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The transcriptional landscape of Shh
medulloblastoma

Sonic hedgehog medulloblastoma encompasses a clinically and molecularly diverse group of

cancers of the developing central nervous system. Here, we use unbiased sequencing of the

transcriptome across a large cohort of 250 tumors to reveal differences among molecular

subtypes of the disease, and demonstrate the previously unappreciated importance of non-

coding RNA transcripts. We identify alterations within the cAMP dependent pathway (GNAS,

PRKAR1A) which converge on GLI2 activity and show that 18% of tumors have a genetic event

that directly targets the abundance and/or stability of MYCN. Furthermore, we discover an

extensive network of fusions in focally amplified regions encompassing GLI2, and several loss-

of-function fusions in tumor suppressor genes PTCH1, SUFU and NCOR1. Molecular con-

vergence on a subset of genes by nucleotide variants, copy number aberrations, and gene

fusions highlight the key roles of specific pathways in the pathogenesis of Sonic hedgehog

medulloblastoma and open up opportunities for therapeutic intervention.
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Medulloblastoma (MB) is the most common malignant
pediatric brain tumor and a major cause of morbidity
and mortality in the pediatric population1. Current

therapy consists of maximal safe resection, radiotherapy in
patients over 36 months, and cytotoxic chemotherapy. MB is
thought to comprise a group of four molecularly distinct diseases:
Wnt, Sonic Hedgehog (Shh), Group 3, and Group 42. Shh-MB is
clinically heterogeneous with infants, teenagers and adults affec-
ted. Shh-MB likely comprises four molecular subtypes, Shh-α
(adolescents), Shh-β (babies with a poor prognosis), Shh-γ
(babies with a good prognosis), and Shh-δ (adults)3. The vast
difference in the host (babies versus adolescents versus adults)
dictates different treatment approaches for different molecular
subtypes. Prior delineation of Shh-MB subtypes used expression
microarrays4, and/or DNA methylation arrays3, and the biology
underlying the differences among the subtypes is poorly
understood.

To further understand the biology of Shh-MB and its
molecular subtypes, we studied 250 human Shh-MB using
strand-specific RNA sequencing with the incorporation of DNA
methylation, whole-genome sequencing, and SNP 6.0 copy
number analysis. This non-biased approach to the Shh-MB
transcriptome allows us to understand the transcriptional basis
and underlying biology of Shh-MB and reveals a previously
unsuspected role for many non-coding RNAs. We find disruption
in the cAMP pathway converging on Shh signaling and also
detect a cluster of mutations inMYCN which prevent degradation
by FBXW7. Alterations in these genes are mutually exclusive of
each other and found in 18% of Shh-MB tumors. We also identify
a number of fusion transcripts in Shh-MB, many of which fall
within focally amplified regions and known Shh-MB tumor
suppressors. This analysis of a large cohort of similar tumors
highlights previously unsuspected examples of molecular con-
vergence where the same gene or pathway is activated through
diverse molecular mechanisms, emphasizing the importance of
those drivers in Shh-MB. Genetic events in Shh-MB do not assort
randomly across the cohort, but rather show very restricted
patterns of mutual exclusivity, suggesting specific biology, with
implications for Shh-MB modeling, and perhaps for the design of
synthetic lethal approaches to therapy.

Results
Importance of the non-coding transcriptome in Shh-MB. Our
Shh-MB strand-specific RNA-seq samples (n= 250) were addi-
tionally characterized with whole-genome sequencing (WGS)
(n= 26), Infinium Human Methylation 450 K BeadChip (n=
196), Affymetrix HuGene 1.1 expression arrays (n= 173), and
Affymetrix SNP 6.0 arrays (n= 130) (Fig. 1a; Supplementary
Data 1). Integrative analysis and unsupervised clustering of both
RNA-seq and 450 K methylation data allowed us to assign Shh-
MB samples to their appropriate molecular subtype3. Subtype
assignment based on RNA-seq and 450 K methylation data highly
overlap with subtyping using Affymetrix expression and 450 K
methylation arrays (Fig. 1b, c). While protein-coding genes make
up only 35% of the transcriptome in GENCODE (v19), 95% of
subtype-specific genes identified using expression arrays are
protein-coding (Fig. 1d). However, Shh-MB subtype-specific
transcripts identified with RNA-seq encompass many non-coding
RNA species, including long non-coding RNAs, expressed pseu-
dogenes, and microRNAs (Fig. 1d; Supplementary Data 2).
Indeed, the majority of genes differentially expressed between
subtypes using RNA-seq data are non-coding transcripts, which
are not evaluated by expression arrays (Fig. 1e). While many of
these non-protein-coding genes are poorly annotated, pathway
analysis reveals divergent biological mechanisms among Shh-MB
subtypes (Fig. 1f). We conclude that each Shh-MB subtype has a

unique landscape of non-coding transcripts which may play an
important role in the biology of Shh-MB.

cAMP-dependent pathway alterations converge on GLI2
activity. We investigated the incidence and patterns of mutations
in a subtype-specific manner (Fig. 2a; Supplementary Data 3). We
detect mutations in GNAS, a heterotrimeric Gs protein α subunit
(Gαs), in 4.4% of Shh-MB. Most mutations cluster between the
GTPase and helical domains which are predicted to reduce GTP
binding (Fig. 2b). GNAS activates adenylyl cyclase which
increases intracellular cAMP, there-by activating protein kinase A
(PKA), a negative regulator of the Shh signaling pathway. This is
in line with the phenotype of Gnas knockout mice which develop
Shh-MBs5. Direct phosphorylation of GLI2 by the PKA complex
leads to proteolytic conversion of GLI2 into its repressor form
and abrogation of Shh target gene expression. Correspondingly,
we also observe mutations mutually exclusive of GNAS in
PRKAR1A, a critical component of the PKA complex (Fig. 2c, d).
All PRKAR1A mutations localize to the binding pocket of the
cAMP-binding domain impairing the activation of PKA6. Nearly
all patients with alterations in GNAS or PRKAR1A do not have
any alterations in the Shh signaling pathway (i.e., PTCH1, SMO,
SUFU, GLI2) (P= 3.80 × 10−5; two-sided Fisher’s exact test),
suggesting that aberration of the cAMP-dependent pathway can
lead to Shh pathway activation (Fig. 2e). Single nucleotide var-
iants (SNVs) were also found in GLI2 within the activation
domain7 (Fig. 2f) which are largely exclusive of GLI2 amplifica-
tion or fusions (Fig. 2g). Most recurrent is the p.P1028L muta-
tion found within a partial PKA consensus sequence8, which may
interfere with phosphorylation and prevent conversion into its
repressor form. Other SNVs can disrupt binding to SUFU
(p.G274R). Interestingly, nearly all patients with mutations in
GLI2 had no other alterations in Shh pathway constituents
(PTCH1, SMO, SUFU) (P= 0.015; two-sided Fisher’s exact test)
further suggesting an oncogenic role. In conclusion, we describe
an alternative axis of control for the Shh-signaling pathway and
open up more opportunities for therapy through activation of
cAMP signaling.

Alterations in cell cycle control genes. Several Shh-MB drivers
important for cell cycle control which were previously identified
as amplified, (i.e., MYCN and PPM1D) also harbor damaging
mutations in a subset of patients. PPM1D, a negative regulator of
the p53 DNA damage response pathway9 undergoes nonsense
and frameshift mutations at its C-terminus (Fig. 3a, b), all of
which are predicted to leave its phosphatase activity intact while
significantly increasing protein stability10–12. We also detect a
cluster of SNVs in MYCN within the phospho-degron containing
MBI domain (Fig. 3c). MYCN amplifications and SNVs are
mutually exclusive (Fig. 3d). Phosphorylation of MYCN at S62
primes for second phosphorylation at T58 by glycogen synthase
kinase-3 (GSK3). Subsequent dephosphorylation at S62 leads to
recruitment of the FBXW7 E3 ubiquitin ligase complex to a
phosphodegron motif that includes amino acids both N-terminal
and C-terminal to pT5813, and the consequent ubiquitination of
MYCN14,15. Mutations in this region of MYCN disrupt FBXW7
binding and/or ubiquitination, and are predicted to stabilize
MYCN16 (Fig. 3e). Remarkably, we also identify missense
mutations of FBXW7 within tryptophan-aspartic acid motif
(WD40) (Fig. 3f, g)17–20 that binds MYCN, in >10% of Shh-MB,
which are mutually exclusive of MYCN amplification or SNVs.
Finally, we found a mutational hotspot (p.R60Q) in the MYC
heterodimer partner MAX (1.6% of Shh-MB tumors) (Fig. 3h).
These alterations lie within the bHLH-Zip domain involved
in protein–protein interactions and DNA binding and may
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Fig. 1 Importance of the non-coding transcriptome in Shh-MB. a Overview of Shh-MB RNA-seq samples and overlapping data sources. b Heatmap of the
sample-to-sample fused network (SNF) by cluster (k= 4, n= 250). Sample similarity is represented by red (less similar) to yellow (more similar) coloring
inside the heatmap. c Subtype clusters obtained by Similar Network Fusion (k= 4) using Affymetrix expression + 450 K methylation and RNA-seq + 450
K methylation (n= 196). Relationships between clustering methods are indicated by gray bars between columns. d Biotype distribution amongst all genes
(top) as compared to genes that differentiate subtypes (significant normalized mutual information (NMI) from SNF RNA-seq + 450 K methylation), in
both RNA-seq and microarray datasets (middle) or restricted to only the RNA-seq dataset (bottom). e Differentially expressed genes per subtype (RNA-
seq). Genes found only with RNA-seq data are indicated. f Enrichment map of biological processes and pathways in Shh-MB subtypes. Each node
represents a pathway or process and connecting lines represent common genes between them. Nodes with many shared genes are grouped together and
labeled with a biological theme. The color of the nodes refers to the subtype(s) in which the process is enriched. The size of the node is proportional to the
number of genes in the process.
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Fig. 2 cAMP-dependent pathway alterations converge on GLI2 activity. a Oncoprint summaries of all fusion, mutation, and copy number data (n= 196).
Subtypes are denoted above. NA, not available. b Gene-level summary of GNAS events. c Mutual exclusivity of GNAS and PRKAR1A LOF events. LOF events
include mutations and homozygous deletions. d Gene-level summary of PRKAR1A events. e cAMP dependant signaling pathway schematic. Red indicates
activating alterations while blue indicates inactivating alterations. f, g Gene-level summary of (f) GLI2 events and (g) their overlaps. Mutations in f are
shown as lollipop diagrams above the gene schematic and fusion events are shown below. The 5 prime and 3 prime orientation of the fusion transcript is
indicated by the color orientation. In cases where GLI2 is the 3 prime partners, the fusion lollipop is red on the right.
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upregulate MYC activity21. In conclusion, we find that 18% of
Shh-MB patients have a genetic event that directly targets the
abundance and/or stability of MYCN.

Somatic copy number aberrations in Shh-MB. Regions of
recurrent genomic gain and loss identify both known Shh-MB
driver genes (i.e., MYCN, GLI2, PPM1D, PTEN)22, as well as the
putative drivers (i.e., PRMT2, HECTD1, SOX11, and LHX1)
(Fig. 4a; Supplementary Data 4). Several recurrent somatic copy
number aberrations (CNAs) that do not contain any genes
when studied by expression arrays, do contain transcripts when
studied by RNA-sequencing (Fig. 4b). Regions of focal ampli-
fication are much more likely to show concomitant changes in
gene transcription as compared to larger, broad copy number

changes (Fig. 4c). A number of putative Shh-MB driver genes
encompassed by focal gains or deletions demonstrate copy
number-driven expression, further supporting their role as
drivers (Fig. 4d; Supplementary Data 5). Notably, only 15%
(378/2,536) of genes identified within GISTIC regions show
copy number-driven expression (Fig. 4e, Supplementary
Fig. 1A–C). In many cases, the copy number responsive genes
are poorly annotated non-coding RNAs that might first be
overlooked (Fig. 4e−h, Supplementary Fig. 1D−F). We also
observe significant deletions in 9q34.11 encompassing the copy
number responsive gene GPR107 (Fig. 4f). This region is usually
lost in the context of chromosome 9q loss along with PTCH1
and IKBKAP (Supplementary Fig. 1G, H). A substantial min-
ority (24%) of Shh-MB are aneuploid; their transcriptome

Fig. 3 Alterations in cell cycle control genes. a, b Gene-level summary of (a) PPM1D events and (b) their overlaps. c Gene-level summary of MYCN
events. Only mutations in the canonical isoform NM_005378 are shown. d Overlap of MYCN fusion, amplification, and SNV events. e Structural model
of MYCN highlighting positions affected by hotspot mutations (blue) near the FBWX7 protein binding region (purple), and phospho-degron positions
(red). f Gene-level summary of FBXW7 events. g Mutual exclusivity of MYCN gain-of-function (GOF) and FBXW7 loss-of-function (LOF) events.
P-value calculated using the DISCOVER package. GOF and LOF events include both high-level CNA and mutation events. h Gene-level summary
of MAX events.
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differs from diploid tumors by over-expression of genes
involved in RNA processing and translation (Supplementary
Fig. 2A−D). We conclude that regions of focal CNAs in the
Shh-MB genome contain both copy number responsive and
non-responsive genes, that many events focus on poorly char-
acterized non-coding transcripts, and that non-copy number

responsive genes within CNAs are likely to a poor choice for the
development of targeted therapy.

Identification of Shh-MB fusion genes. We identified fusion
transcripts in the Shh-MB transcriptome using three distinct
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assembly and alignment-based callers (STAR-fusion, InFusion,
Trans-Abyss)23–25, filtering out any readthrough transcripts or
fusion contigs that were also observed in libraries of non-
cancerous brain tissue (Supplementary Figs. 3 and 4; Supple-
mentary Data 6). A subset of Shh-MB patients (12/126, 10%)
harbor a high number (top 25th percentile) of both fusions and
copy number events and are significantly associated with both
aneuploidies (10/12; P= 7.4 × 10−7, two-sided Fisher’s exact test)
and with TP53 mutation (6/12; P= 1.2 × 10−4, two-sided Fisher’s
exact test) (Supplementary Fig. 5A). Only a subset of fusion
transcripts demonstrates substantial evidence of an underlying
structural variant (SV) in the genome due to the presence of
breakpoints in matching WGS or SNP 6.0 data and/or the
identification of multiple splice variants of the same fusion
transcript. The number of SV-supported fusions per patient was
significantly different among subtypes (P= 4.7 × 10−8; Kruskal-
Wallis rank-sum test), with Shh-α showing the highest number of
fusions per tumor (Supplementary Data 6).

A large number of SV-supported fusions coincide with focal
amplification of GLI2 (2q14.2), MYCN (2p24.3), CCND2
(12p13.32), and PPM1D (17q23.2) (Fig. 5a, b; Supplementary
Fig. 5B−G). Most recurrently, we observe GLI2 fusion transcripts
(11/250 Shh-MB) fused in the 5 prime ends of the mRNA which
houses the repressor domain of the encoded protein, suggesting that
the fusion leads to an overactive protein (Fig. 2f). GLI2 fusions were
largely exclusive of detected SNV events and were also found in
patients without GLI2 amplifications (Fig. 2a). We additionally
observe recurrent fusion transcripts at nearby genomic loci, such as
EPB41L5, NBAS, BCAS3, and GLIS3 which are likely a result of
chromothripsis, and/or the formation of extrachromosomal double
minutes (Fig. 5c−f)26,27. It is unclear the extent to which
amplification versus the formation of a fusion transcript contributes
to clonal selection (Supplementary Fig. 5B−G), nor is it obvious
whether fusion transcripts involving nearby genes are drivers or
passengers. Conversely, we now identify fusions in ZBTB20 (14/250
patients), which are not usually found in the context of
amplification (Fig. 6a, b).

We also identify fusion transcripts involving known Shh-MB
tumor suppressor genes such as PTCH1 and SUFU, (Fig. 6c–h),
both of which are accompanied by decreased expression of the
gene immediately following the breakpoint. These are likely
markers of chromosomal events that result in loss of gene
function and are largely mutually exclusive of tumors with
mutations or large chromosomal deletions, supporting their
functional role (Fig. 6g, h). We identify N-terminal missense
mutations of SUFU which are predicted to be damaging, occur
in a highly conserved portion of the gene, and are mutually
exclusive with mutations in other Shh signaling genes (Fig. 6e).
NCOR1, a transcriptional regulator of neural stem cell
differentiation28,29 harbors similar loss-of-function (LOF)
fusion transcripts and damaging mutations (13/250, 5.2%
of patients) (Fig. 6i, j). We conclude that >20% of Shh-MB

patients exhibit fusion transcripts with structural support for an
event in the genome.

The landscape of oncogenic alterations across Shh-MB. Tran-
scriptional profiling of this large cohort of a single molecular
tumor type permits identification of both recurrent and rare
Shh-MB driver genes, and their patterns of mutual exclusivity
(Supplementary Data 7 and 8). Most Shh-MBs (86%) have an
identifiable event activating the Sonic Hedgehog signaling path-
way, including mutations of PTCH1 (42%), SMO (12%), SUFU
(10%), or GLI2 (9%) (Fig. 2a). About 11% of patients have pre-
viously unappreciated inactivating (i.e., SUFU or PTCH1), or
activating (i.e., GLI2) fusion transcripts affecting Shh pathway
genes. Pathways discovered using copy number aberrations,
mutations, or fusion transcripts were numerous in Shh-α and
Shh-δ but limited for Shh-β or Shh-γ due to their low number of
mutational events (Fig. 7a). There is strong mutational con-
vergence on genes important for Shh signaling, neuronal devel-
opment, cell cycle progression, and modification of the
epigenome (Fig. 7a, b). Of Shh-MBs without detected events that
canonically lead to excess Shh signaling (PTCH1, SMO, SUFU,
TP53, GLI2, 9q, 10q, and 17p loss) (45/250 patients), the most
recurrent mutational events involved DDX3X (n= 12), KMT2D
(n= 6), PRKAR1A, GNAS, GSE1 and CREBBP (each n= 5)
(Fig. 2a); all of which have been previously shown to interact with
or potentiate Shh signaling5,30,31. DDX3X and GSE1 are potent
medulloblastoma tumor suppressors in Gorlin 1 NES cells,
PRKAR1A with its upstream g-protein GNAS are both regulators
of Shh activity through cAMP, and CREBBP has been shown to
promote cell-cycle exit during postnatal development in coordi-
nation with Shh pathway upregulation.

We used MethylMix32 to identify potential Shh-MB driver
genes affected by promoter CpG hypomethylation or hyper-
methylation, for which there is a correlative change in gene
expression (Supplementary Fig. 6). We obtained a curated list of
735 promoter probe-gene pairs (540 and 195 for two and three
methylation clusters, respectively), involving 727 genes in total
(Supplementary Fig. 6A, B; Supplementary Data 9). Among these,
we identify a number of known cancer genes (i.e., FOXL2,
RUNX1T1), transcription factors (i.e., MEIS2), as well as LHX1
and PAX6 (which are also recurrently affected by mutations)
(Supplementary Data 9). Transcriptional silencing of PAX6
through promoter CpG methylation, versus somatic mutations
of PAX6, appear to be largely mutually exclusive (P= 7.3 × 10−4,
multinomial exact test), suggesting convergence on PAX6 loss of
function (Supplementary Fig. 6C−H).

Lastly, DISCOVER33 was used to identify networks of
significantly mutually exclusive genes and chromosome arms
across the subgroup and in a subtype-aware manner. We
observe extensive significant mutual exclusivity between driver
gene pairs in Shh-MB (Fig. 7c; Supplementary Data 8). As
expected, the most pronounced negative gene correlations are

Fig. 4 Somatic copy number aberrations in Shh-MB. a GISTIC significant amplifications (red) and deletions (blue) observed in Shh-MB (n= 126). b Log2
fold increase of known annotated gene in GISTIC regions using RNA-seq compared to expression arrays. GISTIC regions with genes only found in the RNA-
seq dataset have points on the outermost circle. c Normalized expression density across broad and focal CNAs. d Expression difference between copy
number neutral and aberrant states in GISTIC region copy number responsive genes. Each gene was normalized by its neutral copy number state
distribution. Numbers in square brackets denote the number of patients detected with the CNA. The lower and upper hinges in the boxplot correspond to
the first and third quartiles while the center line represents the median. The upper and lower whisker extends from the nearest hinge to the smallest/
largest value at most 1.5 times the interquartile range. Points outside this range are outliers and are plotted individually. e GISTIC copy number responsive
gene types. f–h Expression difference between copy number neutral and aberrant states in (f) 9q34.11, (g) 8q22.1, and (h) 10q23.31. Asterisks annotate
significant copy number responsive genes (FDR < 0.05) calculated using a Kruskal-Wallis rank-sum test. Please refer to Supplementary Data 5 for exact
P-values. The SNP 6.0 copy number segments are shown to the left of each graph. The expression of each gene was normalized by the expression median
of the neutral copy number state.
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Fig. 5 Fusion networks within somatic recurrently amplified regions. a The network of gene fusions in focally amplified regions. Node color signifies the
most common orientation of the fusion gene, 5 prime (blue), 3 prime (red), or both (gray). The arrow and base color show the proportion of chimeric reads
compared to wildtype supporting the fusion. The arrow line color shows the difference in expression of the 3 prime fusion partners compared to patients
without the detected fusion. b Oncoprint of fusions depicted in focally amplified regions illustrated in a. c–f Gene-level summary of (c) EPB41L5, (d) NBAS,
(e) BCAS3, and (f) GLIS3 events. Refer to Fig. 2b for schema description.
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Fig. 6 Recurrent fusions in Shh-MB. a Oncoprint of fusions detected in focally amplified regions and known Shh-MB tumor suppressors. NA, not available.
b Gene-level summary of ZBTB20 events. Mutations are shown as lollipop diagrams above the gene schematic and fusion events are shown below. The 5
prime and 3 prime orientation of the fusion transcript is indicated by the color orientation. In cases where ZBTB20 is the 3 prime partners, the fusion lollipop
is red on the right. c Gene-level summary of PTCH1 events. d Read depth diagrams of representative PTCH1 fusion events. e Gene-level summary SUFU
events. f Read depth diagrams of representative SUFU fusion events. g Overlap of PTCH1 fusion, amplification, and mutation events. h Overlap of SUFU
fusion, amplification, and mutation events. I Gene-level summary of NCOR1 events. j Read depth diagrams of representative NCOR1 fusion events.
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between members of the Shh signaling pathway (i.e., PTCH1,
SMO, SUFU, GLI2) (Fig. 7b, c). Chromosomal deletions of 9q,
10q, and 17p seem to be potent drivers, mutually exclusive of
genes in the cAMP, Phosphoinositide 3-kinase signaling, cell
cycle regulation, and chromatin modulation pathways. All
chromosomal losses are significantly mutually exclusive of

GNAS, DDX3X, and KMT2D. Furthermore, alterations in GNAS
and PRKAR1A are mutually exclusive of PTCH1 further
supporting its role in upregulating GLI2 through cAMP
dependant signaling. Mutual exclusivity is also observed
between MYCN and FBXW7. We conclude that Shh-MB
mutational events exhibit marked patterns of mutual exclusivity
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which offer insights for modeling of Shh-MB and suggest
avenues for synthetic lethal approaches to therapy.

Discussion
Initial efforts to subdivide cancers through unsupervised clus-
tering primarily used expression microarrays that focused on
the protein-coding elements of the genome. Through an
unbiased approach using whole transcriptome sequencing, we
now identify a large number of non-coding genes as differen-
tially expressed between the molecular subtypes of Shh-MB.
This is complementary to our prior discoveries of the most
common mutations in Shh-MB, mutations of the TERT
promoter34, and mutations of the U1-snRNA4, both of which
are non-coding. Assigning biological functions to either indi-
viduals or groups of non-coding RNA transcripts is obviously
more difficult than it is for protein-coding genes, and thus
the importance and specific biological role of most of these
differentially expressed non-coding transcripts will need to be
addressed in the future through additional functional
experiments.

Shh-MBs harbor few mutations, but frequently have more
structural and copy number aberrations in their genomes22. For
many of these CNAs, the specific resident genes driving clonal
selection were not previously apparent. Indeed, many of the
minimally amplified/deleted intervals appeared to be devoid of
transcripts when studied by microarray. Our unbiased tran-
scriptional approach identifies transcripts within almost all
intervals and further demonstrates that only a subset of genes
within a given region of recurrent CNAs have copy number-
driven expression, and thus are possible drivers. Discerning the
driver genes within regions of recurrent CNAs might allow for
the design of rationally targeted therapies.

Transcriptional profiling of such a large cohort of a single
molecular type of cancer allows for a thorough understanding of
the tumor’s genomic landscape, including the identification of
genes affected by mutations (GNAS, MYCN, PPM1D, and
PRKAR1A), and fusion transcripts (ZBTB20 and NCOR1). We
also report fusion transcripts in known Shh-MB driver genes, that
are likely actually tombstones of large genomic events leading to
gene inactivation (i.e., PTCH1, and SUFU). Other drivers pre-
viously known to be amplified in Shh-MB are now identified in
additional patients as activated through the creation of fusion
transcripts (i.e., GLI2), and/or point mutations (i.e., MYCN and
GLI2). These latter events in GLI2 and MYCN further support a
driver role for these genes in Shh-MB, and are clinically impor-
tant as their presence in a tumor will likely render them unre-
sponsive to Sonic Hedgehog pathway inhibition using small
molecules. Diverse molecular events do appear to converge on a
limited set of pathways in Shh-MB, with the different genes
showing clear patterns of mutual exclusivity, perhaps telling us

about the molecular events that initiate and sustain Shh-MB
growth.

Methods
Acquisition of patient samples. Samples were obtained from the Medullo-
blastoma Advanced Genomics International Consortium (MAGIC), and from the
International Cancer Genome Consortium (ICGC). All patient material was col-
lected after receiving written informed consent, which includes consent to publish
the data, under the ethical regulations of the following institutions: Hospital for
Sick Children, Institut Curie Research Center, Université de Lyon, Seoul National
University Children’s Hospital, German Cancer Research Center, John Hopkins
University School of Medicine, University of São Paulo School of Medicine, Istituto
Neurologico Besta, University of Pittsburgh, Emory University, Vanderbilt Medical
Center, University of Debrecen Medical and Health Science Centre, Tohoku
University, McMaster University, Mayo Clinic, Washington University School of
Medicine, St. Louis Children’s Hospital, Seattle Chidren’s Hospital, Fred Hutch-
inson Cancer Research Centre, Erasmus University Medical Center, University of
Warsaw, Children’s Memorial Health Institute, The University of California-San
Francisco, The Chinese University of Hong Kong, McGill University Faculty of
Medicine, Masaryk University Faculty of Medicine, Hospital Sant Joan de Déu,
David Geffen School of Medicine at University of California-Los Angeles, Uni-
versity of Colorado Denver, University of Calgary, University of Ulsan, Asan
Medical Center, University of Cincinnati, Cincinnati Children’s Hospital Medical
Center, University of Alabama at Birmingham, Universidade de São Paulo-Brazil,
UMAE Pediatria-Portugal, Osaka National Hospital, New York University Medical
Center, Ludwig Maximilians University, Kolling Institute of Medical Research,
Istituto Giannina Gaslini, Duke University, Virginia Commonwealthy University,
School of Medicine, University of Nottingham, University of Arkansas, Uni-
versitäts Kinderspital, Universitäts Kinderklinik, University Health Network,
Semmelweis University, Kumamoto University, Hospital Infantil de Mexico Fed-
erico Gomez, and Chonnam National University. Control brain RNA was acquired
from commercial suppliers (Brainchain, USA), and control RNA-seq libraries were
obtained from the Genotype-Tissue Expression (GTEx) project (phs000424.v7.
p2)35. Statistical methods were not used to predetermine the study sample size.
Only primary Shh-MB samples were selected for this study. The age, gender,
subtypes, and available data of the 250 patients used in this study are presented in
Supplementary Data 1.

Sample processing. Samples were obtained fresh from patients at the time of
diagnosis and stored at −80 °C. Tissues were either manually homogenized using a
mortar and pestle after freezing in liquid nitrogen or processed in an automated
manner using a Precellys 24 tissue homogenizer (Bertin Technologies, France),
following the manufacturer’s instructions. DNA was extracted by SDS/Proteinase K
digestion followed by 2–3 phenol extractions and ethanol precipitation. Total RNA
was isolated using the Trizol method (Invitrogen, USA) using standard protocols.
DNA and RNA were quantified using a NanoDrop 1000 instrument (Thermo
Scientific, USA), and integrity assessed either by agarose gel electrophoresis (DNA)
or Agilent 2100 Bioanalyzer (RNA; Agilent, USA) at The Centre for Applied
Genomics (TCAG, Toronto, Canada).

Messenger RNA library construction and sequencing. Total RNA samples
(2 µg) were arrayed into 96-well plates, and polyadenylated mRNA was purified
with a MultiMACS mRNA isolation kit as per the manufacturer’s instructions.
First-strand cDNA was synthesized using a SuperScript cDNA Synthesis kit with
random hexamer primers. The SuperScript cDNA Synthesis protocol was used for
second-strand cDNA synthesis. dTTP was replaced with dUTP in the dNTP mix
which allowed the second strand to be digested with UNG (Uracil-N-Glycosylase,
Life Technologies, USA) in the post-adapter ligation reaction. The cDNA was
quantified and checked for quality before fragmentation. Plate-based libraries were
created following the BC Cancer Agency’s Michael Smith Genome Sciences Centre
(BCGSC) paired-end (PE) protocol36. The libraries were sequenced using Illumina

Fig. 7 Landscape of oncogenic alterations in Shh-MB. a Enrichment map of biological processes and pathways affected by mutation or focal
amplifications/deletions in Shh-MB subtypes. Each node represents a pathway or process and connecting lines represent common genes between them.
Nodes with many common genes are clustered together and labeled with a biological theme. The node color refers to the subtype(s) in which the process
is enriched. The size of the node is proportional to the quantity of genes in the process. Enriched processes were determined using g:Profiler (FDR < 0.05)
and visualized in Cytoscape using the Enrichment Map app. b Percentage of altered genes and pathways integrating mutation, high-level copy number, and
fusion data. Alteration frequencies are expressed as percentages of all cases per subtype (n= 196) in the boxes and total percentage across Shh-MB (n=
250) in parenthesis beside each gene name. Red indicates activating alterations while blue indicates inactivating alterations. TERT and U1-snRNA
alternation percentages were obtained from earlier published studies3,4. c Co-occurrence (red) and mutual exclusivity (blue) among the major Shh-MB
driver genes and chromosomal arm events (n= 250). Mutually exclusive P-values were calculated using the DISCOVER package with FDR < 0.01.
Significant Co-occurring genes were found using a two-sided Fisher Exact-Test with FDR < 0.01 and odds ratio >1. Exact P-values can be found in
Supplementary Data 8.
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HiSeq 2000 or 2500, 2 × 100 PE lanes, with v3 chemistry and HiSeq Control
Software version 2.0.10.

Whole-genome library construction. Samples were sequenced on the Illumina
HiSeq 2000 or 2500 platform at Canada’s Michael Smith Genome Science Centre in
the BC Cancer Agency.

RNA-seq alignment. The hs37d5 reference genome FASTA (1000 Genomes
Project Phase II) was appended to the C1_2 ERCC spike-in sequences used for C1
Fluidigm, as well as Caltech profile 3 spike-ins sequences by ENCODE. A STAR
assembly was then built with this reference and GENCODE (v19) gene annotations
using parameter ‘-sjdbOverhang 124‘. RNA-seq library reads were then mapped
with the built assembly using STAR (v2.5.1b) and parameters ‘-out-
FilterMultimapNmax 20 -alignSJoverhangMin 8 -alignMatesGapMax 200000
-alignIntronMax 200000 -alignSJDBoverhangMin 10 -alignSJstitchMismatchNmax 5
−1 5 5 -outSAMmultNmax 20 -twopassMode Basic’.

Shh-MB subtype identification. The Similarity Network Fusion (SNF) method37

was run on 196 primary tumor samples using both RNA-seq gene expression and
DNA methylation data to determine Shh-MB subtypes3. The full gene expression
and methylation matrix were used since the SNF method does not require any
prior feature selection. The SNFtool R package (v2.2.0) was used with parameters
‘K= 40, alpha= 0.6, T= 50’ and then spectral clustering, implemented in the
SNFtool package, was run on the SNF fused similarity matrix to obtain the groups
corresponding to k= 2−12. The four clusters obtained at k= 4 corresponded to
the four Shh-MB medulloblastoma subtypes, α (n= 50), β (n= 42), γ (n= 32) and
δ (n= 72).

Shh-MB subtype relevant genes (NMI). The Normalized Mutual Information
(NMI) score (as part of the SNFtool package) was identified for each feature (i.e.,
each gene and methylation probe). For each feature, a patient network based on the
feature alone was constructed and subsequently used in spectral clustering. This
was then compared to the whole fused similarity matrix through the computation
of NMI scores37. All features were then ranked according to their NMI scores,
representing their importance for the fused network (a score of 1 indicates that the
network of patients based on the given feature leads to the same groups as the fused
network, whereas 0 means no agreement). The top 10% of features (called subtype-
relevant genes) were considered for subsequent analysis.

Shh-MB subtype differentially expressed genes. Differential expression analysis
was performed using DESeq2 (v1.24.0) R Bioconductor package38 comparing
samples from one Shh-MB subtype to the samples from the remaining 3 Shh-MB
subtypes, considering significant genes with an FDR < 0.05.

RNA-seq mutation analysis. RNA-seq mutation calls were performed using
GATK (v3.8.0)39 using GATK’s best practices and workflows4. Detected variants
were filtered using a panel of normal controls (9 Brainchain and 42 GTEx RNA-seq
libraries), multiallelic mutations, and if candidates had <5 variant reads. Annota-
tion was performed using ANNOVAR software40.

Mutations with a frequency greater than 0.01 in 1000 Genomes, dbSNP138,
Exome Aggregation Consortium database, NHLBI-ESP project, Kaviar Genomic
Variant Database, Haplotype Reference Consortium database, Greater Middle East
Variome, Brazilian Genomic Variants database, and from an inhouse SNP database
(356 sequenced whole genomes) were discarded. Suspected RNA editing events
registered in the RADAR database41 were also discarded. Any deletions which were
completely matched with an intron registered in the GENCODE (v19) database
were also removed since splice junctions caused by canonical splicing were often
miscalled as deletions.

Reads were split into intron-exon segments. However, since there remained
unsplit-reads overlapping splice junctions, the splice site variant read numbers
were re-calculated using a modified ‘realignment’ function of the
GenomonMutationFilter package. The default algorithm remapped reads around
detected mutations into reference genomic sequences with and without detected
variants. Isoform sequences constructed from the GENCODE (v19) database were
added, as well as non-annotated isoforms detected using LeafCutter42 since Shh-
MB often contain U1-snRNA mutations which cause cryptic splicing. Variants on
splice sites were calculated using a modified GenomonMutationFilter and any
splice sites with < 5 variants were removed.

Candidates on homopolymer sites were filtered out using the following criteria.
(1) homopolymer sequence is ≥5 bps, (2) Insertions or deletions, (3) deleted or
inserted bases were the same or consecutive base(s) with the homopolymer base.
Any mutations only supported by soft-clipped reads were discarded. In addition,
SNPs were filtered if: (1) they were present in germline SNP clusters which were
defined as any regions ≥10 bps where SNPs were registered on all the positions in
dbSNP150. (2) Any missense or synonymous mutations and non-frameshift indels
registered in any of the SNP databases listed above and registered with less than
10 samples or, (3) not registered in COSMIC v87. Mutations were also classified as
non-pathogenic and removed if: (1) they registered with less than 10 samples in

COSMIC v87, (2) the SIFT score ≥0.05, PolyPhen-2 HDIV ≤ 0.908, PolyPhen-2
HVAR ≤ 0.956, “polymorphism” or, (3) “polymorphism_automatic” by
MutationTaster43, and “predicted non-functional” by MutationAssessor44.

Lastly, EBCall45 was run using the same normal panel. Candidates with <10−3

P-value calculated by EBCall were discarded. EBCall uses the samtools mpileup
function, so a subset of mutations detected by local-realignment can not be
evaluated correctly. Therefore, any mutations which samtools mpileup could call
with <5 variant reads, or less than a half of variants reads detected by GATK are
not filtered out. Significantly mutated genes (q < 0.05) were identified using
MutSigCV46 with its default setting.

SNP 6.0 Processing. Affymetrix Power Tools (v1.18.2) was used to process and
normalize the probe intensities. The PennCNV-Affy pipeline47 was then used to
generate the log R ratio (LRR) and B allele frequency (BAF). The probes were mapped
onto hg19 using the ‘affygw6.hg19.pfb’ file. All other parameters were left on default.

Copy number determination and ploidy estimation. The resultant probe level
LRR and BAF data were input into ASCAT (v2.4.3)48. GC wave correction was
performed, followed by germline genotype prediction. Lastly, the ASCAT algo-
rithm was used to find copy number values for each genomic region and the overall
ploidy and purity of the sample. Samples, where the model fit was less than 80%,
failed the ASCAT processing stage.

Copy number post processing. The copy number of each segment, as well as the
average ploidy of the sample, was used to calculate the log-ratios using the equa-
tion: log2((Copy Number)/Ploidy). Adjacent segments whose log-ratios differed by
less than 0.25 were merged using the size weighted mean.

Filtering common variants. To derive filtered lists, the gold standard variants
listed in DGV release 2016-05-15 for GRCh37 found in at least 1% of samples were
used to remove any segments with a 50% reciprocal overlap with segments pro-
duced by ASCAT. Once removed, the remaining segments were merged using their
size-weighted means as before. Further filtering was also done using the list var-
iants in the supporting variants list in the DGV release 2016-05-15 for GRCh37.
Studies that had at least 50 subjects, as well as variants found in at least 1% of the
study, were used, and ASCAT segments that had a reciprocal overlap of 80% with
these variants were removed. This was performed after removing variants from the
Gold Standard list. The resulting segments were then merged using their size-
weighted means. Copy number states were assigned to each segment based on their
log ratio and their ploidy values. Segments were then grouped into either broad or
focal depending on whether the segment spanned a length greater than 12Mb, or
equal to and less than 12Mb. These broad and focal segments were then used to
determine gene-level states.

GISTIC analysis and increased genes in RNA-seq. The filtered and size-weighted
merged segments were then input into the GISTIC 2.0 module on GenePattern49

and run with slight changes to the default parameters: ‘focal length cutoff= 0.5,
confidence level= 0.9, q-value= 0.25, remove X= false, run broad analysis= yes‘.
The amplified and deleted segments were then extracted from the filtered file and
used to determine which genes fell within the region using bedtools (v2.27.1)50.
Microarray annotations and RNA-seq annotations were used to determine the
number of detectable genes captured by each method.

Gene level determination of copy number state. The copy number segments for
each patient were then intersected with the list of GENCODE (v19) genes. The
segment that overlapped the greatest amount of the gene was the copy number ratio/
state assigned to that gene (e.g., if segment A overlapped with 25% of the gene, while
segment B overlapped with 45% of the gene, the gene would be given the ratio/state of
segment B. A majority of the gene does not have to be overlapped by a segment to
assign it to that ratio/state – similar to “first past the post”). Further to this, for a gene
to be gained or amplified, it must overlap at least 50% of the gene, whereas any loss or
deletion that overlaps a gene would give that gene this status.

Copy number responsive gene. Gene expression was categorized based on either
having an amplification, neutral or with a loss. The Kruskal-Wallis test was per-
formed on each gene to determine if the gene copy number state corresponded
with a significant difference in expression. The significance values were adjusted for
multiple testing using the Benjamini-Hochberg method, and genes whose adjusted
P-values <0.05 were flagged as being copy number responsive.

Fusion calling. Multiple fusion callers were used to maximizing sensitivity.
Star-Fusion: STAR RNA-seq read alignment outputs, bam and the ‘Chimeric.out.
junction’ file were input into STAR-Fusion23 (v0.8.0) using default parameters.
STAR fusion results were then further filtered with FusionInspector (v0.8.0) using
default settings. InFusion: Bowtie2 (v2.2.1)51 genome assembly was created using
hs37d5 (appended to the C1_2 ERCC spike-in, as well as Caltech profile 3 spike-ins
sequences) and GENCODE (v19). Infusion25 (v0.7.3) was run twice for each
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sample, firstly with parameters ‘-allow-intronic -allow-intergenic -allow-non-coding
-allow-all-biotypes‘ from which only gene-gene fusions were kept for further fil-
tering. The infusion was run a second time with the addition of more stringent
parameters ‘-min-split-reads 3 -min-span-pairs 2 -min-fragments 4′, from which
only gene-intergenic or intergenic-intergenic fusions were kept. Afterward, both
Infusion lists were concatenated. Trans-Abyss: De-novo assembly was conducted
using ABySS24 for each RNAseq library22,24. Reads were assembled into contigs
using different starting k-mer values (substrings of k bp). These contigs were then
merged into a smaller non-redundant set. Inter-contig distances were calculated
using paired-end information and were used to unambiguously merge contigs.
These contigs were then aligned to the reference human genome and known
transcripts (UCSC, RefSeq, Ensemble, Aceview). Candidate fusion genes were
shortlisted from contigs alignments that matched multiple known annotations and
then further analyzed to determine fusion orientation. Predicted fusion contigs
were split into two sequences by gene and aligned to the reference (hg19) using
BLAT (v35). The predicted orientation was determined to be that which allowed
fusion partner genes to be in a sense-sense orientation, similar to what is done in
STAR-Fusion. Predicted orientations which were not compatible with both fusion
partner genes being in a sense-sense orientation were flagged as low confidence
orientations.

Fusion filtering. A list of blacklisted fusion pairs and breakpoints were created
from control GTEx and Brainchain RNA-seq libraries using a (1) fusion contig
alignment, and (2) control sample fusion calling strategy: (1) From each detected
event, fusion contigs were extracted (110 bp from both the 5 prime and 3 prime
partner side where possible) using scripts supplied by the respective fusion caller.
These contigs were then used as a reference for alignment of the normal brain
RNA-seq libraries using bbmap (v37.33) with parameters ‘mappedonly semi-
perfectmode qin= 33 boundstag= t saa= f g maxsites= 1000000 minaveragequ-
ality= 30 ambiguous= all‘. A fusion was blacklisted if a high-quality control
sample read (bp quality average >30) aligned perfectly with the fusion contig with
at least a 20 bp overhang past the fusion junction. If the same fusion gene-pair was
found in ≥2 control samples, it was also subsequently blacklisted. (2) STAR,
InFusion, and Trans-Abyss fusion callers were used on all fetal and adult control
brain samples using the same parameters as the tumor libraries. Any fusion pairs
detected in the fetal MAGIC control and at least 2 adult samples were blacklisted.
Furthermore, all fusion breakpoints detected in any control samples callers were
blacklisted.

Any fusions in the control sample breakpoint and gene pair blacklists were
filtered out, as well as fusions where both fusion breakpoints were called within the
same gene (circular RNA artifacts). In an effort to minimize the number of
readthrough fusions, fusion pairs within 50 kb and fusions with highly recurrent
breakpoints (>15 samples with the same event) were filtered out unless there were
other fusion breakpoints detected in the same genes. Highly expressed genes often
contained readthrough fusions so the ratio of ((fusion reads)/200 bp)/(gene RPKM)
was calculated and any fusions where either partner had a ratio of <0.01 were
removed. Fusions, where the read proportion supporting the fusion junction was
less than 0.05 for both partners, were also removed. From this filtered list, an event
was further characterized as a structural variant (SV) based fusion if it was
validated by WGS or SNP 6.0 (see Fusion validation method), or if there were
multiple fusion isoforms detected with both spanning reads and bridging reads >0
and spanning+ bridging sum >20 in at least one partner. For highly recurrent
fusion genes, the unfiltered events were manually inspected and salvaged if there
was a change in reading depth at the fusion junction or WGS/SNP 6.0 support.
Gviz (v1.18.2)52 was used to visualize the change in reading depth associated with
each fusion event.

Fusion validation
WGS. There were different assigned validation states based on the location of the
two partner genes relative to the location of WGS detected breakpoints: (1) fused
exon is first or last exon and the breakpoint falls into the intergenic region between
the gene and adjacent gene, (2) fused exon is the middle exon and the WGS
breakpoint falls within an adjacent intron (3) breakpoint falls within a 100 kbp
window from the edge of the fused exon. Confidence levels were assigned as
follows: High-Both partner genes meet conditions (1) or (2), Intermediate-One
partner meets condition (1) or (2) and the other partner fulfilled (3), Low-Both
partners meet condition (3).

SNP 6.0. The position of RNA fusion breakpoints was compared to SNP 6.0 pre-
dicted breakpoints corresponding to a change in copy number. The SNP 6.0
breakpoints were padded with a 250 kbp window upstream and downstream, and
then each RNA fusion breakpoint in a pair was checked for support (i.e., support
for each breakpoint of a fusion was done, respectively) using bedtools (v2.27.1).
The support of each fusion was reported as left-sided (only the first breakpoint of
the fusion was detected), right-sided (only the second breakpoint of the fusion was
detected), both (both breakpoints of the fusion were detected), or none.

WGS alignment. Whole-genome sequencing reads were aligned to the human
reference genome “hs37d5” by 1000 Genomes Project Phase II using Burrows-

Wheeler Aligner (BWA)-MEM, (v0.7.8) with ‘-T 0’ parameter. Duplicates were
marked using biobambam (v0.0.148)53.

WGS structural variant calling. Somatic structural variant calling was performed
using two softwares: Genomon-SV (v0.4.1)54 and DELLY2 (v0.7.5)55. Genomon-
SV was run using its default settings. Detected candidates were filtered with
‘-min_tumor_allele_freq 0.02 -max_control_variant_read_pair 1 -con-
trol_depth_thres 10 -inversion_size_thres 1000 -min_overhang_size 50 -remove_-
simple_repeat’. DELLY2 was also run using its default settings. The following filter
was used for somatic structural calls: ‘-m 15 -a 0.1’ for deletion, ‘-m 400 -a 0.1’ for
tandem duplication and inversion, ‘-m 0 -a 0.1’ for translocation. DELLY2 results
were filtered using 341 control whole-genome sequence data using ‘filter’ function
of DELLY2 with its default setting. Both results were merged and detected can-
didate mutations were reanalyzed using velvet de novo assembler56. Soft-clipped
and one-anchor reads were extracted within 1000 bp of detected breakpoints from
the tumor and matched control whole genome sequence. Then, contigs were
generated using velvet with ‘-short’ option and hash length ‘11, 72, 10’ (from 11 to
72 with a step of 10). Reference sequences were prepared for remapping which
contained reference sequences ±1200 bp around both paired breakpoints and
expected variant sequences with the somatic structural variant. Contigs were
mapped to the references using blat version 35 with ‘-fine’ function. Only the
candidates where contigs from tumor were mapped on the variant sequences and
not found mapped in the control were used.

MYCN protein structural model. To predict protein structure, the weighted
existing structural information of some MYCN and MYC regions from the RSCB
PDB (5G1X, 6G6J, 1NKP, 2A93) were used in i-TASSER57,58. These models were
subsequently visualized and modified in PyMOL (v2.3) and UCSF Chimera
(v1.13.1)59. The prediction is imprecise, as the structure of the N-terminus of
MYCN shows intrinsic disorder.

Mutual and co-occurrence analysis. Both the DISCOVER33 R package (v1.1.0)
and a Fisher exact test were used to calculate mutual exclusivity and co-occurrence
on high-level copy number, mutation, SV fusion events, and arm level gains/losses
using default parameters on all patients and on a per-subtype basis. Only known
drivers, significantly mutated, GISTIC copy number responsive genes, and arm
level events (n= 384) were included and a corrected P-value < 0.01 was used for
downstream analysis. Both the Fisher and DISCOVER P-values were corrected
using the false discovery rate.

Pathway analysis
Subtype driving genes. Enriched pathways were identified using the gProfileR R
package60. Four gene lists corresponding to the four Shh-MB subgroups were
generated by selecting the top 10% genes having the highest NMI scores and a
positive Z-score. Each gene list was ranked by Z-scores in decreasing order and
analyzed by the gProfileR function with the ordered query setting. Pathways from
the Reactome pathway database and biological processes (BP) from Gene Ontology
that have between 5 and 1000 associated genes with at least 3 associated genes
belonging to gene lists were included in the enrichment analysis. Electronically
annotated (IEA) BPs were excluded from the enrichment analysis. P-values of
enriched pathways and BPs were corrected using the default multiple-hypotheses
testing method (g:SCS) of gProfileR; those with an adjusted P-value <0.05 were
retained.

Ploidy. Gene set enrichment analysis was performed using GSEA software61. Genes
were ranked using the sign of log2(fold change) * -log10(P-value) and analyzed
using the pre-ranked option. Gene sets from MSigDB, pathways from Reactome,
and biological processes from Gene Ontology were included in the analysis. Gene
sets larger than 200 were excluded. Significantly enriched pathways were corrected
with FDR and only genes with q-value <0.01 were retained.

Integrative. Genes were ranked by the number of patients with a mutation, focal
copy number events or SV fusion event in a given gene. Pathway analysis was
conducted using gProfileR with the following parameters ‘ordered_query= TRUE,
exclude_iea= TRUE, min_set_size= 5, max_set_size= 1000, min_isect_size= 2,
max_p_value= 0.05 and, correction_method= “analytical”’. The GMT file was
retrieved from gProfileR on March 12, 2019 and included gene sets from Gene
Ontology and Reactome.

Cytoscape network visualization
Pathway enrichment. Visualization of enriched pathways and biological processes
(BPs) was generated with the Enrichment Map plugin of Cytoscape62,63. Enriched
pathways and BPs are organized into a network, in which similar pathways or BPs
cluster together. Nodes represent an enriched pathway or BP; node size is pro-
portional to the number of genes associated with the node; and node colors cor-
respond to the Shh-MB subgroup in which they are enriched. Nodes that are
connected by an edge have shared genes in common. Edge thickness is
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proportional to the number of shared genes among the connected nodes and edges
having a Jaccard and Overlap coefficient combined greater than 0.66 were shown.

Fusion network. A curated list of Tier 1 exon-exon and salvaged SV fusions was
input into Cytoscape. This network was further filtered to include fusions hubs
with a minimum of 5 events, as well as their first-degree partners. The network was
then manually curated to focus on fusions with SV and/or validation support.

Methylation array arm level copy number analysis. The copy number was
inferenced using methylation arrays (Illumina Infinium HumanMethylation450
BeadChips). Copy number segmentation was performed from genome-wide
methylation arrays using the conumee package (v0.99.4) in the R statistical
environment (v3.2.3)64,65. Arm level gains or losses were identified using GISTIC
and manually curated by visual inspection of whole-genome profiles.

Identification of promoter methylation responsive genes. The MethylMix R
Bioconductor package32 was used to identify potential cancer driver genes affected
by hypomethylation or hypermethylation changes (i.e., looking for anti-correlation
between methylation level and gene expression levels across samples). Probes were
annotated66 and filtered to only include regions within 1500 bp of the transcription
start site. Promoter probes that correlated were grouped as a probe set, then each
promoter probe or probe set was considered per gene. Methylation clusters based
on a mixture model were then identified for each probe or probe set. These were
further filtered based on the following criteria: (1) remove promoter probe-gene
pairs if one of the methylation clusters has less than 5% of the samples and for pairs
with two methylation clusters, (2) pairs were filtered out if the difference of the
mean methylation value between the 2 groups was <0.25 and (3) if the difference of
the mean expression value between the two groups was <0.75. The pairs were
further ranked according to a score defined as diff mean * diff exp (difference
computed between the 2 extreme clusters). Z-score expression values were used to
compute the mean expression differences mentioned above.

Illustrations. Oncoprint landscape figures were generated in R (v3.5.1) using the
ComplexHeatmap (v2.0.0) library67. Gene mutation, fusion summary lollipop type
figures were generated using ProteinPaint68. Circos plots were generated in
CIRCOS69 (v0.69).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The RNA-seq data generated from this study has been deposited in the European
Genome-Phenome Archive (EGA) database under the accession code EGAD00001006305.
The published medulloblastoma RNA-seq data referenced in this study is available in the
European Genome-Phenome Archive (EGA) database under the accessions
EGAD00001004435, EGAD00001001899, and EGAD00001004958. The referenced GTEx
normal cerebellum RNAseq controls were acquired from the NCBI public repository
phs000424.v6.p1. The Affymetrix SNP 6.0 data referenced during the study are available in
the Gene Expression Omnibus (GEO) under the accession GSE37385. The whole-genome
sequencing data referenced during the study are available in EGA under the accessions
EGAD00001003125 and EGAD00001004347. The Illumina 450k methylation data
referenced during the study are available in GEO under the accession GSE85218. The
Affymetrix HuGene 1.1 ST data referenced during the study are available in GEO under
the accessions GSE85218 and GSE37384. There were multiple databases used for
annotation and filtering referenced in this study. These include the Exome Aggregation
Consortium [https://gnomad.broadinstitute.org/downloads], the NHLBI-ESP project
[https://esp.gs.washington.edu/drupal/], the Kaviar Genomic Variant Database
[http://db.systemsbiology.net/kaviar/#:~:text=Kaviar%20Genomic%20Variant%
20Database%20%7C%20SNP,and%20frequency%20of%20observed%20variants.], the
Haplotype Reference Consortium [http://www.haplotype-reference-consortium.org/], the
Greater Middle East Variome [http://igm.ucsd.edu/gme/], the Brazilian Genomic Variants
Database [http://abraom.ib.usp.br/], RADAR [http://rnaedit.com/], and GENCODE (v19)
[https://www.gencodegenes.org/human/release_19.html]. All the other data supporting the
findings of this study are available within the article and its supplementary information
files and from the corresponding author upon reasonable request. A reporting summary
for this article is available as a Supplementary Information file.
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