

RT-MAT 98-12

**Linear Stieltjes Equation with Generalized
Riemann Integral and Existence of Regulated
Solutions**

L. Barbanti

Abril 1998

Esta é uma publicação preliminar (“preprint”).

LINEAR STIELTJES EQUATION WITH GENERALIZED RIEMANN INTEGRAL AND EXISTENCE OF REGULATED SOLUTIONS*

L. BARBANTI

In this work we establish an existence theorem of regulated solutions for a class of Stieltjes equations which involve generalized Riemann kind of integrals. The general method applied consists in considering the continuous-time Stieltjes equation as limit of discrete processes. This approach will be fruitfull into works on the controllability of Stieltjes systems, because it will be possible to get properties on the continuous time equation by transferring properties of the discrete ones.

1. INTRODUCTION

In the last two decades the Riemann generalized integral, having values in B -spaces, has been increasingly studied.

The development in this area concerns mainly with the Henstock-Kurzweil (see e.g. [1], [2]), and the Dushnik and the Young integrals (see e.g. [3]). Recently it appeared in the literature many proper applications in this field (proper here considered in the sense that the results are not disguises of an essentially finite dimensional frame) (see e.g. [4], [5]).

In this work we establish an existence theorem of regulated solutions for a class of Stieltjes equations which involve generalized Riemann kind of integrals.

The general method applied consists in considering the continuous-time Stieltjes equation as limit of discrete processes. This approach will be fruitfull into works on the controllability of Stieltjes systems, because it will be possible to get properties on the continuous time equation by transferring properties of the discrete ones.

*This work was developed at the Institute of Mathematics of the Czech Republic Academy of Sciences at Praha, with financial support by FAPESP

2. TIME DISCRETE STIELTJES EQUATION

2.1 The equation (L_N).

Let be X a B -space, and $N \in \mathbb{Z}^+$ (the set of all positive integers) and X^N the set of the N -uples of elements in X and $L(X)$ the class of all linear bounded operators on X . Let us consider.

$$Q_{m,n} \in L(X) \quad (m, n \in \mathbb{Z}^+, m \leq n \leq N)$$

and

$$(1) \quad J_{p,q} : X^N \rightarrow X$$

in this way:

$$J_{p,p} = 0$$

and

$$J_{p,q} x = \sum_{p+1 \leq s \leq q} Q_{s-1,s} x_s \quad (p < q)$$

with $x = (x_1, \dots, x_N)$. The next result is immediate:

PROPOSITION 2.1. *For all $p \leq r \leq q$ we get:*

$$J_{p,r} + J_{r,q} = J_{p,q} ,$$

and

$$J_{p-1,p} x = Q_{p-1,p} x_p .$$

Denoting by $\pi_i (1 \leq i \leq N)$ the usual linear projection on X^N :

$$\pi_i(x_1, \dots, x_i, \dots, x_N) = x_i \quad (1 \leq i \leq N)$$

we can define for $x, u \in X^N$ the linear Stieltjes equation (L_N) on X^N :

$$(2) \quad (\pi_r + J_{0,r})x = \pi_r u \quad (1 \leq r \leq N).$$

At this point it is possible to formulate two immediate questions concerning the existence of the (L_N) solutions. The first is:

(P) For a fixed $u \in X^N$, is it possible to synthetize an $x \in X^N$ in such a way to make (L_N) fulfilled?

The second, more general than (P) , is the following:

(P_ε) For every fixed $u \in X^N$ and $\varepsilon > 0$ is it possible to have u^ε and x in X^N in such a way: $\|u - u^\varepsilon\| < \varepsilon$ and

$$(\pi_r + J_{0,r})x = \pi_r u^\varepsilon \quad ? \quad (1 \leq r \leq N)$$

The next theorem will give us an answer to the problem (P_ε) . After, in a corollary, we will solve (P) too.

THEOREM 2.2. Consider the (L_N) equation (2) and the hypothesis,

$$(3) \quad \text{Ker}(\pi_r + J_{r-1,r})^* = \{0\} \quad (1 \leq r \leq N),$$

where T^* denotes the adjoint operator for $T \in L(X)$. Then for every $\varepsilon > 0$ there exists $u_\varepsilon, x \in X^N$ with $\|u^\varepsilon - u\| < \varepsilon$ and satisfying the equality:

$$(\pi_r + J_{0,r})x = \pi_r u^\varepsilon \quad . \quad (1 \leq r \leq N)$$

PROOF. The properties showed in the Proposition 2.1 together with hypothesis (3) yield for every $r > 0$:

$$(4) \quad \overline{(I + Q_{r-1,r})X} = X$$

[here \overline{A} denotes the closure of $A \subset X$]. In this way, there exists x_1 and u_1^ε in X satisfying $\|u_1^\varepsilon - u_1\| < \varepsilon$ with

(5)

$$x_1 + Q_{0,1} x_1 = u_1^\varepsilon$$

The equality (4) allows us to say that for every $z_r = u_r - u_{r-1} + x_{r-1}$ ($2 \leq r \leq N$) there exists an x_r such that for some z_r^ε satisfying $\| z_r^\varepsilon - z_r \| < \varepsilon/N$, the equality

(6)

$$(I + Q_{r-1,r})x_r = z_r^\varepsilon .$$

holds.

On other hand, the expression of u_r^ε will be:

(7)

$$u_r^\varepsilon = x_r + (u_1^\varepsilon - x_1) + \sum_{2 \leq j \leq r} (z_j^\varepsilon - x_j) .$$

In fact:

$$\begin{aligned} & \| [x_r + (u_1^\varepsilon - x_1) + \sum_{2 \leq j \leq r} (z_j^\varepsilon - x_j)] - u_r \| < \\ & < \| \sum_{2 \leq j \leq r} (z_j^\varepsilon - z_j) \| + \| u_1^\varepsilon - u_r + \sum_{2 \leq j \leq r} (x_j - x_{j-1}) \| < \\ & < \frac{r-1}{N} \varepsilon + \| u_1^\varepsilon - u_1 \| \leq \frac{r}{N} \varepsilon \leq \varepsilon . \end{aligned}$$

Observing that the right hand side term of the equality (7) is exactly the term

$$x_r + J_{0,r} x ,$$

and then using (5), we end the proof. ■

Let us give now an answer for the (P) problem: if the operator $\pi_r + J_{r-1,r}$ has closed range (for every $r \geq 1$) we can reproduce the proof in the preceding theorem making $\varepsilon = 0$, instead of $\varepsilon > 0$. If we have $\text{Ker}(\pi_r + J_{r-1,r}) = \{0\}$ and moreover the hypothesis

(8)

$$(\pi_r + J_{r-1,r})^{-1} \in L(X) \quad (1 \leq r \leq N)$$

fullfilled, it is possible to state the

COROLARY 2.3. *Under the hypothesis (8), for every $u \in X^N$ there exists an $x \in X^N$ such that (P) is fulfilled.*

2.2 The Stieltjes equation on partitions: the system $(L_{|d|})$.

For the real closed interval $[a, b]$ let $D_{[a, b]}$ – or simply D – be the class of all proper finite divisions of $[a, b]$, and $d = \{t_0 = a < t_1 < \dots < t_{|d|} = b\} \in D$.

Considering

$$A : [a, b] \rightarrow L(X)$$

let us define, for every $d \in D$,

$$Q_{m,n}^d = A(t_n) - A(t_m) \quad (0 \leq m \leq n \leq |d|)$$

and analogously, as in (1),

$$J_{p,q}^d : X^{|d|} \rightarrow X .$$

The Stieltjes equation, taking into account $J_{p,q}^d$, is in fact an (L_N) type equation: it is enough to make the identification: $n \mapsto t_n$ ($1 \leq n \leq |d|$). We will denote this equation by $(L_{|d|})[|d| = N]$. Concerning the existence of solutions problem, it is possible finally, in an immediate way, to give a sufficient condition for having (3) fulfilled in every $(L_{|d|})[d \in D]$:

(9) for every $a \leq t_1 \leq t_2 \leq b$ let be $\text{Ker}(I - [A(t_2) - A(t_1)])^* = \{0\} .$

3. AN EXAMPLE. EXISTENCE THEOREM FOR CONTINUOUS TIME STIELTJES EQUATION

In this part we will show that a Stieltjes linear equation considered on B -spaces with Riemann-generalized integrals inside, satisfying (9), has a solution – that will be done in a constructive way.

3.1 The Stieltjes equation (L).

Let be $G^-([a, b], X)$ the B -space of the left continuous regulated functions, endowed with the sup norm and $\alpha : [a, b] \rightarrow L(X)$ a map of bounded semi-variation, $[\alpha \in SV([a, b], X)$, see e.g. [3]].

The *linear Stieltjes equation* (L) will be the system,

$$(10) \quad x(t) + \mathring{\int}_a^t d\alpha(s)x(s) = u(t) \quad a \leq t \leq b$$

where $x, u \in G^-([a, b], X)$ and $\mathring{\int}$ symbolizes an integral satisfying for every $a \leq t_1 \leq t_2 \leq t_3 \leq b$ and $y \in X$:

$$I_1) \quad \mathring{\int}_{t_1}^{t_2} d\alpha(s)x(s) + \mathring{\int}_{t_2}^{t_3} d\alpha(s)x(s) = \mathring{\int}_{t_1}^{t_3} d\alpha(s)x(s)$$

and

$$I_2) \quad \mathring{\int}_{t_1}^{t_2} d\alpha(s)y = [\alpha(t_2) - \alpha(t_1)]y$$

If in the part $\mathring{\int}_a^t d\alpha(s)x(s)$ of (L) we use, for instance, either the Dushnik or the Henstock-Kurzweil or the Young integrals then I_1 and I_2 will be fulfilled. On the other hand, with the usual Riemann integral we will not have I_1 always true.

For the sake of well-definiteness in (10), we took the map I_α ,

$$[I_\alpha y](t) = \mathring{\int}_a^t d\alpha(s)y(s)$$

as an (integral) operator on $G^-([a, b], X)$. A sufficient condition to achieve this situation consists in to have α being weak regulated, [see [2] and [3]]. Notice that when the space X is itself a Hilbert space then this condition can be dropped out [see e.g. [6]].

3.2 The Stieltjes equation (L_d) on step function.

Let $d = \{a = t_0 < t_1 < \dots < t_{|d|} = b\} \in D_{[a, b]}$. A *step function* u_d over d on $G^-([a, b], X)$ is a function of the form:

$$u_d(t) = \chi_{[t_0, t_1]} y_1 + \sum_{i=2}^{|d|} \chi_{(t_{i-1}, t_i]} y_i$$

where $y_1, \dots, y_{|d|} \in X$ and χ_A is the usual characteristic map on A . For every $d \in D$, it is possible to identify the step function y_d , over d with the element $(y_0, y_1, \dots, y_{|d|}) \in X^{|d|}$, making:

$$y_d|_{(t_{i-1}, t_i]} = y_i \quad 1 \leq i \leq |d|$$

Then if we define

$$A : [a, b] \rightarrow L(X)$$

as

$$A(t)x = \overset{\circ}{\int_a^t} d\alpha(s)x \xrightarrow{L} [\alpha(t) - \alpha(a)]x ,$$

the following system is well-defined on $X^{|d|}$:

$$(11) \quad (\pi_r + J_{0,r})x = \pi_r u .$$

3.3 Extending (L_{d_n}) to (L) .

There are systems for which it is possible to extend the discrete equation (L_N) to the continuous time equation (L) . The system which we are dealing with in this paper is an example of that. The fundamental property that allows us to do so is given in the next theorem

THEOREM 3.1 ([6, Theorem 3]). *Assume (10) and take $\alpha \in SV([a, b], L(X))$ weak regulated. Then there exists a division depending on α*

$$\delta = d_\alpha = \{\tau_0, \tau_1, \dots, \tau_M\}$$

in $D_{[a,b]}$ in such a way that: if u_δ and x_δ are step functions over δ , for which the equality

$$\| x_\delta(\tau_i) + \int_a^{\tau_i} d\alpha(s) x_\delta(s) - u_\delta(\tau_i) \| < \varepsilon ,$$

holds for some $i \in \{1, 2, \dots, M\}$, then for all $t \in [a, \tau_i]$ we get

$$\| x_\delta(t) + \int_a^t d\alpha(s) x_\delta(s) - u_\delta(t) \| < \varepsilon .$$

3.4 Existence of solutions for the equation (L).

Let be the equation (L) – as in (10) –

$$(12) \quad x(t) + \int_a^t d\alpha(s) x(s) = u(t)$$

with $x, u \in G^-([a, b], X)$, and consider $(u_n)_{n \in \mathbb{N}}$ a sequence of step functions u_n over d_n (hence over $d_n \cup d_\alpha$) such that $u_n \xrightarrow{u} u$. In this way it is possible to define the sequence of systems:

$$(13) \quad x_n(t) + \int_a^t d\alpha(s) x_n(s) = u_n(t) \quad (\text{on } d_n \cup d_\alpha) .$$

Suppose, now, the hypothesis (9) being true. Then we have a sequence $(x_n)_{n \in \mathbb{N}}$ of step functions satisfying

$$x_n + I_\alpha x_n \xrightarrow{u} u$$

in $G^-([a, b], X)$.

Gathering all the previous results it is possible to state:

THEOREM 3.2. *Suppose that $I + I_\alpha$ (where I is the identity operator on $G^-([a, b], X)$) is an operator of Fredholm type. Then, for every $u \in G^-([a, b], X)$, there exists an $x \in G^-([a, b], X)$ such that (12) is fulfilled.*

PROOF. If $I + I_\alpha$ is Fredholm then it has closed range. Following [7; Ch. V, Th. 1.4], then there exists an $A_0 \in L(X)$ and a sequence $(\hat{x}_n)_{n \in \mathbb{N}}$, in

$G^-([a, b], x)$, in such a way that

$$\hat{x}_n \rightarrow A_0 u = x ,$$

for the solutions $x_n = \hat{x}_n + x_n^0$ of (13). The split part x_n^0 corresponds to the part of x_n belonging to the set $\text{Ker } (I + I_\alpha)$. ■

Furthermore, still according [7; Ch. V], it is possible to replace the condition that $I + I_\alpha$ is of Fredholm type, by a stronger one. In fact, it is enough to have $\dim \text{Ker}(I + I_\alpha) < \infty$ to assure the operator A_0 defined and so, the result as in the above theorem. Note that $(I + I_\alpha)$ is a Fredholm operator if, for instance I_α^k , (i.e. $I_\alpha \circ \dots \circ I_\alpha$, k times) is a compact operator for some $k \in \mathbb{Z}^+$.

Finally, if $(I + I_\alpha)$ is a Fredholm operator then the hypothesis (9) can be replaced (see e.g. [8]) by the local equivalent property:

$$(14) \quad \text{Ker}(I - (\alpha(t_+) - \alpha(t)))^* = \{0\} \text{ for every } t \in [a, b] ,$$

in where $\alpha(t_+) = \lim_{\epsilon \rightarrow 0^+} \alpha(t + \epsilon)$.

4. REFERENCES

1. J. Kurzweil - *Nichtabsolut Konvergente Integrale*, BBS B.G. Teubner Verlagsg., Liepzig, 1980.
2. S. Schwabik - *Abstract Perron - Stieltjes integral* - Ak. Ved, Praha - preprint - 1996.
3. C.S. Hönig - *Equations intégrales généralisées et applications* - Pub. Math. d'Orsay - 5, 1983.
4. O. Diekmann et all - *Perturbing semi-groups by solving Stieltjes renewal equations* - Diff. and Integral Eq. v. 6, n. 1, 155-181, 1993.
5. _____ - *Perturbing evolutionary systems by step responses and cumulative outputs* - Diff. and Integral Eq. v. 8 n. 5, 1205-1244, 1995.
6. L. Barbanti - *Simply regulated functions with values on uniformly convex spaces*. (preprint), 1997.
7. M. Schechter - *Principles of Functional Analysis* - Academic Press, 1971.

8. L. Barbanti - *Fredholm operators and existence of solutions for integral systems*
(preprint) 1997.

UNIVERSIDADE DE SÃO PAULO
INSTITUTO DE MATEMÁTICA E ESTATÍSTICA
DEPARTAMENTO DE MATEMÁTICA
Rua do Matão, 1010
CEP: 05508-900
São Paulo - Brasil
e-mail: barbanti@ime.usp.br

KEY WORDS: existence of regulated solutions, integral equations, approximation scheme in time for Stieltjes equations.

AMS Subject Classification: 45A05, 45L05, 45P05, 26A39, 28A25

TRABALHOS DO DEPARTAMENTO DE MATEMÁTICA

TÍTULOS PUBLICADOS

97-01 ABDOUNUR, O.J. and BOTTURA, C.B. From Mathematics to Music: A Numerical Journey through Sounds. 20p.

97-02 ALMEIDA, R. The 3-dimensional Poincaré conjecture. 17p.

97-03 BAEZA-VEGA, R., CORREA, I., COSTA, R. and PERESI, L.A. Shapes identities in Bernstein Algebras. 21p.

97-04 GIANNONI, F., MASIELLO, A. and PICCIONE, P. A variational theory for light rays in stably causal Lorentzian manifolds: regularity and multiplicity results. 47p.

97-05 DOKUCHAEV, M.A. and SINGER, M.L.S. Units in group rings of free products of prime cyclic groups. 15p.

97-06 BENAVIDES, R., MALLOL, C. and COSTA, R. Weak isotopy in train algebras. 8p.

97-07 LOCATELI, A.C. Hochschild Cohomology of Truncated Quiver Algebras. 22p.

97-08 ARAGONA, J. Generalized Functions on the Closure of an Open Set. 25p.

97-09 GIANNONI, F., PICCIONE, P. And VERDERESI, J.A. An Approach to the Relativistic Brachistochrone Problem by sub-Riemannian Geometry. 25p.

97-10 COELHO, F. U. On the Number of Indecomposable Modules of Infinite Projective Dimension. 9p.

97-11 COELHO, F.U., PLATZECK, M.I. On Artin Rings whose Idempotent Ideals have Finite Projective Dimension. 12p.

97-12 ANGELERI-HÜGEL, L. and COELHO, F.U. A note on a certain class of tilted algebras. 9p.

97-13 GUZZO JR., H. and VICENTE, P. On Bernstein and train algebras of rank 3. 12p.

97-14 CARRARA, V.L. The connected components of the space of special generic maps. 17p.

97-15 FERNÁNDEZ, J.C.G. Structure of Stationary Populations. 43p.

97-16 PERLICK, V. and PICCIONE, P. The brachistochrone problem in arbitrary spacetimes. 7p.

97-17 HENTZEL, I.R. and PERESI, L.A. Degree Three, Four and Five Identities of Quadratic Algebras. 16p.

97-18 MILIES, C.P. The Torsion Product Property in Alternative Algebras II. 7p.

98-01 ASSEM, I. and COELHO, F.U. On postprojective partitions for tors pairs induced by tilting modules. 16p.

98-02 HÜGEL, L.A. and COELHO, F.U. On the Auslander-Reiten-quiver of \mathcal{P}_i -hereditary artin algebra. 27p.

98-03 BENAVIDES, R. and COSTA, R. Some remarks on genetic algebras. 1p.

98-04 COSTA, R., IKEMOTO, L.S. and SUAZO, A. On the multiplicative algebra of a Bernstein algebra. 11p.

98-05 GONÇALVES, D. L. Fixed point free homotopies and Wed homotopies. 4p.

98-06 POLCINO MILIES, C. and SEHGAL, S. K. Central Units of Integral Group Rings. 9p.

98-07 BOVDI, V. and DOKUCHAEV, M., Group algebras whose involutory units commute. 15p.

98-08 FALBEL, E. and GORODSKI, C. Some Remarks on the Spectrum of Symmetric Riemannian Spaces. 16p.

98-09 FUTОРNY, V.M., GRISHKOV, A.N. and MELVILLE, D.J. Imaginary Verma Modules for Quantum Affine Lie Algebras. 24p.

98-10 BARBANTI, L. Simply regulated functions and semivariation in uniformly convex spaces. 5p.

98-11 BARBANTI, L. Exponential Solution for Infinite Dimensional Volterra-Stieltjes Linear Integral Equation of Type (K). 10p.

98-12 BARBANTI, L. Linear Stieltjes Equation with Generalized Riemann Integral and Existence of Regulated Solutions. 10p.

Nota: Os títulos publicados nos Relatórios Técnicos dos anos de 1980 a 1996 estão à disposição no Departamento de Matemática do IME-USP.
Cidade Universitária “Armando de Salles Oliveira”
Rua do Matão, 1010 - Cidade Universitária