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A Well Stated Time Domain Integral
Representation for Elastodynamic
Analysis and Applications -

This article discusses three possible ways to derive time domain boundary integral
representations for elastodynamics. This discussion points out possible difficulties found
when using those formulations to deal with practical applications. The discussion points
out recommendations to select the convenient integral representation to deal with
elastodynamic problems and opens the possibility of deriving simplified schemes. The
proper way to take into account initial conditions applied to the body is an interesting
topict shown. It illustrates the main differences between the discussed boundary integral
representation expressions, their singularities and possible numerical problems. The
correct way to use collocation points outside the analyzed domain is carefully described.
Some applications are shown at the end of the paper, in order to demonstrate the

capabilities of the technique when properly used.
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Introduction

The boundary element community has already seen many
interesting studies on elastodynamics. One can see for instance:
Antes & Steinfeld (1992), Mansur (1988), Kobayashi (1987), Coda
et alli {1999a), Coda & Venturini (1999b), Domingues (1993) and
Manolis {1986). This subject has attracted the attention of many
researchers around the world. Very good reviews are given in the
works of Beskos (1988) and Beskos (1997).

The present paper focus its discussion mainly on the Time
Domain Boundary Element Method (TDBEM) applied to
elastodynamic problems. As it is a well-known subject, the author
intends to discuss the possible ways to derive time domain boundary
integral representations for elastodynamics, pointing out the main
differences among them, and their difficulties to present stable
results. Another interesting topic discussed is how to deal with
initial conditions for the different methodologies available. A
straightforward way to couple the Finite Element Method to the
Boundary Element Method is described, which allows the analysis
of dynamic soil-structure interaction accurately and with numerical
efficiency. The correct way to use external collocation points is also
discussed. This discussion is important in order to clarify some
properties of wave propagation problems that should be considered
when using the TDBEM.

At the end of the paper some problems are solved using the
smooth formulation, in order to show the applicability of the
technique.

Nomenclature

= Studied domain

I"= Boundary of the body

o, = Stress tensor

&; = Strain tensor

u; = Displacement, i direction
p, =Traction, i direction

e = smaller distance between outside source and boundary
T=time

C, == Long. wave velocity
C,= Shear wave velocity

~ = Sotokes State

* = Fundamental values

p = Density
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/= Time function behaviour
E = Elasticity modulus

v = Poisson’s ratio

b; = Body force, i direction
8%u /87t = Acceleration

i = Acceleration

= velocity

T = Prescribed values

vq =linitial value

H() = Heaviside Function

, = Partial derivative

5 =Dirac’s delta distribution

The Elastodynamic Problem

This section presents a summary of the elastodynamic equations.
The formal achievement of these equations can be found in
Achenbach (1975), Love (1944) and Erigen & Suhubi (1974).

The governing differential equation of linear elastodynamic
equilibrium (i.e. the Navier-Cauchy equation) is given by

(C7-cih, i+ Chuy+b,7p =i ()

where b, and u, are body forces and displacements, respectively.
Symbol p stands for the medium density, while C, and C,

represent longitudinal and shear wave propagation velocities,
respectively.
Equation (1) can also be written in terms of stresses g, s

follows,

2
g u

.. 2
O'ij.:+bj=P;2‘j—=puj~ (2)

Assuming the problem defined over a domain {2 with boundary
I, the following boundary conditions along time have to be
specified:

wi(xt)=u;(xt) xel; 3)
2 3

pi(x,t)=p;(x,t) xel;
ABCM
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where p;(x,1) represents the boundary tractions obtained from the
stress field using the Cauchy's formulae and r=I;ur-
As usual, the initial conditions are given by

w(x,tp)=1;p(x)
(%1 ) =vig(x)

Graffi’s Reciprocal Theorem

Following the weighting residual technique steps given in the
studies of Mansur (1985), Coda (1993), Araujo (1994), Domingues
(1993) and Coda (2000a), one can achieve Graffi’s reciprocal
theorem from eq. (2), as follows:

! t
[ Jujc)bjt-z)dedr+ [ fuy()p(t-7)drdr =
1,02 1, r

!
[[pjce)a;(t-z)drdr+
t,r

! !
+ [ o2 )i, (1 -7 )dQde+ [ [of(2)8;(t—1)dQdT+
{02 1,02

+ [pti ()i (t=1)=u;(c )i, (1-7)) d2
_Q a

(%)
where {il.(r),a-,.j(r)} is weighting field, {u,-(-r),aij(r)}represents

the actual solid displacement and stress fields, while 0'5- (7) stands

for the initial stress state. Particular attention is given to the last
term in eq. (5) representing the initial conditions.

Boundary Integral Representation for Displacements

The boundary integral representation for displacements can be
achieved from eq. (5) adopting a particular distribution for the
weighting field body force, given by Wheeler and Sternberg (1968)
as:

by =8(s—q)8/(7)> 6

where §(s—gq) is Dirac’s delta distribution, ‘s’ and ‘q’ represent
the source and field points, 5!9’ stands for the Kronecker delta,

while f(7) gives the time behavior of this set of loads.

For this particular body force distribution the weighting field
{ﬁki( 7).C (T )} represents the general Stokes’ state. The general

Stokes’ state expression can be found, for example, in Wheeler &
Sternberg (1968), Coda (1993), Karabalis & Beskos (1984),
Kobayashi (1987), Mansur (1985) Domingues (1993) and Erigen &
Suhubi (1974). Replacing Stokes’ state and expression (6) into eq.
(5) yields the following integral representation:
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Coil@s)ui(s.t)f(1=1)dr+ [ [u (v)By(Q.t:s|/ (v ))dl dr =
1, 1, I”

—

!
[pi(e)a(Quslf(z)jardr+ | [b;(v)i, (O.ts|f(z))dxr+
r 1,02

~

&

-+

—

_[U;(_T)Eky'(Qr"slf(T))deT+
2 A

!

<

Pl () (031 (0)) ~uy(y(Quslf () a2 (D
02

From eq. (7) one can obtain three main alternatives to write a
displacement integral representation.

The first alternative can be seen, for instance, in Kobayashi
(1987), Mansur (1985) and Manolis (1986). It is an elegant way to
obtain the desired representation. This approach consists in
replacing, in eq. (7), the time function f(r) by Dirac's delta

distribution. Thus, assuming f(z)=J(7) to represent the body

force distribution b;('j , €. (6), results in

Ck,-(Q,s)ui(s,t) = _[ _I-u;f(Q,t,'s, r)pi(Q, T)dde +

t, I

- J Ju,(Q,T)pZi (Q,t,'s,f)dfdr +
r

1

[

!

_[ ,[u;cli (q.t:S.T)b,-(q,T)a’Qa’r

i
t

Jl JIJ;{(T)EZU(Q;[{S, T )dQdr +
1, £2

0

[pti (v )ujg(Qutss.v)=u (7 )i (Qut;5.7) )|, 92
_Q a
®

where field {uzi(r),o-;ij(r)} represents Dirac’s delta fundamental

solution.

Equation (8) is called here the First Dirac’s delta Displacement
Integral Representation or simply, Loves’ Identity (LI) ( Wheeler &
Sternberg (1968) and Erigen & Suhubi (1974)).

Another way to derive a displacement integral representation
can be found in Karabalis & Beskos (1984). As described for the
previous procedure it consists in applying Dirac's delta distribution
in expression (7), to find equation (8). After finding equation (8),
Karabalis & Beskos (1984) applied a well-known Dirac’s delta
fundamental solution property, Eringen & Suhubi (1974), in order
to write eq. (8) in a more compact form. The property mentioned is
that the convolution between Dirac’s delta fundamental solution and
any other function results in a Stokes’ state exhibiting the impulse
distribution governed by the adopted function behavior. Following
the above description, eq. (8) is rewritten as

Cui(Qshui(s.1)= fu,f,-(Q.l. S‘p,- (Q.1))dr
r

- .[pl(c}i(Q't’s

r

u, (Q.1))drr
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+ Izzfi(Q,t,s’bi (0.1))a2+ [el,(0,1.508(0.1))ae2 +
0 0

[oti (i (0.5, 7)—u (e )ik (0.t 5,2) ) ) de2 -
1o

)
where field {uzi(r),o-z/(r)}is the Stokes’ state related to the

behavior of the unknown variables {u,p}. Field {uzi(r), a/:,j(‘r)},

present in the initial conditions term, is Dirac's delta fundamental
solution, as stated in equation (8).

Note that Dirac’s delta fundamental solution remains in the
initial condition term, as the same weighting function has been used
to achieve both egs. (8) and (9). Equation (9) is named here the
Second Dirac's delta Displacement Integral Representation, or
simply the Compact Loves’ Identity (CLI). It should be noted that in
Eringen & Suhubi (1974) the Conpact Loves’ Identity is called
simply Loves’ ldentity. Although from a mathematical point of view
there is no difference between eqs (9) and (8), in a numerical
approach there is a difference regarding time approximation (see
section 3).

More recently, Coda (1993, 2000a) and Coda and Venturini
(199352, 1995b, 1996a, 1996b, 1996¢, 19992 and 1999b) worked on
the subject trying to find a more stable procedure for the TDBEM.
The way found by the authors to improve the TDBEM stability was
obtained by reducing the kernel’s singularities regarding time.
Instead of assuming an instantaneous impulse,

by =5(s—q)8,6(t), one starts by replacing &(z) by the

Hcaviside distribution. The weighting function adopted to derive the
integral representation is therefore, given by a concentrated load
distributed over a time interval ( At ), as follows:

by =[HG)-H - a)l(g-5)y / 4.

One can also choose smoother distributions, depending on the
singularity reduction needed. Another possible formula to represent

(10)

by is given by

f(r)=g(7)_g(T‘Rd*R/), ' (11a)

Ry

with

7 5 3
gle)=|s6| -] —aef o1} LMz Ly
R, 2 R, 2 2R, 2 R,

[4()-tG -8, H(-R,)
R, R,

(11b)

where R, is a sub-element of At defining the time that the load
function requires to reach its maximum value and Ry is the duration
of the load function at its maximum value (2*R,+Ry =At).

Adopting the fundamental solution derived by choosing b;j

given by eq. (10) or (11) Graffi's theorem gives
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Cri(Q.5)ii(s, 1)+ | Ju; (T)By (Q.1:5|/(%))dlrdr =
L, r
!
.[J.pj(T)Elg‘(Q:’-Slf(T))dfdr+ -
INa

. 4
+ | jbj(r)ﬁ,g. (Q.1,5|f(7))ds2dr +
t, 02

!
[ Jog(t ) (0.18/(r))ddr +
t, £2

+ g Pl (7)Ty(Q. 1|1 (7)) 12)

_uj(T)E/g-(Q"' slf(T))}I; a2

where ;s )= J"u,«(s.r)f(t—r)dr is understood as an average
1~

displacement value over the final time step. When a time

approximation is assumed, this value becomes the time parametric

displacement. Field {ﬁki(r)' Eky.(r)} is a Stokes’ state related to the

time load function given in either eq. (10) or (11).

The elastodynamic state achieved assuming the impulse
distributed along a time interval is named here smooth fundamental
solution. Note that this smooth fundamental solution is present in
the initial conditions term in eq. (12).

As Dirac's delta fundamental solution has not been used to
achieve expression (12), this representation is named here the
Smooth Displacement Integral Representation, or simply Smooth
Loves' [dentity (SLI), Coda (20002, 2000b).

Equations (8) and (9) were obtained using the same weighting
function, i.e. Dirac’s delta fundamental solution, thereforc they
present the same singularities. The difference between them is the
convolution concerning time application order. In eq. (9) the time
convolution is applied before imposing time approximation, while
for eq. (8) the time convolution is applied after imposing time
approximation.

It is accepted but not mentioned in literature that formulations
based on eqs (8) and (9) are strongly unstable. Even after some
regularization studies carried out by Siebrits & Pierce (1997) and
Risos & Karabalis (1997) using spline functions, and Yu et all
(1999) proposing a linear § methodology, the theoretical evidences
for instability turn the numerical calibration of results almost a try
and error technique, disregarding generality. Some researchers have
started to use the SLI in two-dimensional analysis, as it can be seen
in Carrer & Mansur (2001).

Discussions about Integral Representations

The previous section presents three different integral
representations to build the TDBEM, namely LI, CLI and SLI.
Before describing how to develop the algebraic processes, which are
practically the same in spite of the adopted integral representation, a
discussion about the main differences among the three alternatives
shall be presented, along with their main advantagés and
disadvantages.

A clear difference among representations described concerns the
way of treating the initial conditions.

One can observe that in the three-dimensional LI and CLI
integral representations (egs. (8) and (9)), Dirac’s delta fundamental
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solution is present in the last volume integral in its displacement and
velocity values. One can see from the fundamental solution
expressions, Karabalis & Beskos (1984) or Wheeler & Sternberg
(1968). that Dirac’s delta distribution (8( )) and its derivative

concerning time (8(.)) are present in the kernel of the volume
integral mentioned. '

As far as the author’s knowledge goes, there is only a study of
three-dimensional elastodynamic analysis, Antes & Steinfeld
(1992), where the third integral of eq. (9), i.e. body weight integral,
is performed. This integral is less singular when compared with the
initial conditions one, but in that study, as the body weight is
constant over time, this integral presents a Dirac’s delta function
(3D} and spherical surfaces should be integrated to fulfill the jump
conditions requirements.

The subject of initial conditions in two-dimensional
elastodynamics is treated by Sladek & Sladek (1992). Although
Sladek & Sladek (1992) presented a mathematical discussion on the
subject no practical results were presented, leading to no
conclusions about stability.

When applying the Smooth Love’s Identity (SLI), eq. (12), the
initial velocity field is considered without problems, as in Coda &
Venturini (1996a) and Coda(2000a). Initial displacement can be
treated adopting at least a piecewise linear fundamental load
function, Coda (2000a). In order to obtain a stable procedure for
general problems, one should adopt at least a load function of class
C'. It should be mentioned that Carrer & Mansur (2001) used SLI to
solve initial conditions for two-dimensional scalar wave propagation
problems.

Another difference between Smooth Integral Representations
and the ones based on the Dirac’s delta fundamental solution is
related to their behavior when constant time approximation is
assumed (3D).

First of all, the difference between eqs. (8) and (9), which are
apparently the same, is clearly noted when constant time
approximation is adopted. It is impossible to impose constant time
approximation for displacements in eq. (8) as the first derivative of
Dirac’s delta is present in the Kernel of the first integral on the right
side of eq. (8). It indicates that the result of this convolution is the
time derivative of the constant function (approximation), resulting
in no contribution of this term and leading to instability of the
resulting numerical process. From this assumption, one concludes
that it is necessary, for LI (3D), at least a linear time approximation
for displacements.

If displacements are taken as constant over a time step in eq. (9),
the considered kernels will represent distributed impulses along time
steps and generate kernels that necessarily contain Dirac’s delta
distributions. Following this assumption, one concludes that the
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approximated Compact Love’s Identity has been obtained in an
incomplete way. In order to correct this mistake the creation of
spherical surfaces inside the body to guarantee the well known
“jump conditions”, is necessary. In studies based on CLI, as
Karabalis & Beskos (1984), these considerations have not been
made, resulting in unstable algorithms. It is alsc noted, that _f;or free
surface problems, where the problematic kemnel (surface
fundamental tractions) has no influence, the CLI deficiencies will
not be evident. ’

It is very simple to verify that when using SLI based on
Heaviside fundamental solution, eq. (10), the application of constant
time approximation for both displacements and tractions satisfies
completely Graffi’s theorem, (Wheeler & Sternberg (1967)), leading
to a consistent and stable procedure. The numerical technique based
on SLI has presented very good results in various studies, Coda and
Venturini (1995-1999), and some new results are presented here,
coupled and not coupled with finite element models. It is worth
noting that by analyzing all the questions about classical
formulations based on LI or CLI, they can be safely used with
additional effort on the quality of numerical integration procedures,
Araujo et all (1999). For stress integral representations the
difficulties are worse, as the time singularities of the kernels are
increased one time.

The discussion carried out was based on three-dimensional
expressions. For two-dimensions the kernel singularities concerning
time are smaller than for three-dimensions, but in general the
integral formulation behavior is similar, Mansur et all (2001) and
Mansur (1985).

External Collocation Points

In literature it is usual to find references to the direct application
of exterior source points in eqs (8) and (9), assuming the free term
to be zero, i.e., “Cy = 07, as for the static case, see Kobayashi
(1987). Following this proposition it is impossible to implement a
stable non-singular TDBEM. This section describes the way to
correctly write integral representations for external collocation
points.

In order to understand what is proposed it is necessary to keep
in mind the wave motion characteristics of the fundamental solution.
The elastic waves move in two fronts with distinct velocities C,
(longitudinal waves) and C, (shear waves), being “C, > C,”. After
some period of time ‘t’ from the application of the concentrated load
on source ‘s’, a certain region of the medium has suffered a
perturbation. In figure 1, the hatched area represents the disturbed
region.
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r=c,t

)

Figure 1. Disturbed region after a period of time ‘t' due to the concentrated force in ‘s’.

Points outside this region do not suffer the influence of the load.  convolution described by eqs (8), (9) and (12) can be shown
When the load point is inside domain or over boundary the schematically as in figure 2.

N \

N
N
N fundamental solution
convolutive movement
. /
N\, //
e
o
Figure 2. Graphical convolution scheme.

One should realize that, as in the convolution process the When the possibility of putting the source point outside the

fundamental values are written in terms of (t-1), the external radius  studied body is supposed, the usual procedure leads to draw the
of the hatched regions of figure 2 represents the initial instant, i.e.,  schematic representation of figure 3.
*0°. Similarly, the perturbation end is at point ‘s’ for instant ‘t’.
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Figure 3. Erroneous representation of the convoluting process.

The algebraic representation (neglecting initial conditions and (1-e/c,)
body forces), related to this erroneous procedure comes from Jr Jo
equation (7) (or even (8), (9) and (12)) and is written as:

py(Qt =75/ f)u;(7jdwdl +

It "
Ir . o )Py (Qt=is/ [ Ju;(t)dedl” =

I
(O =15/ (T)ddl = —e/ »
Ir -[op“l(— s/ ] (7w (13) L_ j(;l ‘ C’)ukj(Q,t—r.'S/’f)pj(r)dfdf+
FA
jr _[oukj(Q,l—r,'s/f)pj(r)drdl' y . .
L_ '[(l_e/q)ukj-(Q,t-—T, s/f)uj(r)drdf, (14)
Equation (13) can be divided into two parts, as follows:
where ‘e’ is the smaller distance between ‘s’ and I".

The meaning of eq. (14) can be seen in figure 4.

Figure 4a. Spreading of the erroneous integral representation, interval [0, t - e/c4].
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Figure 4b. Spreading of the erroneous integral representation, interval [t — e/c,, t].

It is easy to note that during the interval [t — e/C,.t] there is no
presence of the fundamental values in eq. (13) and, therefore, part of
the convoluting process is lost, which makes this representation
worthless.

On the other hand, if one starts from part of eq. (14) where the
fundamental solution is not zero,

I 01 ) p(Qut=tis/ f Juy(e)dudl =

jr I{jl—e c,)“zy‘(Q"“T-'S/f)pj(r)dm'l‘. (15)

it is possible to write a valid integral representation for external
sources. This is done applying a time translation of the final instant
of analysis. For that sake, let us define

//F\
N
N

convolution

orientation

t"=t—e/Cy, (16)
and, therefore,
=t +e/C;, (a7
Then, substituting expression (17) in eq. (15) results:
Jr L;,p/:f(Q' t'+e/Cy—t;s/ f)u(v)dwdl =
Ir J(;'“/;(Q't""e/cl"T,'S/f)Pj(T)deF. (18)

Equation (18) means that the convoluting process, for outside
sources, should be carried out by means of time translated
fundamental values.

Figure 5. Correct convoluting process along interval [0,t].

The scheme of this procedure can be seen in figure 5 and the
complete eq. (12) is given by:

52 / Vol. XXIV, March 2002
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4 * e
I, I~ pkj(Q,t+C—I—r,‘s/f)uj(r)d['dr+

jg puj(O)z't;j(q,r+Ee~,'s/f)d!2=
7

t . e
[ [us@ H o ms/Op(dldT e
4 * e
Jo _[Q ukj(‘]v’ +E— T;s/f)bj-(r)d_er +
* e
[y Losiafass =/ D)ol (oacate

. I e
+ '[sz:J-(O)uAj(q,t+a;s/f)d_0- (19)

Equation (19) is the correct version of eq. (12) for outside point
collocation.

Algebraic Process and the Finite Element Method

The steps to transform either eq (12) or (19) into an algebraic
system of equations can be found in any good reference of TDBEM,
as for example, Mansur (1983), Domingues (1993), Kobayashi
(1987), Araujo (1994), Coda (1993) and Coda (2000a). Following
these steps one finds:

n, _ n, n, n n,
Heﬁ Uaﬁ —Gaﬁ Pgﬁ + B‘%7 17‘9/)7 + Qaﬁ ogg +W V. (20)
where the superscript n, represents the final instant of all
convoluting process related to the instant of interest. Indices © and
[3 represent the time interval approximation considered. Thus one

has a summation from 1 to n, in © and a summation from 1 to the
time approximation order in 3.

Expression (20) can be written, for any final convoluting instant,
in a compact form as follows:

HU=GP+F @1

where F contains the history of the movement.

Following a weighting residual procedure allied to a spatial
approximation technique and a time integrator, as for example
Newmark [, one can write the following linear equation system in

order to represent the dynamic equilibrium equation at any instant.
(Finite Element Method, Bathe (1980))

ku=c/pP+F/, (22)

where superscript “f” represents finite element.

Coupling

In order to make the coupling between BEM and FEM the sub-
region technique is adopted, Coda & Venturini (1995, 1999a,
1999b) and Beer & Watson (1992).

Taking two sub-regions defined by (2; and £Q;. which are

coupled with each order by means of interface I one applies eqs

(21) and (22) for each body, resulting in
HUT=G'P + 4, (23)

HIU =GIpI+ 47 (24)
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Equations (23) and (24) are written for a single instant. Despite the
occurrence of repeated indices in expressions (23) and (24) it does
not imply summation.

Both equilibrium and kinematical compatibility conditions
along interface I ; are written as:

Ul =u’,
PV =-pJ,
where the superscripts represent the first and the second contact

sub-region, respectively.

UY and PV values are respectively, the displacement and the
traction along the contact surfaces. The values that do not belong to

the contact surface are called U’ and Pie . Substituting egs. (25)
and (26) in egs (23) and (24), results in

Uic Pic
H* HY -GY oJ U’ _{Gk Gi o o} & +{A‘}
0 w' gt pFps 0 0 G* GHlpe| |al
u” pi

27

where P! represents the prescribed values on the contact surface
This expression can be easily extended to an arbitrary number of
sub-regions, see for instance Coda & Venturini (1999a), Coda et all
(1999b) and Coda (2000a)

Numerical Examples

In this section some new examples are shown applying the SLI
formulation. The fundamental solution adopted is defined by the
load function of equation (10). No comparisons with other results
are shown in this paper. Differences between SLI formulation and
LI (or CLI) regarding stability and accuracy can be seen in Coda &
Venturini (1996c¢) for three-dimensional problems.

Regarding computational effort one concludes that for three-
dimensional analysis the formulations based on SLI are more
economic than the classical ones. It occurs as it is possible to apply
constant time approximations for displacements employing SLI.
while it is not a good choice in CLI or LI formulations. It is obvious
that when applying the same approximations for all schemes, LT or
CLI is more economic than SLI for three-dimensional problems. It
occurs because the smooth fundamental solutions wave fronts have
larger width than the one of Dirac’s delta. For two-dimensional
analysis the computational effort is the same (when using the same
approximation), as the fundamental solutions values do not vanish
after some period of time.

Spherical Cavity under a Loaded Half Space

For the analysis of the half space, shown in figure 6. two
situations will be considered. The first one consists in applying the
load over the free surface without including anything under the
loaded surface to verify if the solution converges to the static result.
Then a spherical cavity with radius r=2.5m is placed under the
loaded surface. Its center is located at x; axis, Sm beyond the loaded
surface. The influence of the spherical cavity, regarding
displacement and stress intensity for selected points is studied. In
figure 6, the intensity, shape and time behaviour of the external load
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are shown. The physical constants are E=2.10°Kg/(ms®), v = (0,0,0), B (0,0,5), C (10,0,5), D (0,0,15) and E (10,0,15), without
0,25, p=1600kg/m’® and At = 0,0085s. the spherical cavity consideration, are shown in figure 8.

. . . i compressive stresses were represented as positive.
As Stokes” fundamental solution is applied and internal P P P

displacements and stresses are of interest, it is necessary to
discretize an extension of the free surface, figure 7. Both vertical -
displacement and vertical stress component O3 for points A

, X4 pd)

}
X I p

|

f ‘s i

1000kg/(ms?)
A XT
5m 5m
X3
Figure 6. Half space and applied load.
100 - - o .

80 L 4 TR > GF
60 * ¢ ’ ¢

L] r ye o P L
40 R . .
20 L 3 4 *9 > X

o o Py o

_20 L 1r1 q 4 L
-40 * ¢ ¢ *

q q 9@ L L
60 - ~ . .
‘80 1[ L 908 L L

-100 - . . .

-100-80 -60 40 -20 0 20 40 60 80 100

Figure 7. Surface discretization.
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Figure 8a. Displacement at points A, B, C, D and E for the adopted loading.
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Figure 8b. Stress component ¢33 for points A, B, C, D and E for the adopted loading.

The results are stable and converge to the static values, as

expected.

Now, consider a spherical cavity placed under the loaded
surface with radius R=2.5m and centred at point B, exactly between
the load and point D as illustrated in figure 8a. Again vertical
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displacements and 33 stresses are analyzed for points A, D, E as
well as for an auxiliary point (0,0,8), see figures 9 and 10. A total of
fifty four (54) quadratic isoparametric boundary elements were used
to model the spherical cavity.
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Figure 10a. Normal stress ¢33 at point D.
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Figure 10b. Normal stress ¢33 at points D and at an auxiliary point.

The sphere inclusion generates a small influence on the
displacement analysis, as the load is extended to infinite, affecting
mainly point D. Concerning the stress behavior, one can observe in
figure 10a the stress concentration at point D. It occurs because
point D is relatively near to the cavity bottom. In figure 10b it is
possible to see that under the cavity there exist two situations. One
can observe the “lens™ effect at point D, which is placed at more
than a diameter under the spherical cavity bottom. The spherical
cavity presence amplifies the stress values. At the auxiliary point,
placed near the bottom of the sphere, one can see the “shadow”
effect; therefore the stress intensity is reduced.

Rigid Footing Subjected to Harmonic Loading
In this example the behavior of a rigid footing placed on a half

1.00 —

space and subjected to a set of vertical harmonic loading is analyzed
by the use of the time domain formulation. The footing is square
with side length L=100cm. The half space is elastic and has the
following properties: E=10%kg/m/s*. p=0.0016kg/cm” and
v=0.25. As, for this example the interest is only in surface values.
the free surface is not discretized (see for instance Karabalis &
Beskos(1984)). One bilinear boundary eclement was used to
discretize the footing. Figures Ila, 11b and 1lc show the time
behaviour of the applied load and thc vertical displacement of the
footing for the frequencies 4000rad/s. 8000rad/s ¢ 12000rad/s.
respectively. The time step adopted is At =2,864x10 s .
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Figure 11a. Rigid footing vertical displacement for load frequency w = 4000 rad/s .
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Figure 11c. Rigid footing vertical displacement for load frequency w = 12000rad/s.
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Figure 12 shows the vertical displacement amplitude versus load
frequency values.
Displacement, amplitude and frequency normalization is carried

out as =u,E/(pL), laj=aE/(pL) and
[WI =wL/(2xrC,) > respectively. It is worth observing the

uZ
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behavior of phase changes in the movement as frequency changes,
figure 11. As a consequence of phase changes, the amplitude falls as
the frequency increases. In order to obtain more results for larger
frequency values it is necessary to improve the discretization.
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Two Towers Connected to the Soil by Piles

Two towers placed near each other and connected to the soil by
means of piles were analyzed when one of them is subjected to an
external load, figure 13. For each tower five finite elements are
adopted to model the buried part of the structure and ten to model
the other part. A sudden horizontal load is applied and sustained for
the rest of the analysis (Heaviside function), with
F, =4x10°kgdm /s?, see figure 13.

For this example a special fundamental solution is used. It is not
as good as the complete Lamb’s solution (Johnson (1974)) for the
half space, but for this analysis it is sufficient. It consists of two
Stokes’ fields with one collocation point each. The first collocation
point is placed at the real position, i.e., on the discretization nodal
point, namely (x,,X,,x;). The other collocation point is placed at the
image of the real point related to the free surface, i.e., (X;,x2,X3). The
resulting field is achieved by subtracting the second value from the

first one. Over the boundary and following Cauchy relation, the
tangential surface forces are zero and the vertical one is non-zero.
As the vertical one is less importante for the horizontal movement
(analyzed one) this fundamental solution can be used in this
analysis. The displacement fundamental values have no importance,
as the real surface forces, for this example, are zero.

The adopted physical properties are:
Towers and piles:
E =2,1X10°kg /(dm s%).p = 6kg /dm >,
A =79dm *, 1= 491 dm *.
Half space: E = 2,6 X10 "kg /(dm .s*), p = 2kg /dm *.
v=20,33

The displacement results are shown in figure 14 through 18.
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Figure 13. Towers connected to the soil.
1.007
€ q
L
S 075 —
E
8 -
&
% 0.50 —
©
o _
L
3 0.25 —
o
@ .
o
=
R R S L L L L BRI B L T T
0 1 2 3 4 5 6 7 8 <] 10 11 12 13 14 15
Time (s)

Figure 14. Loaded tower top displacement, long time analysis.
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Figure 17. Free tower top displacement, short time analysis.

A very common phenomenon appears in this example, i.e., one
can see in figure 16, that the movement amplitude of the free tower
oscillates between a maximum and a zero value. This same behavior
is verified for two concentrated masses connected by a spring. This
movement leads to the conclusion that this formulation gives a
complete solution. The time extension of the analysis shows that the
process is quite stable even for long time analysis.

Conclusions

The Time Domain Boundary Element formulation has been
presented in its most important aspects. A discussion about the
integral kernels has brought suggestions to find the most appropriate

60 / Vol. XX!V, March 2002

approach to build stable and general formulations. A straightforward
coupling formulation has been presented, as well as the correct form
to adopt external collocation points, leading to the possibility of
using non-singular TDBEM as an alternative approach. Three
examples have demonstrated the good, general and stable behaviors
of the formulation presented. Clues about the necessary care to use
different schemes, namely CLI, LI and SLI have been given. These
clues can help future researchers choose the most suitable technique
for the application studied. Now it is possible to start other fields of
studies such as viscoelasticity, anisotropy and crack growth in
dynamics, using any desired fundamental solution and providing
both accurate and stable results.
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