





2. TIME DISCRETE STIELTJES EQUATION

2.1 The equation (Ly).
Let be X a B-space, and N € Z* (the set of all positive integers)
and XV the set of the N-uples of elements in X and L(X) the class of all linear

bounded operators on X. Let us consider.

Qm,neL(X) (m,nEZ"',mSnSN)
and
@) Jpg: XV 2 X
in this way:
Jpp =0
and
Jpg T = E Qo106 Ts (p<yg)
p+1<s<g

with £ = (21,...,2N). The next result is immediate:

PROPOSITION 2.1. For all p < r < q we get:

Jpr + Jrg =Jdpg

and

Jp-1p T =Qp-1p Tp .

Denoting by m;(1 < i < N) the usual linear projection on X7:

"i(xly-", iy ...,L’N) =i (1 <ig N)
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we can define for z, u € XV the linear Stieltjes equation (Ly) on XV:
(2 L i (1<r<n).

At this point it is possible to formulate two immediate questions

concerning the existence of the {Ly) solutions. The first is:

(P) For a fixed u € X N_is it possible to synthetize an z € X¥ in such a way to
make (Ly) fulfilled?

The second, more general than (P), is the following:

(P.) For every fixed u € X N and € > 0 is it possible to have u* and z in X N in

such a way: || w — u° ||< € and

(mo + Jo )2 =mout 7 (1<r<N)

The next theorem will give us an answer to the problem (F.). After,

in a corollary, we will solve (P) too.

THEOREM 2.2. Consider the (Ln) equation (2) and the hypothesis,
(%) Ker(ry + Jr1,)" = {0} (1<r<n),
where T* denotes the adjoint operator for T € L(X). Then for every e > 0 there
ezists ug, = € XN with || u* — u ||< € and satisfying the equelity:

(e + )z = mpu® . (1<r<N)

PROOF. The properties showed in the Proposition 2.1 together with
hypothesis (3) yield for every r > 0:

(4) I+Qrar) X=X

[here A denotes the closure of A C X]. In this way, there exists z; and uj in X

satisfying || «§ — vy ||< € with
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(5) z1+ Qo 71 = uf

The equality (4) allows us to say that for every 2, = 4, — Ur—1 + 2,3
(2 £ r < N) there exists an z, such that for some 2f satisfying || 2¢ — z, [|[< &/n,

the equality
(6) I+ @Qrrr)ar =2 .

holds.

On other hand, the expression of uf will be:

() =24 (uf —z)+ Y (£ -zj) .
2<5<r

In fact:

I zr + (ui = 2) + D (-2l -l <
2<j<r

<l X2 G-z i+ lu-ut Y (vj-2i-) ]l <
2<j&r 2<58r
r—1

N
Observing that the right hand side term of the equality (7) is exactly

<

r
£ e < —e<e€ .
- w I e <

the term

4+ Sz,
and then using (5), we end the proof. B

Let us give now an answer for the (P) problem: if the operator
7 + Jr—1,r has closed range (for every + > 1) we can reproduce the proof in the
preceeding theorem making & = 0, instead of € > 0. If we have Ker(m, +J._;,) =
{0} and moreover the hypothesis

(8) (mr + Jr'—l,ir')_l € L(X) (1<r<N)

fullfied, it is possible to state the
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COROLARY 2.3. Under the hypothesis (8), for every u € XV there
exists an £ € XV such that (P) is fulfilled.

2.2 The Stieltjes equation on partitions: the system (Lq))-
For the real closed interval [a, b} let Dy, 3 — or simply D — be the class
of all proper finite divisions of [a,b], and d = {tp=a <t < ... <ty =b} € D.

Considering

A:fa,b] = L(X)

let us define, for every d € D,

Q% . = Alts) — Altm) 0<m<n<|d)

and analogously, as in (1),

e xM o X,
The Stieltjes equation, taking into account J,',‘, ¢» 15 in fact an (Ln)
type equation: it is enough to make the identification: n — t, (1 < n < |d]). We
will denote this equation by (Ljgj)[|d| = N]. Concerning the existence of solutions

problem, it is possible finally, in an immediate way, to give a sufficient condition

for having (3) fulfilled in every (L)q)){d € D}:

(9) foreverya<t <ty <b letbe Ker(I—[A(t:) — A(t)])* = {0} .
3. AN EXAMPLE. EXISTENCE THEOREM FOR
CONTINUOUS TIME STIELTJES EQUATION

In this part we will show that a Stieltjes linear equation considered on
B-spaces with Riemman-generalized integrals inside, satisfying (9), has a solution

— that will be done in a constructive way.
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3.1 The Stieltjes equation (L).

Let be G~ ([a, b], X) the B-space of the left continuous regulated func-
tions, endowed with the sup norm and o : [a,b] = L(X) a map of bounded semj-
variation, [a € SV ([a, ], X), see e.g. [3]].

The linear Stieltjes equation (L) will be the system,

(10) z(t) + °/ t da(s)z(s) = u(t) a<t<b

where z,u € G~ ([a, b], X) and 0/ symbolizes an integral satisfying for every a <
th1 <ty <t3<bandye X:

L) ‘”]t:’ da(e)z(s) +° /t :B da(s)z(s) =° jt :’ do(s)z(s)
and
L) 9[ :’ delsly = [alt2) - alt)ly .

If in the part 0/ t da(s)z(s) of (L) we use, for instance, either the
Dushnik or the Henstock—Kurazweil or the Young integrals then I, and I will be
fulfilled. On the other hand, with the usual Riemann integral we will not have I;
always true.

For the sake of well-definiteness in (10), we took the map I,,

t
)
aal(®) = °f da(o)u(s)
a

as an (integral) operator on G~([a,b], X). A sufficient condition to achieve this
gituation consists in to have a being weak regulated, [see [2] and [3]]. Notice that
when the space X is itself a Hilbert space then this condition can be dropped out
[see e.g. [6]].

3.2 The Stieltjes equation (Lg) on step function.
Letd={a=1t <t1 <..<tlg=>}€ Dpy. A step function ug

over d on G~ {[a, b}, X) is a function of the form:
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d
ud(t) = Xl'n.txl n+ Zx('i—lv‘il Yi
=2

where y1, ...,y € X and x, is the usual characteristic map on A. For every
d € D, it is possible to identify the step function yq, over d with the element
(Y0, Y1, - Yyap) € X!, making:

Yal(tima, 0] = Ui - 1<i<|d]

Then if we define

A:fa,b] = L(X)

t
A(t)z = 9/ da(s)z 2 [a(t) — ala)]z
the following system is well-defined on X!4:

(11) (e + Jor)z = Tru

3.3 Extending (L4,) to (L).

There are systems for which it is possible to extend the discrete equa-
tion (Ly) to the continuous time equation (L). The system which we are dealing
with in this paper is an example of that. The fundamental property that allows

us to do so is given in the next theorem

THEOREM 3.1 ([6, Theorem 3]). Assume (10) and take & € SV ([a, b], L(X))

weak regulated. Then there erists a division depending on ¢

§=dy = {10, 71--.TM}



in Dy, in such a way that: if us and z5 are step functions over 8, for which the

equality

Nasr) + °f " date)este) - wstr <,

holds for some i € {1,2,.., M}, then for all t € [a,7;] we get
oft
Il zs(t) + f da(s)zs(s) — us(t) fl<e.

3.4 Existence of solutions for the equation (L).
Let be the equation (L) — as in (10) —

(12) 20+ °f * da(s)z(s) = u(t)

with z,u € G~([a, b}, X), and consider (u.)nen a sequence of step functions u,
over d,, (hence over d,, Ud,) such that 4,—u. In this way it is possible to define

the sequence of systems:
t
(13) za(t) + O/ da(8)z,(8) = un(t) {on d, Udyg) .

Suppose, now, the hypothesis (9) being true. Then we have a sequence

{zn)nen of step functions satisfying

2o+ Iz =0
in G~ ([a,d], X).

Gathering all the previous results it is possible to state:

THEOREN 3.2. Suppose that I + I, (where I is the identity op-
erator on G~ ({a,b), X)) is an operator of Fredholm type. Then, for every u €
G~ ([a,b], X), there ezists an z € G~ ([a,b]X) such that (12) is fulfilled.

PROOF. If T 4 I, is Fredholm then it has closed range. Following
[7; Ch. V, Th. 1.4], then there exists an Ap € L(X) and a sequence (&,)nen, in
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G~ ([a,d], z), in such a way that

3, Agu=1z ,

for the solutions &, = &, + 22 of (13). The split part 22 corresponds to the part
of z,, belonging to the set Ker (I+1,). B

Furthermore, still according [7; Ch. V], it is possible to replace the
condition that I + I, is of Fredholm type, by a stronger one. In fact, it is enough
to have dim Ker(I + 1,) < oo to assure the operator Ay defined and so, the result
as in the above theorem. Note that (I+ I,) is a Fredholm operator if, for instance

%k (i.e. Iy0...0I,, k times) is a compact operator for some k € Z*.

Finally, if (I +I,) is a Fredholm operator then the hypothesis (9) can

be replaced (see e.g. [8]) by the local equivalent property:

(14) Ker(I - (e(ty) — a(t)))* = {0} for every t € [a,b) ,

in where a(t4) = lirg+ aft +e).
£
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