences in patient overall survival within ccRCC dependent upon expression of the ribose sugar metabolism signature (log-rank p value).

(E) Comparative expression of the Krebs cycle, ETC Complex lll, AMPK, and ribose sugar metabolism gene signatures between ChRCC and metabolically

divergent (MD) ChRCC (ChRCC, purple; MD-ChRCC, pink).

(F) Differences in patient overall survival between ChRCC and MD-ChRCC (log-rank p value).

histologic subtypes (Figure 5E). These metabolically divergent
(MD) ChRCC were high stage (stage Il or IV), demonstrated
the hypermethylation pattern described above, lacked the chro-
mosomal copy number losses normally associated with ChRCC,
and were associated with much poorer survival in comparison to
other ChRCC (p < 0.0001) (Figures 5F and S5A). Four of the six
MD-ChRCC were found to have sarcomatoid de-differentiation
(Figure S5B). Several of these MD-ChRCCs were initially mis-
identified as ccRCC and then re-assigned after a pathology
review by urologic pathology experts, reflecting their unusual
pathology.
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Immune Signature Analysis

An increased immune cell infiltrate gene expression signature in
ccRCC in comparison to PRCC and ChRCC has been elucidated
by several studies, including importance of single gene markers
such as PDCD1 (PD1) and CD247 (PDL1) (Chen et al., 2016;
Geissler et al.,, 2015). Analysis using a refined immune cell
gene-specific signatures (Table S4) confirmed that, with the
exception of the Th17, IL-8, and CD56°"9" NK cell gene signa-
tures, there was nearly universal upregulation of these immune
signatures in ccRCC compared to the PRCC or ChRCC (Figures
6A and S6A). The T helper 17 cell (Th17) gene signature had
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Figure 6. Immune Signature Analysis
(A) Supervised clustering of immune gene signature (IGS) expression by individual sample (left) or mean IGS expression (right) for the different histologic RCC

subtypes (ccRCC, green; PRCC, blue; ChRCC, purple).
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increased expression in ChRCC, while the IL-8 and CD56P"9"
NK cell gene signatures had increased expression in PRCC.
Separation of the PRCC tumors highlighted distinct differences
in the CIMP-RCC compared to the remaining PRCC, including
increased expression of the Th2, activated dendritic cell (aDC),
plasmacytoid dendritic cell (pDC), and Mast cell gene signa-
tures, that produced a profile more similar to ccRCC (Figures
6B and S6B). T cell receptor (TCR) profiling used to identify
TCR clonotype expression within the cohort demonstrated pat-
terns of subtype-specific TCR clonotype expression suggesting
variation in T cell response between ccRCC, PRCC, and ChRCC
tumors (Figure S6C). In accordance with previous findings, gene
signatures correlated with reduced survival, including signatures
that represented T cells, B cells, macrophages, dendritic cells,
and NK cells (Figure S6D). The T helper 2 cell (Th2) gene signa-
ture was increased in most ccRCC, all CIMP-RCC, and in outliers
of the ChRCC, with six of the top seven Th2 gene signature
scores within the ChRCC tumors representing the aggressive
MD-ChRCC tumors (Figure 6B). Notably, an increased Th2
gene signature represented the only biomarker that correlated
with poor survival when evaluated within each major histologic
subtype, ccRCC (p = 0.0001), PRCC (p = 0.0002), and ChRCC
(p = 0.0284) (Figure 6C). Subtype separation of the PRCC
demonstrated that this correlation was present only in PRCC
type 2 (p = 0.0089) (Figure 6C). Expression of the Th17 gene
signature was associated with increased survival in ccRCC
(p = 0.0021), with additional positive correlation in ChRCC (p =
0.0362) (Figure S6E).

DISCUSSION

The importance of identifying and differentiating the subtypes
and even rare variants of renal cell carcinoma (RCC) is critical
for management and treatment of patients affected with this dis-
ease. Although histologic subtyping divides tumors into distinct
RCC groups, it is limited in its ability to provide in-depth analysis
of mechanisms that produce these differences. In the present
study, comprehensive genetic and genomic analysis demon-
strated that different histologically defined RCC subtypes are
characterized by distinctive mutations, chromosomal copy num-
ber alterations, and expression patterns of mMRNA, miRNA, and
IncRNA, and that the combination of histology plus genomics
provides unique insight into patient-centered management.
These combined differentiating features, obtained via a tumor
or liquid biopsy, provide invaluable information and prognostic
biomarkers to guide clinical and surgical management.

While this study characterizes the differences between the
major RCC histologic subtypes, shared features within the
RCC subtypes may also provide more universal prognostic
markers and targets for therapy. The loss of CDKN2A, which en-
codes p16, by either gene deletion, promoter hypermethylation,
or mutation, found in 16% of RCC, correlated with poor survival
in ccRCC, PRCC, and ChRCC. Loss of CDKN2A is known to
correlate with poor outcome in ccRCC, PRCC, and other cancer
types, but this demonstrates that it is a universal feature of RCC
and is potentially targetable with CDK4/6 inhibitors that target
the downstream effects of p16 loss (Hamilton and Infante,
2016). Increased promoter hypermethylation also was found to
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be associated with decreased survival in ccRCC, PRCC, and
ChRCC. Previous studies have shown increased levels of DNA
hypermethylation correlating with poorer outcome that was
limited to ccRCC and PRCC without identifying potentially
impacted pathways (Cancer Genome Atlas Research Network,
2013; Cancer Genome Atlas Research Network et al., 2016;
Chen et al., 2016). This study highlighted hypermethylation of
WNT pathway regulatory genes and demonstrated that analysis
of hypermethylation in two specific WNT regulatory genes,
SFRP1 and DKK1, recapitulated the correlation with decreased
survival in ccRCC, PRCC, and ChRCC. Increased DNA methyl-
ation was associated with SETD2 mutation, which is known to
alter DNA methylation patterns (Tiedemann et al., 2016), in
ccRCC and PRCC, and increased DNA methylation was similarly
associated with PBRM1 mutation in PRCC. Hypermethylation of
SFRP1 and DKK1 could provide a prognostic biomarker for RCC
and has been previously proposed in ccRCC (Hirata et al., 2011;
Ricketts et al., 2014; Urakami et al., 2006). This suggests that
treatment with de-methylating agents could be beneficial in pa-
tients with increased levels of promoter hypermethylation.

This study also demonstrated features that were shared by
some RCC subtypes, but not all, and underlines the importance
of evaluating these alterations within each RCC subtype as well
as across all subtypes. Previous studies using TCGA data and
other cohorts have shown that BAP1 mutation, but not PBRM1
mutation, correlates with poor survival in ccRCC and these
correlations were confirmed in a mixed cohort of ccRCC and
PRCC TCGA tumors (Chen et al., 2016; Hakimi et al., 2013; Ka-
pur et al., 2013). By analysis of the histologic subtype of RCC,
we confirmed these correlations in ccRCC and showed that
while BAP1 mutations did not correlate with survival in PRCC,
PBRM1 mutations did associate with poor survival in type 1
PRCC.

Assessment of the RCC metabolic states within RCC revealed
significant metabolic alterations. High ribose metabolism gene
expression was present in both ccRCC and CIMP-RCC, with
CIMP-RCC showing the greatest expression, likely due to the
increased production of NADPH counteracting the cellular stress
induced by the loss of fumarate hydratase in these tumors (Ooi
et al., 2011; Patra and Hay, 2014; Sourbier et al., 2014). Type 2
PRCC had increased expression of the glycolysis, ribose meta-
bolism, and Krebs cycle genes in comparison to type 1 PRCC,
suggesting a more metabolically active tumor, consistent with
its more aggressive nature. Increased expression of the ribose
metabolism genes correlated with poor survival in both ccRCC
and PRCC. These findings suggest that targeting the ribose
metabolism pathway could be a potential therapeutic approach
in ccRCC, type 2 PRCC, and CIMP-RCC.

The immune expression signature is an increasingly important
feature of ccRCC, given the recent introduction of checkpoint in-
hibitor therapy (Lee and Motzer, 2016; Motzer et al., 2015), and
patterns of immune infiltration in RCC have been observed in
several studies (Chen et al., 2016; Geissler et al., 2015). The
role of this feature in determining the therapeutic responsiveness
of ccRCC will be important in future therapeutic planning. A
recent study using TCGA RCC data demonstrated that differ-
ences in expression in specific checkpoint-related genes, such
as PDCD1 (PD1) and CD247 (PDL1), correlated with patient



survival within ccRCC cases (Chen et al., 2016). While we
observed the same general pattern as previously seen with
PRCC overall demonstrating little expression of the immune
signature associated with ccRCC, we found CIMP-RCC to
have an increased immune signature expression for select im-
mune gene signatures, including the Th2 gene signature, like
that seen in ccRCC. This suggests this most aggressive type
of RCC, CIMP-RCC, may benefit from checkpoint inhibitor ther-
apy in a similar manner to ccRCC. Although the Th2 gene signa-
ture was considerably higher in ccRCC and CIMP-RCC tumors
compared to other tumor subtypes, the relative levels of Th2
gene signature within each major RCC histologic subtype corre-
lated with poor patient survival, as had been previously observed
in ccRCC (Senbabaoglu et al., 2016). This suggests that once
expression ranges are defined for each subtype, this Th2 gene
signature could provide a useful prognostic marker for all RCC
subtypes.

While the current study confirmed the previous finding of
CIMP-RCC as a specific PRCC subtype, in this analysis we
identified a subset of metabolically divergent (MD) ChRCC
that also demonstrated a uniform and distinct metabolic
expression pattern associated with extremely poor survival.
The MD-ChRCC had decreased Krebs cycle, ETC, and AMPK
gene expression and increased ribose metabolism gene
expression similar to higher-stage ccRCCs. All the MD-ChRCC
were high stage and generally lacked the classic ChRCC-asso-
ciated pattern of chromosomal loss, and most demonstrated
sarcomatoid differentiation. A recent study has also shown a
correlation between the absence of the classical ChRCC chro-
mosome loss and aggressive, high-grade, metastatic ChRCC
(Casuscelli et al., 2017). Many of these MD-ChRCC features
are represented in a recently characterized sarcomatoid
ChRCC-derived cell line that could provide a model for further
investigation of these tumors (Yang et al., 2017). The combina-
tion of histopathology and expression analysis may provide a
definitive classification for ChRCC and enable the identification
of aggressive variants that may require alternative management
and therapy, including the potential for adjuvant therapy.

Understanding the molecular and genetic features that char-
acterize the RCC subtypes will provide the foundation for the
development of improved methods for both clinical and surgical
management and therapies to treat this disease. Besides identi-
fying discrete genomic characteristics that are critical for the un-
derstanding of individual RCC subtypes, we have identified uni-
fying features, such as the effect of the Th2 immune gene
signature on survival, which cross disease subtypes and which
will help provide the foundation for the development of effective
forms of therapy for patients with advanced disease.
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KEY RESOURCES TABLE

REAGENT or RESOURCE

SOURCE

IDENTIFIER

Biological samples

Primary tumor samples

Multiple tissue source sites, processed
through the Biospecimen Core Resource

See Biospecimen Acquisition in
EXPERIMENTAL MODEL AND SUBJECT
DETAILS

Critical Commercial Assays

Genome-Wide Human SNP Array 6.0

Infinium HumanMethylation450
BeadChip Kit

lllumina Barcoded Paired-End Library
Preparation Kit

TruSeq RNA Library Prep Kit
TruSeq PE Cluster Generation Kit

ThermoFisher Scientific
lllumina

lllumina

lllumina

lllumina

Cat: 901153
Cat: WG-314-1002

https://www.illumina.com/techniques/
sequencing/ngs-library-prep.html

Cat: RS-122-2001

Cat: PE-401-3001

Deposited Data

Raw and processed clinical, array and
sequence data.

Processed RNA sequence data
Digital pathology images

Genomic Data Commons

Gene Expression Omnibus
Cancer Digital Slide Archive

https://portal.gdc.cancer.gov/
legacy-archive

https://www.ncbi.nlm.nih.gov/geo/

http://cancer.digitalslidearchive.net/

Software and Algorithms

ConsensusClusterPlus

Cufflinks
DESeq?2 package

Genome Analysis Toolkit
GSNAP

MiXCR v1.7.1

MuTect

MUSE

Pindel

MUSCLEt
MtoolBox
Radia
samr

Samtools
Somatic Sniper

Wilkerson and Hayes, 2010

Trapnell et al., 2013
Love et al., 2014

McKenna et al., 2010
Wu and Watanabe, 2005
Bolotin et al., 2013
Cibulskis et al., 2013

Fan et al., 2016

Ye et al., 2009

Edgar, 2004

Calabrese et al., 2014
Radenbaugh et al., 2014
Li and Tibshirani, 2013

Li et al., 2009
Larson et al., 2012

http://bioconductor.org/packages/release/
bioc/html/ConsensusClusterPlus.html

https://cole-trapnell-lab.github.io/cufflinks/

https://bioconductor.org/packages/
release/bioc/html/DESeqg2.html

https://software.broadinstitute.org/gatk/
http://research-pub.gene.com/gmap/
https://mixcr.readthedocs.io/en/latest/

http://archive.broadinstitute.org/cancer/
cga/mutect

http://bioinformatics.mdanderson.org/
main/MuSE

http://gmt.genome.wustl.edu/packages/
pindel/index.html

http://www.drive5.com/muscle/
https://sourceforge.net/projects/mtoolbox/
https://github.com/aradenbaugh/radia

https://cran.r-project.org/web/packages/
samr

http://samtools.sourceforge.net/

http://gmt.genome.wustl.edu/packages/
somatic-sniper/

STAR Dobin et al., 2013 https://github.com/alexdobin/STAR

VarScan2 Koboldt et al., 2012 http://varscan.sourceforge.net/

WGCNA package Langfelder and Horvath, 2008 https://labs.genetics.ucla.edu/horvath/
CoexpressionNetwork/Rpackages/
WGCNA/

Other

Firehose, FireBrowse

The Broad Institute, Cambridge MA

https://gdac.broadinstitute.org/, http://
firebrowse.org/
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact,
Dr. W. Marston Linehan (WML@nih.gov).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Biospecimen Acquisition

All biospecimens were acquired by the Cancer Genome Atlas (TCGA) Resource Network. Surgically resected tumor specimens were
collected from patients diagnosed with renal cell carcinoma (RCC) that had preferably not received any prior treatment for their dis-
ease, such as chemotherapy or radiotherapy. Individual institutional review boards at each tissue source site reviewed the protocols
and consent documentation and approved the submission of cases to TCGA. All tumors were staged per the American Joint Com-
mittee on Cancer (AJCC) and each primary tumor specimen had a matched normal tissue specimen. The tissue source sites for the
Cancer Genome Atlas Research Network are listed in the Cancer Genome Atlas Research Network author list for this project.

The initial 894 samples of kidney cancer that were submitted to TCGA were re-evaluated by a panel of expert pathologists that
excluded several samples due to inconsistent or incorrect histologic classification or therapy prior to sample collection. This ac-
counts for the variation in samples compared to the previous Chen et al. study (Chen et al., 2016). The approved 843 tumors
were subdivided by histologic subtype into 6 groups consisting of 488 clear cell (cc)RCC, 160 Type 1 papillary (P)RCC, 70 Type 2
PRCC, 34 unclassified PRCC, 10 CpG island methylator phenotype-associated (CIMP-)RCC, and 81 chromophobe (Ch)RCC based
on the original pathology reports or re-evaluation by a panel of expert urologic pathologists. Six hundred and ninety-three of the tu-
mors had been analyzed in the three individual TCGA marker papers. The clinical and genetic characteristics of these patients are
described in Table S1 in the Supplementary Appendix.

METHOD DETAILS

Somatic Exome Mutation Analysis

Somatic exome sequencing data was available and downloaded for 804 of the 843 pan-kidney tumors representing 463 ccRCC, 266
PRCC, 74 ChRCC. The tumors with sequencing data are designated within Table S1 and all data is accessible via the NCI genome
data commons (https://gdc.cancer.gov/).

A combined MAF (Mutation Annotation Format) file for all samples was produced by extracting the relevant sample data from the
TCGA unified ensemble “MC3” call set and supplementing this with data from the original three TCGA KIRC, KICH, and KIRP pub-
lication for samples not present in the TCGA MC3 dataset. The TCGA unified ensemble “Multi-Center Mutation Calling in Multiple
Cancers” (“MC3'”) call set is the public, open-access, dataset of somatic mutation calls (SNVs and indels) produced as part of
the capstone project using all available of cases within TCGA using six different algorithms (MuTect, MuSE, Pindel, Somatic Sniper,
VarScan2 and Radia) from four centers (Cibulskis et al., 2013; Fan et al., 2016; Koboldt et al., 2012; Larson et al., 2012; Radenbaugh
et al., 2014; Ye et al., 2009).

The significantly mutated genes (SMGs) that had been previously identified by the MutSigCV algorithm in the previous TCGA KIRC,
KICH, and KIRP publications were used as the reference SMGs when evaluating the entire pan-kidney dataset. Pathway analysis for
the HIF pathway, HIPPO pathway, NRF2/ARE pathway, PISK/AKT pathway and the chromatin remodeling pathways was performed
using gene lists described in Table S2. The pathway analysis involving genes known to be activated in cancer, such as MTOR,
PIK3CA, and NFE2L2, were limited to missense mutations only.

SNP Array-Based Copy Number Analysis

The gene level copy number data (focal_data_by_genes) generated by Affymetrix SNP 6.0 arrays using protocols at the Genome
Analysis Platform of the Broad Institute (McCarroll et al., 2008) was available for 832 of the 843 pan-kidney tumors representing
481 ccRCC, 271 PRCC, and 80 ChRCC. Tumors with copy number data are designated within Table S1 and all data is accessible
via the NCI genome data commons (https://gdc.cancer.gov/). Estimates for gross chromosomal arm gain or loss were produced
by averaging the copy number values for all genes within each region. Average values greater than 0.3 were considered chromosomal
gain and average values less than —0.3 were considered chromosomal loss. For individual gene copy number analysis, such as
CDKN2A loss, copy number values of less than —0.4 were considered to represent deletion.

RNA Expression Data Analysis

The level 3 RNA-Seq upper quartile normalized RSEM data was available for 839 of the 843 pan-kidney tumors representing 485
ccRCC, 273 PRCC, and 81 ChRCC. Tumors with RNA-seq data are designated within Table S1 and all data is accessible via the
NCI genome data commons and the Gene Expression Omnibus (https://gdc.cancer.gov/ and https://www.ncbi.nlm.nih.gov/geo/).
Analysis of the RNA data was split into miRNA analysis, INcRNA analysis, mRNA signature analysis, and immune gene signature
analysis.
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mRNA Signature Analysis

Raw count data for each sample included was obtained from Gene Expression Omnibus (GSE62944) (Rahman et al., 2015). All sub-
sequent analyses were performed in R open source programming language. For differential expression analysis, RPKM values were
calculated from RNaseq raw counts and upper quantile normalized. For hierarchical clustering and WGCNA, raw count data were
processed and normalized using the variance stabilizing transformation (VST) algorithm implemented by the DESeq2 package
(Love et al., 2014).

Scale-free weighted signed gene co-expression networks were constructed by the WGCNA package (Langfelder and Horvath,
2008). Using the top 11000 varying genes according to their standard deviation, WGCNA was restricted to the 9000 most connected
genes. First, a pairwise gene correlation matrix was calculated with a Pearson correlation analysis, which was transformed into a
weighted matrix to produce an adjacency matrix after raising values by an exponent beta (8 = 16). Then the adjacency was trans-
formed into a topological overlap matrix (TOM). The dynamic tree cut method was used for module identification from the hierarchical
clustering of genes using 1-TOM as the distance measure with a deepSplit value of 2 and a minimum size cutoff of 50 genes. Highly
similar modules were identified by clustering and then merged together with a height cut-off of 0.2. Finally, modules and their relation-
ship to clinical traits were identified using Pearson correlation analysis between the modules and external traits. Functional annota-
tion of identified modules was performed using tools provided by the WGCNA package.

Kmeans consensus clustering was performed using ConsensusClusterPlus package (Wilkerson and Hayes, 2010). The K-value of
6 was selected according to the consensus cumulative distribution function, where K > 6 did not produce any appreciable increase in
consensus (Monti et al., 2003; Wilkerson and Hayes, 2010). Hierarchical unsupervised cluster analysis was performed using 7738
genes pertaining to selected WGCNA modules (see Figure 4 for modules). Hierarchical clustering was performed using average link-
age of Euclidean distance.

Non-coding RNA (IncRNA and miRNA) Sequencing and Analysis

mRNA sequence reads were aligned to the human reference genome (hg38) and transcriptome (Ensembl v82, September 2015) us-
ing STAR 2.4.2a (Dobin et al., 2013). STAR was run with the following parameters: minimum / maximum intron sizes were set to 30 and
500,000, respectively; noncanonical, unannotated junctions were removed; maximum tolerated mismatches was set to 10; and the
outSAMstrandField intron motif option was enabled. The Cuffquant command included with Cufflinks 2.2.1 (Trapnell et al., 2013) was
used to quantify the read abundances per sample, with fragment bias correction and multiread correction enabled, and all other op-
tions set to default. To calculate normalized abundance as fragments per kilobase of exon per million fragments mapped (FPKM), the
Cuffnorm command was used with default parameters. From the FPKM matrix for the 80 tumor samples, we extracted 8167 genes
with “lincRNA” and “processed_transcript” Ensembl biotypes.

From the matrix of 8167 IncRNAs (above), we extracted FPKM profiles for 499 IncRNAs that were robustly expressed (mean
FPKM > 1) and highly variable (>92.5th FPKM variance percentile) across the n = 833 primary tumor cohort. We identified
groups of samples with similar expression profiles by unsupervised consensus clustering with ConsensusClusterPlus (CCP)
1.20.0 (Wilkerson and Hayes, 2010). Calculations were performed using Pearson correlations, partitioning around medoids
(PAM), a gene fraction of 0.95, and 200 iterations. It was anticipated that a hierarchically-related series of finer-grained and
coarser-grained sets of subtypes may be available from a clustering analysis, that a particular clustering solution (i.e., number
of subtypes) from such a series may be a more informative choice for a particular question and context, and that results from
multiple data types may need to be considered in order to identify a clustering solution to report on because it is effective in
contributing to the overall insights (Aine et al., 2015; Ronan et al., 2016). A consensus clustering solution for INcRNAs was
selected by initially considering information for different numbers of clusters and for a range of clustering approaches. The re-
ported clustering solution considered four main factors: a) the consensus membership heatmaps and dendrograms; b) the ‘delta’
plot showing how the area under the cumulative distribution function of consensus membership values increases as the numbers
of clusters increases; c) the profile of silhouette width calculated from the consensus memberships, which we take as a measure
of typical versus atypical cluster membership; and d) how KIRC, KIRP Type 1 and 2, and KICH samples were separated and sub-
divided by the clusters. Thus, we selected an 8-cluster solution after assessing consensus membership heatmaps, dendrograms,
and CCP clustering metrics for up to 10 clusters. To visualize typical versus atypical cluster members, we used the R cluster
package to calculate a profile of silhouette widths (W) from the consensus membership matrix. To generate an abundance
heatmap for the 8-cluster result, used the pheatmap R package (v1.0.2). We ordered the columns to correspond to the above
consensus clustering result. We manually transferred the upper dendrogram graphic from the consensus result to the heatmap
graphic that we were generating. For the rows, we identified a subset of IncRNAs that had a mean FPKM > 10 and a SAM multi-
class (samr 2.0) (Li and Tibshirani, 2013) g value of 0.0 across the clusters (see differential abundance, below), transformed the
FPKM matrix by log1o(FPKM + 1), then, in pheatmap, scaled the rows and clustered them with a Pearson distance metric and
Ward clustering.

We compared unsupervised clusters to clinical and molecular covariates by calculating contingency table association p values
using R, with a Chi-square or Fisher exact test for categorical data, and a Kruskal-Wallis test for real-valued data.

We generated miRNA sequencing (miRNA-seq) data from messenger RNA-depleted RNA, as describe in (Chu et al., 2016).
Briefly, we aligned ~22-nt reads to the GRCh37/hg19 reference human genome, assigned read count abundances to miRBase
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v16 stem-loops and 5p and 3p mature strands, and assigned miRBase v20 mature strand names to MIMAT accession IDs. Note that
while we used only reads with exact-match alignments in calculating miRNA abundances, BAM files available from the Genomics
Data Commons (https://gdc.cancer.gov/) include all sequence reads.

For miRNA, mature strand (miR) sequencing data for n = 811 primary tumors, we extracted normalized abundance (RPM) data
matrices for ccRCC (n = 457), PRCC (n = 274), and ChRCC (n = 80, which included n = 65 KICH and n = 15 that were originally
part of the KIRC cohort). From RPM data matrices for the 457, 274 and 65 original samples respectively, we identified the
304 miRs that were the most-variant 25% (of 1214 miRBase v16 strands) for each cohort. Combining the three lists gave 369 unique
miR names. In a batch-corrected data matrix containing 743 miRs and 9,555 primary tumor samples (of 10,825 total samples), 367 of
the 369 miRs were available, and we generated a batch-corrected data matrix with 367 miR and 811 primary tumor samples that was
the input to unsupervised clustering.

Using ConsensusClusterPlus v1.40.0 we assessed consensus membership heatmaps and other metrics for six approaches, using
Pearson or Spearman correlations as distance metrics, and hierarchical, partitioning around meoids (PAM) or k-means clustering. For
each approach, we assessed solutions with between two and nine clusters. We report on a 6-cluster solution for Spearman corre-
lations, PAM clustering, and 1000 iterations with a random mature-strand fraction of 0.85 for each iteration. We used a similar selec-
tion methodology for the 6-cluster solution as was described above for the IncRNAs.

We used an approach similar to that described above for IncRNAs to generate a clustering heatmap for miRNAs. We first identified
miRNAs that were differentially abundant between the unsupervised miRNA clusters using a SAM multiclass analysis (samr 2.0)
(Li and Tibshirani, 2013) in R, with the 367-x-811 RPM input data matrix, 1000 permutations, no array centering, a Wilcoxon test sta-
tistic, and an FDR threshold of 0.05. For the heatmap we used miRNAs that had larger SAMseq scores and g-values of 0.0. We or-
dered the data matrix columns to match the clustering result, manually transferred over the upper dendrogram from the consensus
clustering graphic, then transformed each row of the matrix by log;o(RPM+1) and used the pheatmap R package (v1.0.2) to scale and
cluster only the rows.

We generated a Kaplan-Meier plot for the miRNA clusters using the R survival package v2-41.3. We compared unsupervised clus-
ters to clinical and molecular covariates by calculating contingency table association p values using R, with a Chi-square or Fisher
exact test for categorical data, and a Kruskal-Wallis test for real-valued data.

Immune Gene Signature Analysis

Immune gene signatures were derived from previously published works (Beck et al., 2009; Bindea et al., 2013; Fan et al., 2011; Iglesia
et al., 2014; Kardos et al., 2016; Palmer et al., 2006; Rody et al., 2009; Rody et al., 2011; Schmidt et al., 2008; Teschendorff et al.,
2007). RSEM upper quartile normalized, log-2 transformed, and mean centered RNA-seq data was matched to predefined immune
gene signature clusters via Entrez IDs. Each gene signature was calculated as the average value of all genes included in the signature
(Table S4). Differential expression for each gene signature was analyzed between kidney cancer types and subtypes via one-way
ANOVA. These p values were adjusted for multiple testing using the Benjamini-Hochberg procedure. For hazard ratio forest plots,
univariate Cox proportional hazards (CoxPH) model was used with signature/clinical variable as a continuous variable compared
to patient overall survival. T cell receptor repertoire analysis was performed using MiXCR v1.7.1 on default alignment and assemble
settings (Bolotin et al., 2013). Diversity measurements were analyzed between kidney cancer types and subtypes via Mann-Whitney
U-test.

DNA Methylation Analysis

Two generations of lllumina Infinium DNA Methylation BeadArrays, including the HumanMethylation27 (HM27) and
HumanMethylation450 (HM450) arrays, were used to assay 824 pan-kidney tumors (65 KICH, 485 KIRC and 274 KIRP)
and 392 normal kidney samples in total (Table S1). All data is available from the NCI genome data commons (https://gdc.
cancer.gov/).

Data from HM27 and HM450 were combined and further normalized using a probe-by-probe proportional rescaling method to
yield acommon set of 22,601 probes with comparative methylation levels between the two platforms, as described in details on Syn-
apse (Syn7073804). Briefly, we rescaled data on HM27 based on between-platform difference measured by technical replicates.
Probes were further filtered based on 34 technical replicates measured together with the KIRC samples by removing those showing
a standard deviation of 0.05 or above. Unsupervised clustering was performed based on cancer-specific autosomal loci, which were
defined as unmethylated probes in all normal tissue types as well as sorted blood populations (mean beta value < 0.2), but methylated
(beta value > 0.3) in more than 5% samples within any of the kidney tumor type (for tumor type with less than 100 samples, we require
the portion of methylated samples to be greater than 10% instead). To minimize the influence of tumor purity, we dichotomize the
methylation data into 0’s and 1’s with a beta value cut off of 0.3, and used Ward’s method to cluster the distance matrix computed
with the Jaccard Index. Heatmaps were generated based on row and column orders calculated as above and colored by dichoto-
mized beta values.

The DNA methylation level as interrogated by cg07684796, cg15839448 was used for DKK1, and SFRP1, respectively, with a beta
value of 0.3 or more considered evidence for epigenetic silencing.

e4 Cell Reports 23, 313-326.e1-e5, April 3, 2018


https://gdc.cancer.gov/
https://gdc.cancer.gov/
https://gdc.cancer.gov/

Survival Analysis

The Kaplan-Meier method was used to generate curves for overall survival and the Log-rank test was used to assess the univariate
survival differences with no correction for multiple testing, unless otherwise stated in specific analyses. Overall survival was defined
as the time from the nephrectomy to death of any cause.

mtDNA Sequence and Copy Number Analysis

Whole exome sequencing (WXS) BAM files, sequenced at BCM Sequencing Center, were obtained for 66 ChRCC, 153 ccRCC, and
128 PRCC tumor samples and corresponding blood or normal tissue DNA. BAM files were used as input of the MToolBox pipeline,
that includes GSNAP, MUSCLE, and SAMtools, to align reads to the Revised Cambridge Reference Sequence (rCRS) for human
mitochondrial DNA, extract variant alleles, quantify their heteroplasmy levels and related confidence intervals, and obtain functional
annotation of the identified variants.(Calabrese et al., 2014; Edgar, 2004; Li et al., 2009; Wu and Watanabe, 2005) Samples
with > 75% mtDNA sequence coverage in Tumor and Normal DNA and variants with > 5% mutation load were considered for further
analysis (61 ChRCC, 66 ccRCC, and 99 PRCC). Variant tables from tumor and corresponding normal DNA were compared to deter-
mine somatic mutations, which were then classified according to criteria outlined in Figure S2F.

The mtDNA copy number (m) was calculated for samples with mtDNA sequence data as the ratio of the number of sequencing
reads aligning to the mitochondrial genome (r,,) and the nuclear genome (r,,) according to the following formula: m =r,/r, X R. Correc-
tion for tumor ploidy and purity (R) was calculated as Rrymor = (Purity X Ploidy+(1—Purity) x 2)/2. Allele-specific copy number and
estimates of tumor ploidy and purity were calculated with ASCAT (Reznik et al., 2016; Reznik et al., 2017; Van Loo et al., 2010) using
matched Affymetrix SNP6 array data from tumor and normal tissue. Batch effect on exome enrichment was corrected for by applying
a linear model that accounted for plate and center IDs as well as tissue type.

QUANTIFICATION AND STATISTICAL ANALYSIS

For all analyses, significance was determined as a p value < 0.05 and corrected for multiple testing where specified. Univariate anal-
ysis was performed unless otherwise specified. Survival analyses were performed using GraphPad Prism® (GraphPad Software,
Inc.) or by individually specified methodologies. In all cases the “n” represents individual patients from which a single tumor was
evaluated.

DATA AND SOFTWARE AVAILABILITY
Raw and processed clinical, array and sequence data are all available via the Genomic Data Commons download portal (https://

portal.gdc.cancer.gov) or Gene Expression Omnibus (https://www.ncbi.nim.nih.gov/geo/ - GSE62944) and the digital pathology im-
ages are all available from the Cancer Digital Slide Archive (http://cancer.digitalslidearchive.net/)
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