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Integrated genomic and molecular
characterization of cervical cancer

The Cancer Genome Atlas Research Network?*

Cervical cancer remains one of the leading causes of cancer-related deaths worldwide. Here we report the extensive
molecular characterization of 228 primary cervical cancers, one of the largest comprehensive genomic studies of cervical
cancer to date. We observed notable APOBEC mutagenesis patterns and identified SHKBP1, ERBB3, CASP8, HLA-A and
TGFBR2 as novel significantly mutated genes in cervical cancer. We also discovered amplifications in immune targets
CD274 (also known as PD-L1) and PDCDILG2 (also known as PD-12), and the BCAR4 long non-coding RNA, which has
been associated with response to lapatinib. Integration of human papilloma virus (HPV) was observed in all HPV18-related
samples and 76 % of HPV16-related samples, and was associated with structural aberrations and increased target-gene
expression. We identified a unique set of endometrial-like cervical cancers, comprised predominantly of HPV-negative
tumours with relatively high frequencies of KRAS, ARIDIA and PTEN mutations. Integrative clustering of 178 samples
identified keratin-low squamous, keratin-high squamous and adenocarcinoma-rich subgroups. These molecular analyses

reveal new potential therapeutic targets for cervical cancers.

Cervical cancer accounts for 528,000 new cases and 266,000 deaths
worldwide each year, more than any other gynaecological tumour'.
Ninety-five per cent of cases are caused by persistent infections with
carcinogenic HPVs? Effective prophylactic vaccines against the most
important carcinogenic HPV types are available, but the number of
people receiving the vaccine remains low. Although early cervical
cancer can be treated with surgery or radiation, metastatic cervical
cancer is incurable and new therapeutic approaches are needed”.

While most HPV infections are cleared within months, some persist
and express viral oncogenes that inactivate p53 and RB, leading to
increased genomic instability, accumulation of somatic mutations,
and in some cases, integration of HPV into the host genome®. The
association with cancer risk and histological subtypes varies sub-
stantially among carcinogenic HPV types, but the reasons for these
differences are poorly understood. Furthermore, clinically relevant
subgroups of cervical cancer patients have yet to be identified. Here
we present a comprehensive study of invasive cervical cancer conducted
as part of The Cancer Genome Atlas (TCGA) project, with a focus on
identifying novel clinical and molecular associations as well as func-
tionally altered signalling pathways that may drive tumorigenesis and
serve as prognostic or therapeutic markers.

Samples and clinical data

Primary frozen tumour tissue and blood were obtained from women
with cervical cancer who had not received prior chemotherapy or radio-
therapy (Supplementary Information 1 and Supplementary Tables 1, 2).
DNA, RNA and protein were processed as previously described®
(Supplementary Information 1, 3, 5 and 8). Mutations were called
for 192 samples (the extended set), while all other platform (aside
from protein) and integrated analyses were performed on a subset of
178 samples (the core set). Protein levels were measured on 155 samples
(119 samples from both the core and extended sets plus 36 additional
samples). The total number of non-overlapping samples in these three
sets was 228 (Extended Data Fig. 1a). Of the 178 core-set samples,
surgery was the primary treatment in 121 cases, median follow-up time
was 17 months, and 145 patients were alive at the time of last follow-up.
A committee of expert gynaecological pathologists reviewed most cases

(Supplementary Information 1 and Extended Data Fig. 1b-g). The core
set included 144 squamous cell carcinomas, 31 adenocarcinomas and
3 adenosquamous cancers.

Somatic genomic alterations

Whole-exome sequencing was performed on 192 extended-set tumour—
blood pairs. All samples had at least 32 Mb of target exons covered
with a median depth of 49 x (range: 7-351 x) for tumour samples and
47 x (range: 9-341x) for normal samples. Collectively, the samples
contained 43,324 somatic mutations, including 24,551 missense, 2,470
nonsense, 9,260 silent, 5,841 non-coding, 535 splice-site, 74 non-stop
mutations, 475 frameshift insertions and deletions (indels) and 118
in-frame indels. Eleven tumours with outlier mutation frequencies
(>600 per sample) were classified as ‘hypermutant’ The aggregate
mutation density was 4.04 mutations per Mb across all tumours, and
2.53 when the hypermutant tumours were excluded.

Fourteen genes that are significantly mutated (SMGs) with false-
discovery rates (FDR) < 0.1 were found using the MutSig2CV®
algorithm (Supplementary Table 4). We identified SHKBP1, ERBB3,
CASPS8, HLA-A and TGFBR2 as novel SMGs in cervical cancer, and
confirmed that PIK3CA, EP300, FBXW?7, HLA-B, PTEN, NFE2L2,
ARIDIA, KRAS and MAPK1 are SMGs, as previously reported”® (Fig. 1,
Extended Data Fig. 2a-g and Supplementary Fig. 6). Supplementary
Table 4 shows the comparison of SMGs identified in the current
TCGA set and a previously published dataset®. Mutations in 7 of the
14 SMGs in the TCGA set were present in at least one squamous cell
carcinoma and one adenocarcinoma; however, mutations in HLA-A,
HLA-B, NFE2L2, MAPK1, CASP8, SHKBPI and TGFBR2 were found
exclusively in squamous tumours.

PIK3CA had mostly activating helical-domain E542K and E545K
mutations, with a marked relative decrease in mutations elsewhere in
the gene (Extended Data Fig. 2g). This observation resembles findings
in bladder cancer’ and HPV-positive head and neck squamous cell
cancers (HNSCs)'?, but it differs from observations in breast and
most other cancers!!. The underlying nucleotide substitution pattern
in the E542K and E545K mutations is associated with mutagenesis by
a subclass of APOBEC cytidine deaminases®!'>~!%, with 150 out of 192

*Lists of participants and their affiliations appear in the online version of the paper.
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Figure 1 | Somatic alterations in cervical cancer and associations with
molecular platform features. a-d, Cervical carcinoma samples ordered
by histology and mutation frequency (a), clinical and molecular platform
features (b), SMGs (c), and select somatic copy number alterations (d)
are presented. SMGs are ordered by the overall mutation frequency and
colour-coded by mutation type. Novel SMGs identified in squamous

cell carcinomas are labelled in turquoise text. The number of APOBEC

exomes displaying significant (g < 0.05) enrichment (up to sixfold) for
the APOBEC signature. Further, the APOBEC mutation load corre-
lated strongly with the total number of mutations per sample (Extended
Data Fig. 2h), suggesting that APOBEC mutagenesis is the predominant
source of mutations in cervical cancers.

We found an average of 88 somatic copy number alterations per
tumour, fewer than in HNSC, ovarian and serous endometrial carci-
nomas, but more than in endometrioid endometrial carcinomas'®¢17,
GISTIC2.0 analysis (with a threshold of g < 0.25) revealed 26 focal
amplifications and 37 focal deletions along with 23 recurrently altered
whole arms (Extended Data Fig. 3¢ and Supplementary Table 7). Novel
recurrent focal amplification events were identified (in genomic order)
at 7p11.2 (EGFR, 17%), 9p24.1 (CD274, PDCDILG2, 21%), 13q22.1
(KLF5, 18%) and 16p13.13 (BCAR4, 20%). Other previously reported
amplification events occurred at 3q26.31 (TERC, MECOM, 78%), 3q28
(TP63, 77%), 8q24.21 (MYC, PVTI, 42%), 11q22.1 (YAPI, BIRC2,
BIRC3, 17%), and 17q12 (ERBB2, 17%). Novel recurrent deletions
were identified at 3p24.1 (TGFBR2, 36%) and 18q21.2 (SMAD4, 28%),
in addition to previously identified deletions at 4q35.2 (FAT1, 36%)
and 10q23.31 (PTEN, 31%). A cluster with high copy number altera-
tions mostly contained squamous tumours with amplification events
involving 11q22 (YAPI, BIRC2, BIRC3) and 7p11.2 (EGFR), whereas
the cluster containing low copy number variations included most
adenocarcinomas and was enriched for tumours with deletions in
TGFBR2 and SMAD4, and gains in ERBB2 and KLF5 (Extended
Data Fig. 3a, b). Notably, both groups had amplifications involving
CD274 (PD-L1) and PDCD1LG2 (PD-L2) that correlated significantly
(P<0.0001) with expression of two key immune cytolytic effector
genes, granzyme A and perforin'® (Extended Data Fig. 3d). This high-
lights the potential of immunotherapeutic strategies for a subset of
cervical cancers.

Structural rearrangements were identified by analysis of RNA
sequencing (RNA-seq) (core set, n=178) and whole-genome
sequencing (WGS) data with low-pass (n=50) and deep (n=19)
coverage. Both RNA-seq and WGS detected 22 putative structural
rearrangements in 14 patients (Supplementary Table 8). In total, 26
recurrent fusions were found (Supplementary Table 9, with examples
in Extended Data Fig. 4d). RNA-seq analysis revealed four samples with
16p13 ZC3H7A-BCAR4 gene fusions, whereby exon 1 of ZC3H7A was

Gene-level SCNAs
signature mutations (red) and other mutations (blue) present in every
SMG is plotted to the right of the SMG panel and the number of gene-
level somatic copy number alterations across all genes is plotted as gain
(red) and loss (blue) to the right of the somatic copy number alteration
panel. CN, copy number; SCNAs, somatic copy number alterations;
Adeno., adenocarcinomas; Adenosq., adenosquamous cancers; Squamous,
squamous cell carcinomas.

linked to the last exon of BCAR4. WGS revealed tandem duplication
and copy number gain of BCAR4 on chromosome 16p13.13 (Extended
Data Fig. 4c). BCAR4 is a metastasis-promoting long non-coding RNA
that enhances cell proliferation in oestrogen-resistant breast cancer
by activating the HER2/HER3 pathway. Lapatinib, an EGFR/HER2
inhibitor, counteracts BCAR4-driven tumour growth in vitro, and
warrants evaluation as a possible therapeutic agent in BCAR4-positive

cervical cancer®.

Integrated analysis of molecular subgroups

Integration of copy number, methylation, mRNA and microRNA
(miRNA) data using iCluster®® highlighted the molecular heterogeneity
of cervical carcinomas. Three clusters were identified that largely
corresponded to mRNA clusters (Supplementary Fig. 9): a squamous
cluster with high expression of keratin gene family members
(keratin-high), another squamous cluster with lower expression of
keratin genes (keratin-low), and an adenocarcinoma-rich cluster
(adenocarcinoma). Keratin-high and keratin-low clusters included
133 out of 144 squamous cell carcinomas and the adenocarcinoma
cluster contained 29 out of 31 adenocarcinomas (Fig. 2). KRAS
(P=9.7x107%), ERBB3 (P=2.6 x 107%) and HLA-A (P=0.03)
mutations were significantly associated with clusters, whereby KRAS
mutations were absent from the keratin-high cluster and HLA-A muta-
tions were absent from the adenocarcinoma cluster (Fig. 2). Members
of the SPRR and TMPRSS cornification gene families and the SMGs
ARIDIA (P=0.02), NFE2L2 (P=6.9 x 10~°) and PIK3CA (P=0.01)
were differentially expressed between keratin-low and keratin-high
clusters (Extended Data Fig. 4b).

Unsupervised hierarchical clustering of variable DNA-methylation
probes produced three groups (Extended Data Fig. 5a), including a
small ‘CpG island hypermethylated” (CIMP-high) cluster, a CIMP-
intermediate cluster and a CIMP-low cluster that were associated
with an epithelial-mesenchymal transition (EMT) mRNA score!®*!
(Extended Data Fig. 5b). Most of the samples in the adenocarcinoma
cluster were CIMP-high, whereas the other iCluster groups contained
a mixture of CIMP-intermediate and CIMP-low samples (Fig. 2).
Comparing all cervical carcinomas to 120 normal samples drawn from
12 TCGA projects, we identified 1,026 epigenetically silenced genes that
were methylated to a greater extent in cancers than in normal tissues,
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Figure 2 | Multiplatform integrative clustering of cervical cancers.

a, Integrative clustering of 178 core-set cervical cancer samples using
mRNA, methylation, miRNA and copy number variation (CNV) data
identifies two squamous-carcinoma-enriched groups (keratin-low and
keratin-high) and one adenocarcinoma-enriched group, as shown in the
feature bars (top). Features presented include histology, HPV clade, HPV
integration status, UCEC-like status, APOBEC mutagenesis level, mRNA
EMT score, tumour purity and three SMGs (KRAS, ERBB3 and HLA-A)
that are significantly associated across the three clusters identified with
iCluster (ERBB2 is presented for comparison purposes with its family

including several zinc-finger (ZNF), protease (ADAM, ADAMTS), and
collagen (COL) genes (Supplementary Tables 11 and 12).
Unsupervised clustering resulted in six miRNA clusters that were
associated with the iCluster groups (P=1.7 x 10™'%) (Extended Data
Fig. 6a). Samples from the adenocarcinoma cluster almost exclu-
sively overlapped with miRNA cluster 5, and were characterized by
high expression of miR-375 and low expression of miR-205-5p and
miR-944 (Supplementary Table 31). Expression levels of tumour
suppressors miR-99a-5p and miR-203a were significantly higher
in samples from the keratin-high cluster than samples from the
keratin-low cluster (Supplementary Table 31; P=0.01 and P=0.008,
respectively). Among miRNAs with significant and functionally
validated gene and protein anti-correlations®?, one large subnetwork
involved the miR-200 family and other miRNAs with expression
patterns that anti-correlated with those of the EMT-related transcrip-
tion factors ZEBI, ZEB2 and SNAI2, the Hippo and p73 transcriptional
co-factor YAPI, the receptor tyrosine kinases (RTKs) ERBB2, ERBB3
and AXL, and the hormone receptor ESRI (Extended Data Fig. 6b,
Supplementary Figs 17, 18 and Supplementary Table 15).
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Row-scaled x

member ERBB3). b, The cluster of clusters panel displays subtypes defined
independently by mRNA, miRNA, methylation, reverse phase protein
array (RPPA), CNV and PARADIGM data. C1-C6 indicate clusters. Black,
sample is not represented in the cluster; red, sample is represented in the
cluster; grey, data not available. ¢, The heatmaps show select mRNAs,
miRNAs, proteins and CNVs that are either significantly associated with
iCluster groups or have been identified as markers in other analyses. The
heatmap colour scale bar represents the scale for the features presented in
the heatmaps with a breakpoint of zero represented by white. APOBEC
mut., APOBEC mutagenesis; inter., intermediate.

Reverse phase protein array (RPPA) analysis of 155 samples with
192 antibodies (Extended Data Fig. 1a and Supplementary Table 17)
identified three clusters significantly associated with the iCluster
groups (P=1.8 x 107*) and EMT mRNA score (Fig. 3a, ¢, d and
Supplementary Table 16). Samples from the EMT cluster were enriched
in the keratin-low cluster, whereas PI3K-AKT and hormone cluster
samples were enriched in the keratin-high and adenocarcinoma
clusters, respectively, suggesting distinct pathway activation across
integrated cervical cancer subtypes. Differential expression levels
of phosphorylated (p)-MAPK, p-EGFR (Y1068), p-SRC (Y416),
IGFBP2 and TIGAR between keratin-high and keratin-low clusters
suggest diverse activation patterns of RTK, MAPK, PI3K and metabolic
signalling pathways that may underlie the molecular diversity of
cervical squamous cancers (Fig. 2).

The core members of each RPPA cluster with the highest silhouette
width (>0.02, n=115) were associated with five-year survival
(Fig. 3b; P=6.1 x 10*), with the EMT group exhibiting worse
outcome. Notably, this was the only platform where clusters associated
with outcomes (Supplementary Figs 8, 9, 12 and 22; Supplementary

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.



RPPA cluster Hormone EMT PI3K-AKT |
Histology (NI [T |
Stage [T IEIET N T AT W T I I T ST

HPV clade CHIT T T THTINTNIN W NN NENTTTNE T NI T
DNA-methylation cluster (I I TN IR W TN — TN T T T T
mRNA cluster TN T T TTTTT THNITT TN ]
CNV cluster I I N BRI TN TR W T T T
miRNA cluster [TTNTT T T NI T T TR T TN T TN T
iCiuster [N TN AN TR T THTIN BTN ¥ (TN N
PARADIGM cluster EITIT TN I T T TN T CIN T
EMT score [T T 1] T Ind N7

Purity NI I O T T T WA TN T T T 1T AT T TR

B Adenocarcinoma @ Squamous B Adenosquamous
HIl Ou-v =l ONA
OA7 A9 ONegative BOther ONA
BECIMP-low OCIMP-intermediate B CIMP-high CINA
BEC1 O0C2 BC3 ONA
W Low EHigh ONA
EC1 EC2 OC3 mC4 BC5 OC6 ONA
B Keratin-low [ Keratin-high BAdeno. ONA
OC1 OC2 mC3 BC4 ONA
-3.76[_1.15 ONA
0.2[(TNNN 1.0 ONA

ARTICLE

Figure 3 | Proteomic landscape of
cervical cancer. a, Clustered heatmap of
samples (columns) and 192 antibodies
(rows) for 155 samples (112 overlap with
the core set of 178; see Extended Data
Fig. 1a). Clusters presented from left to
right include hormone (dark blue), EMT
(red) and PI3K-AKT (green). A subset of
proteins differentially expressed between
the clusters is highlighted. Tracks for

YAP/p-YAP (S127) —|

R T R T A it e v el - T

41 Cluster (total/events)

clinical and molecular features are
shown for features that were significantly
associated with RPPA clusters (P < 0.05).
Correlation between RPPA clusters and
other categorical variables were detected
by x? test, whereas correlations with
continuous variables were analysed using
the non-parametric Kruskal-Wallis

P=6.1x10*

— EMT (n = 25/7)
— Hormone (n = 39/2)
— PIBK-AKT (n = 51/3)

PAI-1 —| b 4
@ 0.8+
o
el A LR L E g 0.6
A e e R T E
bais ’-.g-r-.-_l.q.:lig.x--_\. wi_:iﬂ.“-_MHF_.%&_-¢.I-C:"'_&'|—_-|\.1-_I\_1' LS, g -
s - F E d & 0.2
. - b - ar .
o B O e i e T 04
R T ey Ty A - L gt | 0
. b [f lpps i =
g R e PR
" ko S, 3 - ~ oS -
ERa o b e
c

p-AKT (T308/S473) —|

HER2/p-HER2 (Y1248) —*

E-cadherin —|
o

EMT mRNA score

-

log, expression

10 20 30 40 50 60
Time (months)

test. In the heatmap, blue represents
downregulated expression, red represents
upregulated expression and white
represents no change in expression. NA,
data not available. b, Five-year Kaplan-
Meier survival curves and log-rank test
Pvalue (P=6.1 x 10~*) comparing
overall survival (OS) across all RPPA
clusters using 115 silhouette width

core samples (silhouette core; see
Supplementary Information 8). ¢, EMT
mRNA score levels were calculated for

P =0.001
P =0.059

EMT Hormone PISK-AKT

d 15 ad pa::ivjyg o H°'"'°"e"e°ept°;p:'3h‘1'viy1 oo all samples and compared across RPPA
T e 154 : ' clusters. P=0.001 (one-way ANOVA).
104 1 . d, Pathway scores for EMT, hormone-
o . 104 : receptor and PI3K-AKT signalling
g 5 H - - pathways are presented for all RPPA
g o ! ! 51 + | T clusters (x axis); Kruskal-Wallis test used
[ ol : to identify significant pathway score
54 : ; E B | differences between the clusters.
4 I T
10l L . 5 . 0

—T T — L E—
EMT  Hormone PI3K-AKT EMT  Hormone PI3K-AKT

Information 6). Samples in the EMT cluster exhibited high ‘reactive’
pathway scores'! (Supplementary Fig. 20), illustrating for the first time
in cervical cancer the presence of a subset of stromal reactive tumours
that have high expression of caveolin-1, MYH11 and RAB11, a subset
which also appears in other diseases® (Supplementary Table 16). YAP
was the most significantly differentially expressed protein distinguishing
samples from the EMT cluster from all others (Supplementary Table 18;
P=1.7 x 107%) and YAPI was significantly amplified in the samples
from the EMT cluster compared to the hormone (P=1.1 x 10~°) and
PI3K-AKT cluster (P=6.4 x 10~ *) samples. Regulation of the EMT-
related molecules YAP and ZEB1 (refs 24-26) may also be driven by
significantly lower expression levels of miR-200a-3p in the samples
from the EMT cluster compared to samples from the other RPPA
clusters (Extended Data Figs 6b, 7a; P=3.8 X 1073). These results
highlight potential roles for YAP and reactive stroma in EMT-regulated
progression of cervical cancers.

The mutual exclusivity modules in cancer (MEMo) algorithm?®” uses
somatic-mutation and copy number data to identify oncogenic networks
with mutually exclusive genomic alterations. Because miR-200a
and miR-200b (miR-200a/b) expression was negatively correlated with
EMT mRNA scores (Extended Data Fig. 7b, d), we used MEMo to
examine alterations in miR-200a/b and EMT gene networks and found
a potential link between the TGFf3 pathway and miR-200a/b alterations
in regulating EMT?%%. Deletions and mutations affecting the receptor
gene TGFBR2, the modulating genes CREBBP and EP300, and the
transcription factor SMAD4 probably all affect growth-suppressive and
pro-apoptotic functions driven by TGF(3 (Fig. 4c) and were observed
in 30% of squamous cell carcinomas (Fig. 4d). Tumours with both

S E—
EMT  Hormone PI3K-AKT

hypermethylation and downregulation of miR-200a/b (referred to as
altered) were restricted to squamous cell carcinomas, were enriched
in the keratin-low cluster (Fig. 4d and Extended Data Fig. 8; P=0.001
for both miR-200a and miR-200b), showed significant upregulation of
both ZEBI and ZEB2 (Extended Data Fig. 9a-d), and were mutually
exclusive with alterations in the TGFJ3 signalling pathway (Fig. 4d).
Notably, samples with altered miR-200a/b exhibited higher EMT
mRNA scores than unaltered samples, whereas no significant difference
was found between samples with or without TGF(3-pathway altera-
tions (Fig. 4d and Extended Data Fig. 7c, e). These findings highlight
potential treatment approaches for this subgroup of cervical cancer
patients, as targeting EM'T may render tumours more sensitive to small-
molecule inhibitors and cytotoxic chemotherapy**%31,

MEMo analysis also showed differences in therapeutically relevant
alterations in RTK, PI3K and MAPK pathways across cervical cancers.
MEMo identified mutual exclusivity modules involving alterations
within both the PI3K and MAPK pathways (Supplementary Table 27;
adjusted P=0.06); however, there was a strong tendency for co-
occurrence of ERBB2 and ERBB3 alterations within adenocarcino-
mas (P <0.001, log odds ratio > 3), indicating that a subset of these
tumours may exhibit aberrant HER3 signalling through interactions
between mutant HER3 and activated HER2 and therefore could
potentially benefit from HER2- and HER3-targeted therapies®
(Fig. 4a, b). Although not statistically significant, aberrations in
PIK3CA also tended to co-occur with PTEN somatic mutations and
deletions (P=0.078, log odds ratio=0.71), which is similar to endome-
trial tumours with few copy number alterations and suggests potential
therapeutic benefit from PI3K-pathway-targeting agents'”.
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Figure 4 | Mutual exclusivity of somatic alterations within the
PI3K-MAPK and TGFBR2 pathways. a, Multiple alterations affect
RTK, AKT and MAPK signalling in both squamous cell carcinomas

and adenocarcinomas. A schematic diagram of the pathways is shown
for altered genes along with the percentage of alteration in squamous
cell carcinomas and adenocarcinomas. Significant P values (P < 0.05,
Student’s ¢-test) for alteration frequency differences between squamous
cell carcinomas and adenocarcinomas are listed at the gene level, with
significantly different genes marked with an asterisk. b, Distinct types of
alterations (amplification, deletion, missense mutation and truncating
mutation) affect genes (rows) in these pathways in each sample (columns).

PARADIGM?***, which integrates copy number, RNA-seq and
pathway-interaction data, showed markedly different pathway
activation profiles between squamous carcinomas and adenocarcinomas
(Extended Data Fig. 10 and Supplementary Fig. 48). PARADIGM
identified higher inferred activation of p53, p63, p73, AP-1, MYC,
HIF1A, FGFR3 and MAPK signalling as key distinguishing features
of squamous cell carcinomas, similar to other squamous cancers®”.
By contrast, adenocarcinomas exhibited higher inferred activation
of ERa,, FOXA1, FOXA2 and FGFR1 pathways (Extended Data
Fig. 10, Supplementary Figs 25, 48 and Supplementary Table 18).
Possible underlying mechanisms for ERa upregulation may stem
from the expression of miR-193b-3p, a direct regulator of ESRI
that was significantly downregulated in adenocarcinomas compared
to squamous carcinomas (Fig. 2, Extended Data Fig. 6 and Supple-
men;cary Table 14; P=0.04), or from oestrogen signalling in stromal
cells®®.

Cross-cancer analysis

We next evaluated the relationship of cervical cancer subtypes with
endometrial cancer, an adjacent cancer site with hormone-related
carcinogenesis, and HNSC, a subset of which is caused by HPV. For
this, hierarchical clustering of cervical, uterine corpus endometrial
(UCEC)Y, and HNSC!® mRNA-expression data was performed.
Three major groups were observed, with cluster 1 including all UCEC
samples and most cervical adenocarcinomas and characterized by over-
expression of hormone-receptor genes ESRI and PGR (Extended Data
Fig. 4a). Cluster 2 included predominantly squamous cervical carcino-
mas and 23 out of 27 HPV-positive HNSC samples. Cluster 3 included
few cervical cancers and the remaining HNSC cancers, which were
mostly HPV-negative. This highlights the similarity of HPV-related
squamous cancers at different anatomical sites.
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samples. miR-down, samples met double threshold of methylated and
downregulated as described in Methods. NS, not significant. Percentages
in b and d, indicate per cent of the total histological subgroup population.

Since a subset of cervical cancers clustered with endometrial samples,
a gene-expression classifier was developed to predict whether carci-
nomas were cervical or endometrial (Supplementary Information 5).
We classified 8 out of 178 (4.5%) cervical cancer samples as
endometrial-like (UCEC-like) cancers, which were confirmed to
be cervical cancers by study pathologists (Extended Data Fig. 1f, g).
These tumours included 7 out of 9 HPV-negative cancers and 5 of the 8
were adenocarcinomas. Six UCEC-like cancers were in the adenocarci-
noma cluster and two were in the keratin-low cluster. Despite their low
number, the UCEC-like tumours accounted for 33%, 27% and 20% of
mutations in ARIDIA, KRAS and PTEN, respectively. They were asso-
ciated with the RPPA hormone and miRNA C6 clusters, and all but one
sample was CIMP-low and copy number-low (Supplementary Table 1).

HPV genotypes, variants and integration
Of the 178 core-set tumours, 169 (95%) were HPV-positive, 120 (67%)
had alpha-9 (A9) types (103 HPV16), 45 (25%) had alpha-7 (A7) types
(27 HPV18), and 9 (5%) were HPV-negative (Supplementary Table 3).
HPYV variants were predominantly European (137 out of 169, 81%
A variants), and there was a significant association of non-European
HPV16 variants with cervical adenocarcinomas (Supplementary Table 3;
odds ratio =5.3, P=3 x 107%). All HPV-positive cancers had detectable
expression of HPV E6- and E7-oncogene mRNAs, which encode
proteins that inhibit p53 and RB function, respectively*”*. Notably,
HPV18 cancers had significantly higher ratios of unspliced to spliced
transcripts encoding the active E6 oncoprotein than the HPV16 cancers
(Extended Data Fig. 11a; P=2 x 10719), suggesting different functional
implications of E6 and E7 in cancers associated with different HPV
genotypes.

HPV A7 types were enriched in the keratin-low and adenocarcinoma
clusters (P=5 x 107*). Most HPV clade A7 tumours were CIMP-low,
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Figure 5 | HPV integration and differential pathway activation between
HPYV subtypes. a, Cytoscape display of the largest interconnected
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features showing differential inferred activation between HPV A9 and A7
squamous carcinomas (n =101 and n = 35, respectively). Node colour and
intensity reflect the level of differential activation. Node size represents
level of significance. SFN is within a subnetwork identified by functional
epigenetic module analysis (Supplementary Information 13) as disrupted
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and HPV-negative tumours formed a distinct subgroup
within the CIMP-low cluster with a significantly lower mean
promoter-methylation level than other samples in that cluster
(Extended Data Fig. 5a; P=5 x 10~%). Samples with the highest rate
of gene silencing were HPV-positive adenocarcinomas, particularly
those related to A9 types (t-test P < 0.001). Functional epigenetic
module (Supplementary Information 13) analysis®®, which integrates
DNA-methylation and gene-expression data using protein-protein
interaction networks, identified inverse correlations between methyla-
tion and gene expression in HPV-positive versus HPV-negative cervical
cancers and HPV-positive (n = 36) versus HPV-negative (n = 243)
HNSCs. The analysis revealed 12 statistically significant subnetworks
for cervical cancer and 11 for HNSCs, with one common subnetwork
centred around Forkhead Box A2 (FOXA2) (Supplementary Table 19
and Supplementary Fig. 32). miR-944, miR-767-5p and miR-105-5p
were the most differentially expressed miRNAs between HPV-positive
and HPV-negative samples (Supplementary Fig. 14e). miR-944
expression was also significantly higher, whereas miR-375 expression
was significantly lower in HPV16-positive squamous cancers compared
to HPV18-positive squamous cancers (Supplementary Fig. 14d).
Notably, HPV-negative cancers had a significantly higher EMT mRNA
score and a lower frequency of the APOBEC mutagenesis signature
compared with HPV-positive tumours (Extended Data Fig. 11b and
Supplementary Fig. 27; P=0.02 and P = 0.004, respectively).

PARADIGM was used to evaluate molecular pathways differentially
activated in squamous samples with A7- and A9-HPV infections. We
observed higher inferred activation of p53 and p63 signalling and
lower FOXAL signalling in tumours infected with A9 types (Fig. 5a
and Supplementary Fig. 23a). Higher SFN pathway activation was also
observed for A9-positive tumours, which is consistent with the low
methylation and high gene-expression patterns of SFN found in func-
tional epigenetic module analysis (Fig. 5a and Supplementary Table 19).
Notably, the SEN-encoded stratifin (also known as 14-3-30) adaptor
protein has previously been associated with epithelial immortalization
and squamous cell cancers***!, altered p53-pathway activation*?, and
Wnt-mediated 3-catenin signalling®.

Viral-cellular fusion transcripts indicating integration of HPV into
the host genome were observed in 141 out of 169 (83%) HPV-positive
cancers, including all HPV18-positive cancers. Of these 141 samples,
90 (64%) had a single HPV integration event, 35 had two events,
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and 16 had three or more events (totalling 220 unique integration
events) (Supplementary Table 3). HPV integration events affected all
chromosomes, including some previously described hotspots such as
3q28 and 8q24 (ref. 44) (Fig. 5b). Genomic loci affected by integra-
tion were characterized by increased somatic copy number alterations
(P=6.9 x 10713 for HPV16 and P=0.058 for HPV18) and increased
gene expression (P=1.6 x 10~ !! for HPV16 and P=0.011 for HPV18)
(Extended Data Fig. 11c, d). In addition, 153 (70%) fusion transcripts
included known or predicted genes, whereas the remainder included
intergenic regions (Fig. 5b and Supplementary Table 3).

Conclusion

Through comprehensive molecular and integrative profiling, we
identified novel genomic and proteomic characteristics that subclassify
cervical cancers. Integrated clustering identified keratin-low squamous,
keratin-high squamous, and adenocarcinoma-rich clusters defined by
different HPV and molecular features (Extended Data Fig. 8). ERBB3,
CASP8, HLA-A, SHKBPI and TGFBR2 were identified as SMGs for the
first time in cervical cancer, with ERBB3 (HER3) immediately applicable
as a therapeutic target. For the first time in cancer, we report ampli-
fications and fusion events involving the BCAR4 gene, which can be
targeted indirectly by lapatinib. Further, we identified amplifications in
CD274 and PDCD1LG2, two genes that encode well-known immuno-
therapy targets. A set of endometrial-like cervical cancers comprised
predominantly of HPV-negative tumours and characterized by
mutations in KRAS, ARIDIA and PTEN was discovered, with PTEN
and potentially ARID1A proteins serving as therapeutic targets.
Importantly, over 70% of cervical cancers exhibited genomic alterations
in either one or both of the PI3K-MAPK and TGFg signalling pathways
(Extended Data Fig. 9e), illustrating the potential clinical significance
of therapeutic agents targeting members of these pathways. For the
first time, we report distinct molecular pathways activated in cervical
carcinomas caused by different HPV types, highlighting the biological
diversity of HPV effects.

Together, these findings provide insight into the molecular subtypes
of cervical cancers and rationales for developing clinical trials to treat
populations of cervical cancer patients with distinct therapies.

Online Content Methods, along with any additional Extended Data display items and

Source Data, are available in the online version of the paper; references unique to
these sections appear only in the online paper.
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METHODS

Data reporting. No statistical methods were used to predetermine sample size.
The experiments were not randomized and the investigators were not blinded to
allocation during experiments and outcome assessment.

Samples and data freeze. Each tissue source site provided documentation that
their IRBs either: a) approved their participation specifically in the TCGA project,
through an approved protocol, amendment, exemption, or waiver, and the docu-
mentation must include specific mention of TCGA; or b) provided documentation
that the IRB does not consider participation in TCGA to constitute human subjects
research; and therefore does not have purview.

The Core Data Freeze (core set) included 178 samples from cervical carcinoma

batches 88, 114, 127, 148, 169, 179, 200, 217, 236, 256, 280, 297, 335 and 350
(Supplementary Table 1). This is a standard data freeze whereby the case list was
‘frozen’ and analyses used the one set even though other samples came through
the pipeline. Samples in the core set had mRNA-seq, whole exome DNA-seq
(WES), miRNA-seq, methylation, SNP6 copy number and clinical data available.
Additional samples that had multicentre mutation calls and/or RPPA data included
67 samples from cervical carcinoma batches 88, 114, 127, 148, 169, 179, 200, 217,
236, 256, 280, 297, 335, 350, 361, 373, 380, 394 and 420 (Supplementary Table 2). Of
these samples, 14 had mutations called and 60 had RPPA data available; however,
RPPA data for 17 samples was excluded owing to low protein content within the
samples (Supplementary Table 2). Mutations were called for 192 samples (extended
set), while all other platform and integrated analyses (aside from protein) were
performed on the subset of 178 core-set samples. Protein levels were measured on
155 samples, which included 119 samples from both the core and extended sets
as well as 36 samples outside of these sets. The total number of non-overlapping
samples across core, extended and RPPA datasets is 228 (Extended Data Fig. 1a).
HPYV detection, variant calling and transcript analysis. HPV status was deter-
mined using consensus results from MassArray and RNA-seq (Supplementary
Information 2). MassArray uses real-time competitive polymerase chain reaction
and matrix-assisted laser desorption/ionization-time-of-flight mass spectros-
copy with separation of products on a matrix-loaded silicon chip array, similar
to the work described in ref. 45. Two approaches for pathogen detection from
RNA-seq data were used. The first used the microbial detection pipeline at the
British Columbia Cancer Agency’s Genome Sciences Centre (BC), which is based
on BioBloom Tools (BBT, v1.2.4b1)*. The second used the PathSeq algorithm*’
at the Broad Institute (BI) to perform computational subtraction of human reads
followed by alignment of residual reads to a combined database of human reference
genomes and microbial reference genomes including HPV. In 97% of samples, com-
plete agreement between MassArray and both RNA-seq approaches was observed.
The remaining discrepant samples were resolved by majority decision, assigning
the genotype called by at least two of the methods. RNA-seq data in FASTA format
was used to identify HPV variants (Supplementary Fig. 1). Unaligned reads were
taken from the PathSeq analysis and aligned to HPV reference genomes using
TopHat*® with default parameters*’. The HPV variant lineages/sublineages were
assigned based on the phylogenetic topology and confirmed visually using the SNP
patterns®’. HPV splice junctions from RNA-seq were determined using TopHat.
Two transcript types were distinguished for HPV16 and HPV18: transcripts
that included evidence of an unspliced sequence of E6, and transcripts spliced at
the E6 splice donor site (position 226 for HPV16 and position 233 for HPV18)
(Supplementary Fig. 2). Read counts for unspliced, spliced, as well as the ratio of
unspliced/spliced transcripts were categorized into quartiles separately for HPV16
and HPV18.
HPYV integration analysis. Using RNA-seq data, concordance of integration
events based on alignments of contigs from de novo transcriptome assembly (BC)
and read alignments (BI) was evaluated (Supplementary Fig. 3). We identified
method-specific integration events by assigning all sites within a 500-kb sliding
window to a single integration event located at the median coordinate of that
assigned sites for that event. An integration event was labelled as ‘confident’ when
the total read support for each of its supporting integration sites passed centre-
specific read evidence thresholds. To take advantage of differences between the two
integration methods (that is, contig and read), for the concordance analysis we used
all method-specific integration events (both confident and non-confident events).
We labelled an integration event as ‘concordant’ when both methods reported an
integration event within 500kb in the same patient’s sample. For some concordant
events, both methods reported a confident event. An integration event was labelled
as ‘discordant’ when only one centre reported a confident integration event within
500kb (Supplementary Figs 4 and 5). For both intragenic and intergenic concordant
events, we reported a range of coordinates that extends from the most proximal
to the most distal supported integration site. We assessed gene-level expression
relative to somatic copy number and structural-variant data for genes into which
we had mapped viral-human junctions from RNA sequencing data and for genes
that were associated with enhancers into which we had mapped RNA junctions.

DNA sequencing and mutation calling. Detailed methods for library hybrid
capture, read alignments and somatic variant calling are documented in
Supplementary Information 3. MutSig2CV*® was used to identify significantly
mutated genes (SMGs) within the cervical cancer exome sequencing data.
Mutations were analysed for the core set plus 14 samples for a total of 192 extended-
set samples. Eleven samples were identified to exhibit greater than average
mutations rates and were termed hypermutants (somatic mutations > 600). These
11 samples were excluded from the analysis for identifying SMGs. All three sample
subsets (all samples, squamous carcinomas only, adenocarcinomas only) without
hypermutants (Supplementary Table 4) were analysed using an FDR cut-off of
0.1. FDR values are shown in Supplementary Table 4. SMG analysis using the entire
sample cohort in from ref. 8 was performed as described previously®.

Copy number analysis. DNA from each tumour or germline sample was
hybridized to Affymetrix SNP 6.0 arrays using protocols at the Genome Analysis
Platform of the Broad Institute as previously described”!. Briefly, Birdseed was
used to infer a preliminary copy number at each probe locus from raw .cel files>*.
For each tumour, genome-wide copy number estimates were refined using tangent
normalization, in which tumour signal intensities are divided by signal intensities
from the linear combination of all normal samples that are most similar to the
tumour'®. Individual copy number estimates then underwent segmentation using
circular binary segmentation®, and segmented copy number profiles for tumour
and matched control DNAs were analysed using Ziggurat Deconstruction®.
Significance of copy number alterations were assessed from the segmented data
using GISTIC2.0 (version 2.0.22)*%. For the purpose of this analysis, an arm-level
event was defined as any event spanning more than 50% of a chromosome arm. For
copy number-based clustering, tumours were clustered based on copy number at
regions using GISTIC analysis. Clustering was done in R on the basis of Euclidean
distance using Ward’s method. Allelic and integer copy number, tumour purity and
tumour ploidy were calculated using the ABSOLUTE algorithm®.

Detecting structural variants from RNA-seq and WGS data. Integrative analysis
was performed to identify putative driver fusions using both WGS (low-pass and
high-coverage) and RNA-seq data. RNA-seq data for 178 core-set samples were
analysed using the TopHat-Fusion and BreakFusion, PRADA and MapSplice
algorithms. To identify structural variations in WGS data, 50 low-pass WGS and
19 high-pass WGS samples were analysed. Detection of structural variations in
low-pass WGS data was performed using two algorithms, BreakDancer*® and
Meerkat®, with a requirement for at least two discordant read pairs supporting
each event and at least one read covering the breakpoint junction. High-pass
WGS data were analysed to detect somatic structural variations using two runs
of BreakDancer and one run of SquareDancer (https://github.com/ding-lab/
squaredancer). The gene fusion lists generated by all methods and platforms were
integrated (see Supplementary Tables 8-10).

APOBEC mutagenesis analysis. Analysis is based on previous findings that
APOBECs deaminate cytidines predominantly in a tCw motif and that the
APOBEC mutagenesis signature is composed of approximately equal numbers
of two kinds of changes in this motif: tCw—tTw and tCw—tGw mutations
(flanking nucleotides are shown in small letters; w= A or T). Using mutation
data from all 192 extended-set samples, we calculated on a per-sample basis the
enrichment of the APOBEC mutation signature among all mutated cytosines in
comparison to the fraction of cytosines that occur in the tCw motif among the
=420 nucleotides surrounding each mutated cytosine (APOBEC_enrich column in
data files). The minimum estimate of the number of APOBEC-induced mutations
in a sample (APOBEC_MutLoad_MinEstimate) was calculated using the formula:
[tCw—G +tCw—T] x [(APOBEC_enrich—1)/APOBEC_enrich], which allows
estimation of the number of APOBEC signature mutations in excess of what would
be expected by random mutagenesis. APOBEC_MutLoad_MinEstimate was calcu-
lated only for samples passing the threshold of FDR < 0.05 for APOBEC enrichment
([BH_Fisher_p-value_tCw] < 0.05). Samples with a BH_Fisher_p-value_tCw > 0.05
were given a value of 0. The APOBEC_MutLoad_MinEstimate value shows high
correlation (0.9-0.95) with all other parameters used to characterize the APOBEC
mutagenesis pattern, such as APOBEC enrichment, and absolute and relative APOBEC
mutation loads. For some analyses and figures, the APOBEC_MutLoad_MinEstimate
parameter was converted into categorical values as follows: no, APOBEC_MutLoad_
MinEstimate = 0; low, 0 < APOBEC_MutLoad_MinEstimate > median of non-zero
values; high, APOBEC_MutLoad_MinEstimate > median of non-zero values. The
median of non-zero values in the extended set =33.

Methylation analysis. The Illumina Infinium HM450 array®® was used to evaluate
DNA methylation in the core set of samples from cervical cancer patients.
Unsupervised consensus clustering was performed with Euclidean distance and
partitioning around medoids (PAM) using the most variable 1% of CpG-island
promoter probes. Epigenetically silenced genes were identified as previously
described®. A total of 120 normal samples were used for this analysis by selecting
10 samples at random from the 12 TCGA projects that included normal samples.
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RNA-seq analysis. RNA was extracted, converted into mRNA libraries, and paired-
end sequenced (paired 50 nucleotide reads) on Illumina HiSeq 2000 Genome
Analyzers as previously described®. RNA reads were aligned to the hg19 genome
assembly using Mapsplice version 12_07°. Gene expression was quantified for
the transcript models corresponding to the TCGA GAF2.1 (https://gdc-api.nci.nih.
gov/v0/data/a0bb9765-3f03-485b-839d-7dce4a9bcfeb) using RSEM4 (ref. 61) and
normalized within a sample to a fixed upper quartile. To predict whether a cancer
sample was from the cervix or the uterus, the data matrix of normalized gene-level
RSEM values from 170 UCEC samples was merged with the data matrix from the
core set (n=178) of cervical cancers. This merged dataset was then randomly split
into a training set (87 cervical carcinoma samples; 86 UCEC samples) and a test
set (91 cervical carcinoma samples; 84 UCEC samples). A sample was predicted to
be cervical carcinoma if the -statistic versus UCEC was significant (P < 0.05), but
was not significantly different from the cervical carcinoma mean (and vice versa for
the UCEC prediction). A data matrix of RSEM values from 178 cervical carcinoma,
170 UCEC and 279 HNSC samples was used to identify expression patterns across
the 3 cancer types. The gene expression matrix was further filtered to only include
the top 25% most variable genes by mean absolute deviation (1 =4,039 genes).
EMT mRNA score analysis. The EMT score was computed as previously
described'®?". Briefly, the EMT score was the value resulting from the difference
between the average expression of mesenchymal (M) genes minus the average
expression of epithelial (E) genes. All values for unavailable data (NA)
were removed from the calculation. Two-sample ¢-test and ANOVA were applied
to each comparison accordingly.

miRNA sequencing and analysis. MicroRNA-sequencing (miRNA-seq) data was
generated for the core set of tumour samples using methods described previously''.
We identified miRNAs that have been associated with EMT®?"% and then calculated
Spearman correlations between the EMT scores and normalized expression
(reads per million, RPM) for 5p and 3p mature strands for each of the miRNAs
using MatrixEQTL and filtering by FDR < 0.05. An miRNA was considered to
be epigenetically controlled if the BH-corrected P values were less than 0.01 for
both (i) a Spearman correlation of miRNA abundance (RPM) to beta for probes in
promoter regions associated with the miRNAs, and for (ii) a ¢-test of RPM between
unmethylated (3 < 0.1) and methylated (3> 0.3) samples (an epigenetically
controlled pattern). We assessed potential miRNA targeting for all 178 samples
and then separately for the 144 squamous samples by calculating miRNA-mRNA
and miRNA-protein (RPPA) Spearman correlations with MatrixEQTL v2.1.1 using
gene-level normalized abundance RNA-seq (RSEM) data and normalized RPPA
data. Correlations were calculated with a P value threshold of 0.05, and then the
anti-correlations were filtered at FDR < 0.05. We extracted miRNA-gene pairs that
were functionally validated in publications reported by miRTarBase v4.5 (ref. 22).
For miRNA-RPPA anti-correlations, all gene names that were associated with each
antibody were used. Results were displayed with Cytoscape v2.8.3.

PARADIGM analysis. Integration of copy number, RNA-seq and pathway
interaction data was performed on the core set of samples using PARADIGM>34,
Briefly, PARADIGM infers integrated pathway levels (IPLs) for genes, complexes
and processes using pathway interactions, genomic and functional genomic data
from each patient sample. One was added to all expression values, which were
then log,-transformed and median-centred across samples for each gene. The
log,-transformed, median-centred mRNA data were rank-transformed based on
the global ranking across all samples and all genes and discretized (41 for values
with ranks in the highest tertile, —1 for values with ranks in the lowest tertile and
0 otherwise) before PARADIGM analysis.

Pathways were obtained in BioPax level 3 format, and included the NCIPID
and BioCarta databases from http://pid.nci.nih.gov and the Reactome database
from http://reactome.org. Gene identifiers were unified by UniProt ID and then
converted to Human Genome Nomenclature Committee’s HUGO symbols using
mappings provided by HGNC (http://www.genenames.org/). Altogether, 1,524
pathways were obtained. Interactions from all of these sources were then combined
into a merged superimposed pathway (SuperPathway). Genes, complexes and
abstract processes (for example, cell cycle and apoptosis) were retained and hence-
forth referred to collectively as pathway features. The resulting pathway structure
contained a total of 19,504 features, representing 7,369 protein-coding genes, 9,354
complexes, 2,092 families, 82 RNAs, 15 miRNAs and 592 abstract processes.

The PARADIGM algorithm infers an IPL for each pathway element that reflects
the log likelihood that contrasts the probability of activity against inactivity. An
initial minimum variation filter (at least 1 sample with absolute activity >0.05) was
applied, resulting in 15,502 concepts (5,898 protein-coding genes, 7,307 complexes,
1,916 families, 12 RNAs, 15 miRNAs and 354 abstract processes) with relative
activities showing distinguishable variation across tumours.
iCluster analysis. Integrative clustering of RNA-seq, methylation, copy number
and miRNA data was performed using the R package iCluster?. The core set of
samples was used since all samples in this set had data available across these four
platforms. RNA-seq, methylation, copy number and mature-strand miRNA datasets
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had 20,531, 395,552, 23,109 and 1,213 features, respectively. The 500 most variable
features based on the standard deviation from each dataset were selected for the inte-
grative clustering analyses. For analysis involving the RNA-seq and miRNA datasets,
alog[x+ 1] transformation was used in order to deal with skewness in the data®’.
Methylation data was logit transformed to make it closer to normal distribution. The
CNV data included the regions determined from GISTIC2.0, with CNV’s treated as
a continuous measurement based on the segmentation mean value for the region.

MEMo analysis. High DNA-methylation levels upstream of miR-200a and
miR-200b corresponded to transcriptional downregulation of the miRNAs
(Extended Data Fig. 9a). For a sample to be called altered for either miR-200a or
miR-200b (or both), we required both high DNA-methylation level upstream of
the miRNA (3> 0.3) and low miRNA expression (log,[RPM] < 9.3 for miR-200a
and log,[RPM] < 9 for miR-200b). Binary calls were given to altered and unaltered
samples based on this double threshold (1 =altered, 0 = unaltered).

The mutual exclusivity modules in cancer (MEMo) algorithm®” was run on all
core-set samples. MEMo was first run on 27 regions of recurrent copy number
gain, 36 regions of copy number loss and 22 recurrently mutated genes. In order
to include alterations for miR-200a and miR-200b in the MEMo analysis, a
custom network was designed where each miRNA was connected to its known
and validated targets (see above). Second, this network was merged with the com-
prehensive pathway network used by MEMo to search for modules of altered
genes that include at least one of the miRNAs. Extracted modules were tested
for mutual exclusivity using statistical framework of MEMo (Supplementary
Table 27). A Student’s t-test was performed for comparison of the EMT mRNA
scores between groups.

Data availability. The primary and processed data used in analyses can be down-
loaded by registered users from https://gdc-portal.nci.nih.gov/ and the TCGA
publication page (https://tcga-data.nci.nih.gov/docs/publications/cesc_2016/).
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Extended Data Flgure 1| Sample sets and hlstologlcal patterns of
cervical cancer. a, Summary of sample numbers and degree of overlap
between the core, extended and RPPA datasets. b, Example of a large-cell
non-keratinizing squamous cell carcinoma. Tongues of highly atypical
polygonal neoplastic squamous cells infiltrate through a fibrotic stroma.
The cells show abundant eosinophilic cytoplasm with pleomorphic
nuclei and prominent mitotic figures. Although the tumour cells contain
abundant cytokeratin filaments, this tumour has traditionally been termed
non-keratinizing because of the absence of characteristic keratin pearls.
¢, An example of a large-cell keratinizing squamous cell carcinoma.
Nests of atypical squamous cells infiltrate through a fibrotic stroma.

In addition, this tumour shows highly eosinophilic keratin pearls with
small, inky dark nuclei that imperfectly mimic the normal keratinization
that is found in the epidermis. This differentiation pattern is aberrant

in the cervix in which the squamous epithelium is normally a non-
keratinizing squamous mucosa. d, An example of an endocervical
adenocarcinoma (well differentiated). Closely set, atypical glands with
enlarged nuclei and scattered mitotic figures infiltrate through the

228 total samples

connective tissue of the cervix. The tall columnar tumour cells show
basally placed, crowded, enlarged nuclei that show frequent mitotic
figures. Compared with normal endocervical cells, the tumour cells

show relative loss of intra-cytoplasmic mucin and are frequently called
mucin-depleted, although most, but not all endocervical adenocarcinomas
show varying amounts of intracytoplasmic mucin at least focally.

e, Adenosquamous carcinoma of cervix. This tumour shows both nests of
non-keratinizing squamous cell carcinoma and glands composed of tall
columnar adenocarcinoma reflecting the origin of most cervical cancers
in the transformation zone of the cervix in which both squamous and
glandular cells normally differentiate. Despite this biphasic differentiation
potential, adenosquamous carcinomas are relatively uncommon in the
cervix. f, UCEC-like HPV-negative endocervical adenocarcinoma from

a radical hysterectomy specimen. The endometrium in the uterus was
benign. g, UCEC-like HPV-positive endocervical adenocarcinoma from

a radical hysterectomy specimen. The endometrium in the uterus was
benign. All samples were stained with haematoxylin and eosin (20x).
Scale bar, 100 pm.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.



ARTICLE

=
s
a CASP8 b g ERBB3
N > waus
nA8 g == 20O * x = o < w = . -l
gL o & 05 b3 b > I o S —o®
385 < =8 33 3 2 S 2 & = =} S8R
pt & 85 &2 s & & §o3d 8 £ & b
{? ?’ °o ° ® ) ¢ ¢ (*’
0 100 200 300 400 500 0 200 400 600 800 1000 1200 1342
I EGF receptor Ligand W Ser-Thr/Tyr kinase catalytic domain
E BeEg C14 ICE p20 @ PeptC14 p10 E Furin-ike Cys-rich domain @ Ser/Thr dual-specificity kinase domain
O Pept C14 catalytic O Pept C14 p45 core O Furin repeat O Tyrkinase EGF/ERB/XmrK receptor
[ Prot kinase catalytic domain [ Tyr kinase catalytic domain
c HLA-A d HLA-B
. .8 " .
o by [<] = Sk o P x
[ = 15 = 5 S
882 F 3 g 8% S L £ ¢ g &
=2m o :g g Te o o S % = o &o pr ] o 8
6o o 5 ;r ® o ¢ o ¢ o 253 ° 6 0e
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
O Immunoglobulin like O Immunoglobulin like
@ Immunoglobulin C1-set @ Immunoglobulin C1-set
B MHC class | alpha C B MHC class | alpha_C
O MHC class | alpha a1/a2 O MHC class | alpha a1/a2
e SHKBP1 o8 f TGFBR2
% 21 n 2 u z & =
3% S % 2 3 2 < 8§ B8
s < & =) & =
oe L
0 100 200 300 400 500 600 o 100 200
; @ Activin I/'TGFBeta-Il recpt O Transform growth factor-beta type-2
0O BTB/POZ like O Protein kinase catalytic domain s )_GF beta-receptor-2 d
O Ti-type BTB B Ser-Thr/Tyr kinase catalytic domain @ Tyr kinase catalytic domain
Ser/Thr dual-sp kinase domain
=0 Adenocarcinoma —O Squamous Cell @ Splice Site / Intronic @ Frameshift Insertion @ Missense @ Nonsense ~ @ Silent
10000+
— APOBEC signature mutations h © Total number of mutations in a sample: R?=0.9506
g - = Number of SNVs in A:T pairs: R2= 0.0207
PIK3CA = A Number of SNVs in G:C pairs: R2= 0.9734 &
u
2 @
[72]
¢ 1000 2®
2
=
©
-
=]
X
O PI3/4 kinase catalytic domain % ‘.E_ 1004
B PI3K C2 domain i )
B PI3K Ras-bd domain
O PI3K adapt-bd domain 3 -
@ Plnositide-3 kinase accessory domain g
X £ =" -
& cxos 3 LI
Tuxez3Wws g 5 I OEX & 5555 = 104 " .
Fpsoreicionsy S 3 2 ¢ seee @
oworoxo > < (e g [ o o i o
#i* % ° ) nﬁ?
@
0 200 400 600 800 1000 1 10 100 1000 10000
Number of APOBEC-induced Mutations (Minimal Estimate)

Extended Data Figure 2 | SMGs and the role of APOBEC in cervical
cancer mutagenesis. a—f, High-confidence somatic mutations in SMGs
among 192 exome-sequenced samples in the extended case set are shown.
Domains are labelled according to Gencode 19, corresponding to Ensembl
74. Mutations at canonical intronic splice acceptor (e—1 and e—2) are
labelled based on proximity to the nearest coding exon. Panels display
somatic mutations detected in novel cervical cancer SMGs, with HLA-B
included for comparison with its family member HLA-A. Each axis is the
protein-coding portion of a gene and each highlighted section represents
the UniProt functional domain. Vertical lines indicate the boundaries

of multiple annotation sources within common domain annotations

as outlined in Supplementary Table 5. Horizontal lines distinguish
overlapping domains. Circles represent a single mutation and

are coloured based on mutation type. Mutations present in squamous

cell carcinomas are black, whereas those present in adenocarcinomas are
pink. g, PIK3CA mutations and recurrence are shown in a stacked circle
plot, as above. Additionally, lolliplot sticks are coloured red if the mutation
type coincides with patterns of APOBEC mutagenesis. h, The minimal
estimated number of APOBEC-induced mutations (APOBEC_MutLoad_
MinEstimate column in Supplementary Table 1) strongly correlates

with total number of mutations in a sample, as well as with the number

of single-nucleotide variants (SN'Vs) in G:C pairs that are the exclusive
substrate for mutagenesis by APOBEC cytidine deaminases. Although
correlation with mutagenesis in A:T base pairs, which cannot be mutated
by APOBEC enzymes, is statistically significant (two-tailed P=0.047), it is
very weak. Pearson correlation and R* were calculated for all 192 exome-
sequenced samples, including samples with zero values. Only samples with
non-zero values of APOBEC_MutLoad_MinEstimate are presented.
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Extended Data Figure 3 | See next page for caption.
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Extended Data Figure 3 | Copy number alterations in cervical cancer.
a, A log,-centred heatmap of somatic copy number alterations across

178 core-set cervical tumours. The x axis includes samples that have
been ordered based on the cluster assignment. The y axis is based

on genomic position, from 1p to Xq. Features associated with copy
number clusters are annotated with asterisks; *P < 0.05; **P < 0.01.

b, GISTIC2.0 amplification and deletion plots within copy number
clusters. Chromosomal locations for peaks of significantly recurrent focal
amplifications (red) and deletions (blue) are plotted by —log; g value for
the high (CN High) and low (CN Low) copy number clusters. Peaks are
annotated with cytoband and candidate driver genes. The total number
of genes in the peak region is indicated in parentheses. Peaks with more
than 30 genes in the peak region are excluded. Any genes annotated have

ARTICLE

a significant positive correlation with mRNA expression. ¢, Chromosomal
locations for peaks of significantly recurrent focal amplifications (red) and
deletions (blue) are plotted by —logi q value for all core set samples. Peaks
are annotated with cytoband and candidate driver genes. The total number
of genes in the peak region is indicated in parentheses. Peaks consisting

of more than 30 genes in the peak region are excluded. Annotated genes
have a significant positive correlation with mRNA expression. d, Cytolytic
activity (CYT) associations with PD-L1 and/or PD-L2 amplification.

Each bar represents a single tumour and the height of that bar represents
the z score of the cytolytic activity of that tumour compared to the rest

of the cohort. Bars are coloured according to their PD-L1 and/or PD-L2
amplification status and sorted from the highest to the lowest z score.
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Extended Data Figure 4 | See next page for caption.
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Extended Data Figure 4 | Gene-expression patterns and fusion genes
found in cervical cancer. a, Hierarchical clustering (uncentred correlation
with centroid linkage as the clustering method) was performed on 4,039
expressed and highly variable genes across samples from 178 cervical,

170 endometrial and 279 head and neck cancer patients. Normalized
gene-level RSEM values were median-centred before clustering and
relative increased expression values are indicated in red and relative
decreased expression values are indicated in blue. Samples from patients
with cervical (CESC, light blue), endometrial (UCEC, purple) and head
and neck (HNSC, orange) cancer are categorized by different colours

as indicated. Also included are indications of HPV status, histology of
cervical and endometrial cancers, and tissue site for head and neck cancer
samples. Select genes are noted to the right of their locations on the
heatmap. b, Box plots of the three differentially expressed SMGs and top

ARTICLE

six significantly differentially expressed non-SMGs across the iCluster
groups using Kruskal-Wallis test. All genes are significantly different
between the keratin-low and keratin-high clusters. Significant P values
across keratin-low and keratin-high clusters are presented. ¢, A schematic
of BCAR4 tandem duplication in one case (C5-A3HF), detected by
analysis of somatic copy number (top) and structural variation (middle).
Split reads and genomic breakpoints indicating the tandem duplication
are shown. At the RNA level (bottom) the last exon of BCAR4 forms a
fusion gene with the first exon of ZC3H7A (red bars indicate the location
of mRNA breakpoints; NR_024049 shown as BCAR4 representative
transcript). d, Schematic of recurrent fusions (CPSF6-C9orf3,
ARL8B-ITPRI and MYH9-TXN?2) or fusions with known occurrences

in other cancer types (FGFR3-TACC3), detected by at least two RNA-seq
fusion callers in 178 samples. Red bars indicate the mRNA breakpoints.
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Extended Data Figure 5 | Unsupervised clusters of DNA methylation
data. a, Heatmap showing (3 values of 178 core-set samples ordered by
CIMP clusters. Samples are presented in columns and the CpG island
promoter CpG loci are presented in rows. An annotation panel on the right
of the heatmap indicates CpG loci that are differentially methylated within
a particular feature (see Supplementary Table 13). All features (marked

with an asterisk) are significantly associated with DNA-methylation
clusters (Fisher’s Exact test P < 0.01), except APOBEC mutagenesis level,
UCEC-like status and HPV integration status. b, Box plots of the EMT
mRNA score and tumour purity by CIMP clusters.

*P < 0.05; **P < 0.01 (Student’s ¢-test).
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targeting relationships for a subset of miRNAs, as significance-thresholded
(FDR < 0.05) miRNA-mRNA and miRNA-protein anti-correlations that
are supported by functionally validated publications. For genes (nodes),
colour distinguishes those that are only present in mRNA data (grey)
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protein (green). In the n =178 core-set cohort, no correlations satisfying
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Extended Data Figure 7 | EMT-associated miRNAs and their sample numbers (1 = 18 from the core set with RPPA data available).
relationship to miRNA clusters and TGF3R2 somatic alterations. b, Negative and positive Spearman correlation coefficients (FDR < 0.05)
a, Normalized miR-200a-3p abundance (RPM) across RPPA clusters between EMT mRNA score and normalized abundance (RPM) for miRNA
for all 112 (top) and 92 squamous (bottom) samples of the core set for mature strands (n = 178). miRNAs that have been reported as associated
which RPPA data are available. P values presented are from two-sided with EMT (see Methods) are highlighted by blue bars. ¢, Normalized
Kolmogorov-Smirnov tests for RPPA-based EMT cluster versus abundance heatmap of miRNAs most strongly negatively and positively
non-EMT cluster samples. For n= 112 samples, median miR-200a-3p correlated with EMT mRNA scores, with samples grouped by miRNA
RPM =296.4 within the EMT cluster (n=29) and 410.0 (n=83) in cluster and sorted by EMT score within each cluster. Somatic mutations
non-EMT cluster samples. For squamous samples, median miR-200a-3p (MUT) and deletions (HOMDEL) are shown for TGFBR2, CREBBP, EP300
RPM =296.4 (n=29) within the EMT cluster and 393.4 (n=63) in and SMAD4. Methylation and concomitant downregulated expression
non-EMT cluster samples. EK-A2R7, which is in the hormone RPPA alterations (ALT) as defined in Methods for miR-200a/b are also shown.
cluster, has an RPM value of 4,267 and is not shown. Results are not miRNAs in blue represent those highlighted by blue bars in b. d, e, Same as
presented for adenocarcinoma samples separately owing to limited b, ¢, for the n =144 squamous tumour samples.
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Extended Data Figure 8 | Distinguishing features of cervical cancer
integrated molecular subtypes. a, Integrative clustering of 178 core-set
samples from patients with cervical cancer using mRNA, methylation,
miRNA and copy number data identified three iCluster groups: keratin-
low, keratin-high and adenocarcinoma-rich (adenocarcinoma). Relative
frequencies of various cervical cancer classifications defined by histology,
HPV clade, CNVs, methylation, miRNA and RPPA are plotted. The key
for each feature is shown at the bottom. For each category, the statistically
significantly enriched features in each cluster are highlighted with
asterisks and include the name of the enriched feature. Each category was
significantly associated with the clusters (x? test; P < 0.05). The width of

Percentage Present

Percentage Present

each plot is scaled according to the number of samples within each cluster.
b, The frequencies of somatic alterations and additional novel features that
distinguish the clusters, specifically those that do not occur in all three
clusters, are plotted. The ‘somatic mutations’ panel shows the presence

or absence of mutations for 7 of the identified SMGs. The ‘copy number
alterations’ panel shows select copy number alterations (high-level
amplifications and focal deletions) that are differentially present across the
iCluster groups. The ‘additional features’ panel highlights miscellaneous
features that also distinguish the clusters, including the presence of miR-
200a/b alterations, UCEC-like samples and BCAR4-fusion events. The key
for each feature is shown on the right.
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Extended Data Figure 10 | Pathway biomarkers differentiating
squamous cell carcinomas and adenocarcinomas. a, Cytoscape display
of the largest interconnected regulatory network of PARADIGM pathway
features that are differentially activated between squamous cell carcinomas
and adenocarcinomas connected through hubs with >10 downstream
targets. Hubs with >10 downstream targets are labelled. Genes showing
mRNA-miRNA expression anti-correlation with strong supporting

evidence are highlighted with a thicker black outline and are labelled.

Top differentially expressed genes relating to immune function are also
labelled. Node size is proportional to significance of differential activation.
b, Zoom-in display of the p63 sub-network neighbourhood. First
neighbours (upstream or downstream) of four p63 complexes (bold text)
are displayed in this view.
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Extended Data Figure 11 | HPV integration and molecular
characteristics in cervical cancer. a, E6 unspliced/spliced ratio for
HPV16 and HPV18 intragenic, enhancer and intergenic sites. HPV 16,
median = 0.44 (n =102); HPV18, median = 0.93 (n =40). The P value is
from a two-sided Kolmogorov-Smirnov test. b, Distribution of RNA-seq-
based EMT score for HPV-negative (HPV—) and HPV-positive (HPV+)
samples (n=178). The P value was calculated as in a. ¢, Distributions of
somatic copy number alterations and mRNA abundance ranks (left) and
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