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A Well Stated Time Domain Integral 
Representation for Elastodynamic 
Analysis and Applications 
This article discusses three possible ways to derive time domain bozmdary integral 
representations for elastodynamics. This discussion points ou/ possible difficulties found 
when using those formulations to deal with practical applicalions. The discussion points 
ou/ recommendations to selecl lhe convenient integral representation to deal with 
elastodynamic problems and opens lhe possibility of deriving simplified schemes. The 
proper way to take into accozmt initial conditions app!ied to the body is an interesting 
topict shown. It illustrates the main differences between the discussed boundary integral 
representation expressions, their singu!arities and possible numerica! problems. The 
correct way to use collocation points outside the analyzed domain is carefully described. 
Some applications are shown a/ the end of the paper, in arder to demonstra/e the 
capabi/ities o f the technique when properly used. 
Keywords: Elastodynamics, integral representations, boundary elements 

Introduction 

The boundary element community has already seen many 
interesting studies on elastodynamics. One can see for instance: 
Antes & Steinfeld (1992), Mansur (1988), Kobayashi (1987), Coda 
et alli (1999a), Coda & Venturini (1999b), Domingues (1993) and 
Manolis ( 1986). This subject h as attracted the attention o f many 
researchers around the world. Very good reviews are given in the 
works o f Beskos ( 1988) and Beskos ( 1997). 

The present paper focus its discussion mainly on the Time 
Domain Boundary Element Method (TDBEM) applied to 
elastodynamic problems. As it is a well-known subject, the author 
intends to discuss the possible ways to derive time domain boundary 
integral representations for elastodynamics, pointing out the main 
differences among them, and their difficulties to present stable 
results. Another interesting topic discussed is how to deal with 
initial conditions for the different methodologies available. A 
straightforward way to couple the Finite Element Method to the 
Boundary Element Method is described, which allows the analysis 
of dynamic soil-structure interaction accurately and with numerical 
efficiency. The correct way to use externai collocation points is also 
discussed. This discussion is important in order to clarify some 
properties o f wave propagation problems that shou1d be considered 
when using the TDBEM. 

At the end of the paper some problems are solved using the 
smooth formulation, in arder to show the applicability of the 
technique. 

Nomenclature 

Q = Studied doma in 
T= Bozmdary ofthe body 
CJ;; = Stress 1ensor 
E:iJ = Strain tensor 
u; = Displacement, i direction 
p; =Traction, i direction 
e = sma!ler distance berween outside source and bounda1y 
r= time 
C1 ~, Long. wave velocity 
C1 = Shear wave velocity 
- = Sotokes State 
* = Fundamental values 
p = Density 
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f= Time fimction behaviour 
E = Elasticity modulus 
v= Poisson 's ratio 
b; = Body force, i direction 
8 2u I 8r 2 = Acceleration 
ii = Acceleration 
v = velocity 

- = Prescribed values 

v0 =linitia! va!ue 
H() = Heaviside Function 
, = Partia! derivative 

0 0 =Dirac 's delta distribution 

The Elastodynamic Problem 

This section presents a summary ofthe elastodynamic equations. 
The formal achievement of these equations can be found in 
Achenbach (1975), Love (1944) and Erigen & Suhubi (1974). 

The governing differential equation of linear elastodynamic 
equilibrium (i.e. the Navier-Cauchy equation) is given by 

(cf-cJ~;.p+C}u;,;;+b; l p=ii; , (I) 

where bi and ui are body forces and displacements, respcctively. 

Symbol p stands for the medi um density, while C 
1 

and C 
2 

represent longitudinal and shear wave propagation velocities, 
respectively. 

Equation (I) can also be written in terms o f stresses crii , as 

follows, 

(2) 

Assuming lhe problem defined o ver a domain Q with boundary 
r' the following boundary conditions along time have to be 
specified: 

{
u;(x,t) ~ ~;(x,t) 
p;(x,t) -p;(x,t) 

(3) 
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where p/x,t) represents the boundary tractions obtained from the 

stress field using the Cauchy's formulae and r=Jjvf]· 

As usual , the initial conditions are given by 

f uJx,t0 )=uiO{x) 

l ziJx,to) = viO(x) 

Graffi's Reciproca! Theorem 

xen. (4) 

Following the weighting residual technique steps given in the 
studies of Mansur (1985), Coda (1993), Araújo (1994), Domingues 
( 1993) and Coda (2000a), one can achieve Graffi's reciproca! 
theorem from eq. (2), as follows: 

I I 

J Ju;(r)b;(t -r)d.Qdr+ J JuJr) p;{l -r)dTdr= 
l, fl 1,r 
I 

J fp ;( r)ií;(t-r )dTdr+ 
1, r 

I I 

+I Ib/r)iíJ t-r)d.Qdr+ I IcrfJ(r)&,; (l -r)d.Qdr+ 
I, f2 l , fl 

+ fp{zi 1{ r )u1 ( t-r)-u;(r)'ii1(t-r){dn 
f2 

(5) 

where {uJr),ã'u(r)} is weighting field, {uJr),cru(rJ}represents 

the actual solid displacement and stress fields, while uij (r) stands 

for the initial stress state. Particular attention is given to the last 
term in eq. (5) representing the initial conditions. 

Boundary Integral Representation for Displacements 

The boundary integral representation for displacements can be 
achieved from eq. (5) adopting a particular distribution for the 
weighting field body force, given by Wheeler and Stemberg ( 1968) 
as: 

(6) 

where o( s- q) is Dirac' s delta distribution, ' s' and 'q' represent 

the source and field points, okJ stands for the Kronecker delta, 

while f (r) gives the time behavior ofthis set o f loads. 

For this particular body force distribution the weighting field 
{ukJr),Õ'kij(r) } represents the general Stokes ' state. The general 

Stokes' state expression can be found, for example, in Wheeler & 
Sternberg ( 1968), Coda ( 1993 ), Karabalis & Beskos ( 1984 ), 
Kobayashi (1987), Mansur (1985) Domingues (1993) and Erigen & 
Suhubi (1974). Replacing Stokes' state and expression (6) into eq. 
(5) yields the following integral representation: 

·./ 

I I 

Ck;(Q,s )f u;(s, r )f(t- r )dr+ f fui (r )p kj (Q, t; slf(r ))dTdr = 
/tJ t0 F 

I I 

f fp1( r)iik/Q,t,siJ( r ))drdr+ f fbi ( r )iík/ Q,t,sif( r ))d.Qdr+ 
~r ~ n 

I 

I Jcrij(r)&kiJ(Q,t ,siJ(r))dQdr+ 
I, f2 

fp{ ü ;(r )iík;(Q.t,slf( r)) - u;( r )~k/Q,t, sif( r)) 11: d.Q 
f2 ' 

(7) 

From eq. (7) one can obtain three main alternatives to write a 
displacement integral representation. 

The first altemative can be seen, for instance, in Kobayashi 
(1987), Mansur ( 1985) and Manolis (1986). It is an elegant way to 
obtain the desired representation. This approach consists in 
replacing, in eq. (7), the time function f( r) by Dirac's delta 

distribution. Thus, assuming f(r:) = o(r:) to represent the body 

force distribution b'k1 , eq. (6), results in 

I 

Ck;(Q, s }uJ s,t) = J Juk;(Q,t; s, ·c)p; (Q, r )drdr + 
1,r 

I 

-f Iu;(Q ,r)pj.JQ ,t ;s,r )drdr+ 

I 

1, r 
I 

I Iui.;(q,t;s,r)b ;(q,r)dndr 
I, f2 

J Juij (r )r:Ícij (Q, t ; s, r )dQdr + 
t, fl 

fp{ü ;(r JuZ1( Q,t;s, r)-u1(r)úkj(Q,t ; s,r)}l: d.Q, 
f2 ' 

(8) 

where field ~ ki (r), cr kij (r)} represents Dirac's delta fundamental 

solution. 
Equation (8) is cal!ed here the First Dirac's delta Displacemem 

Integral Representa/íon or simply, Loves' Jdentity (LI) ( Wheeler & 
Sternberg ( 1968) and Erigen & Suhubi ( 1974 )). 

Another way to derive a displacement integral representation 
can be found in Karabalis & Beskos ( 1984 ). As described for the 
previous procedure it consists in applying Dirac's delta distribution 
in expression (7), to find equation (8). After finding equation (8), 
Karabalis & Beskos (1984) applied a well-known Dirac 's delta 
fundamental solution property, Eringen & Suhubi (1974), in order 
to write eq. (8) in a more compact form. The property mentioned is 
that the convolution between Dirac's delta fundamental solution and 
any other function results in a Stokes' state exhibiting the impulse 
distribution governed by the adopted function behavior. Following 
the above description, eq . (8) is rewritten as 

Ck;(Q,s}u;(s,t)= JufJQ.t,sjpi (Q,t))dr 
r 

- fp fJ Q.t ,slu; ( Q ,t ))dr 
r 

J. of the Braz. Soe. Mechanical Sciences Copyright © 2002 by ABCM March 2002, Vol. XXIV I 47 



+ fufJQ. t,+i (Q ,t))d.Q + fcfu{Q,t,sla-ij(Q,t))d.Q + 
n n 

f p{ u1 ( r )u kj ( Q. t; s, r ) - u1 ( r )ü kj ( Q , t; s , r) J\;
0 

d.Q , 
n 

(9) 

where field ~~fJ r), a- fu· (r)} is the Stokes' state related to the 

behavior of the unknown variables {u,p}. Field ~Í.Jr), a-Í.u(rJ} , 
present in the initial conditions term, is Dirac's delta fundamental 
solution, as stated in equation (8). 

Note that Dirac' s delta fundamental solution remains in the 
initial condition term, as the same weighting function has been used 
to achieve both eqs. (8) and (9). Equation (9) is named here the 
Second Dirac's delta Displacement Integral Representation, or 
simply the Compact Laves' Identity (CU). It should be noted that in 
Eringen & Suhubi ( 1974) the Conpact Loves' Identity is called 
simply Loves ' Identity. Although from a mathematical point o f view 
there is no difference between eqs (9) and (8), in a numerical 
approach there is a difference regarding time approximation (see 
section 5). 

More recently, Coda ( 1993, 2000a) and Coda and Venturini 
( 1995a, 1995b, 1996a, 1996b, !996c, I 999a and 1999b) worked on 
the subject trying to find a more stable procedure for the TDBEM. 
The way found by the authors to improve the TDBEM stability was 
obtained by reducing the kernel's singularities regarding time. 
lnstead of assuming an instantaneous impulse, 

bi.; =o( s- q )ok;o( r), one starts by replacing o( r ) by the 

Heaviside distribution. The weighting function adopted to derive the 
integral representation is therefore, given by a concentrated load 
distributed over a time interval ( t.t ), as follows: 

bki =[H(r)-H(r-Llt)}l(q-s)oki ! Llt . (10) 

One can also choose smoother distributions, depending on the 
singularity reduction needed. Another possible formula to represent 

bj.1 is given by 

(I la) 

with 

( 11 b) 

where R, is a sub-element of t.t defin ing the time that the load 
function requires to reach its ma;x imum value and Ri is the duration 
ofthe load function at its maximum value (2*R,+Rd =t.t ). 

Adopting the fundamental solution deri ved by choosing b ~j 

gi ven by eq. ( I O) o r ( 11 ) Graffi's theorem gives 
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{ 

Cki (Q, s ftiJs, Llt ) + f fu ;(r )p k;(Q. t ; s\J(r ))dTdr = 
t, r 

I 

J JP; ( r )ük/Q,t,s\f( r ))dTdr+ 
1,r 

I 

+f fb;(r)i/kj(Q,t ,s\f(r ))d.Qdr + 
1,n 

I 

f Ja-ij(r)&kij(Q, t,s\f(r))d.Qdr+ 
t,fl 

+ fp{ú; (r) ilk/Q,t,s\f{ r )) 
n 

-u;(r )iik/Q,t, s\J(r )){ dQ 

I 

( 12) 

where ziJ s .Llt) = f u;( s. r )f(t- r )dr is understood as an average 
1-tJI 

displacement value over the final time step. When a time 
approximation is assumed, this value becomes the time parametric 

displacement. Field fk/ r), õ'ky{ r)} is a Stokes' state related to the 

time load function given in either eq. (I O) o r (I!). 
The e!astodynamic state achieved assuming the impulse 

distributed along a time interval is named here smooth fundamenta l 
solution. Note that this smooth fundamental solution is present in 
the initial conditions term in eq. (12). 

As Dirac's delta fundamental solution has not been used to 
achieve expression ( 12), this representation is named here the 
Smooth Displacement Integral Representation, or simply Smooth 
Laves' Identity (SLI), Coda (2000a, 2000b). 

Equations (8) and (9) were obtained using the same weighting 
function, i.e. Dirac's delta fundamental solution, thereforc they 
present the same singularities. The difference between them is the 
convolution concerning time application order. In eq. (9) the time 
convolution is applied before imposing time approximation. while 
for eq. (8) the time convolution is applied after imposing time 
approximation. 

lt is accepted but not mentioned in literature that formulations 
based on eqs (8) and (9) are strongly unstable. Even after some 
regularization studies carried out by Siebrits & Pierce ( 1997) and 
Risos & Karabalis (1997) using spline functions. and Yu et ali 
(1999) proposing a linear () methodology, the theoretica l evidences 

for instability turn the numerical calibration o f results almost a try 
and error technique, disregarding generality. Some researchers have 
started to use the SLI in two-dimensional analysis. as it can bc seen 
in Carrer & Mansur (200 I). 

Discussions about Integral Representations 

The previous section presents three different integra l 
representations to build the TDBEM, namely LI , CLI and SLl. 
Before describing how to develop the algebraic processes, whi ch are 
practically the same in spite ofthe adopted integral reprcsentation. a 
discussion about the main differences among the three alternatives 
shall be presented, along with their main advantagés and 
disadvantages. 

A clear difference among representations described concerns thc 
way oftreating the initial conditions. 

One can observe that in the three-dimensional LI and CLI 
integral representations (eqs. (8) and (9)), Dirac's delta fundamental 
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solution is present in the last volume integral in its displacement and 
velocity values. One can see from the fundamental solution 
expressions, Karabalis & Beskos (1984) or Wheeler & Sternberg 
( 1968). that Dirac' s delta distribution ( 8( ) ) and its derivative 

concerning time ( õ(. ) ) are present in the kernel of the volume 

integral mentioned. 
As far as the author's know1edge goes, there is only a study of 

three-dimensional elastodynamic analysis, Antes & Steinfeld 
( 1992), where the third integral o f eq. (9), i.e. body weight integral, 
is performed. This integral is less singular when compared with the 
initial conditions one, but in that study, as the body weight is 
constant over time, this integral presents a Dirac's delta function 
(3D) and spherical surfaces should be integrated to fulfill the jump 
conditions requirements. 

The subject of initial conditions in two-dimensional 
elastodynamics is treated by Sladek & Sladek ( 1992). Although 
S!adek & Sladek ( 1992) presented a mathematical discussion on the 
subject no practical results were presented, leading to no 
concl usions about stability. 

When applying the Smooth Love's Identity (SLI), eq. (12), the 
initial velocity field is considered without problems, as in Coda & 
Yenturini (1996a) and Coda(2000a). Initial displacement can be 
treated adopting at least a piecewise linear fundamental load 
function, Coda (2000a). In order to obtain a stable procedure for 
general problems, one should adopt at 1east a load function of class 
CI lt should be mentioned that Carrer & Mansur (2001) used SLI to 
solve initial conditions for two-dimensional scalar wave propagation 
problems. 

Another difference between Smooth Integral Representations 
and the ones based on the Dirac's delta fundamental solution is 
related to their behavior when constant time approximation is 
assumed (3D). 

First of ali , the difference between eqs. (8) and (9), which are 
apparently the same, is clearly noted when constant time 
approximation is adopted. It is impossible to impose constant time 
approximation for displacements in eq. (8) as the first derivative of 
Dirac 's delta is present in the Kernel ofthe first integral on the right 
side of eq. (8). It indicates that the result of this convolution is the 
time derivative of the constant function (approximation), resulting 
in no contribution of this term and leading to instability of the 
resulting numerical process. From this assumption, one concludes 
th at it is necessary, for LI (3D), at least a linear time approximation 
for displacements. 

!f displacements are taken as constao! o ver a time step in eq. (9), 
the considered kernels wi ll represent distributed impulses along time 
steps and generate kernels that necessarily contain Dirac's delta 
distributions. Following this assumption, one concludes that the 

approximated Compact Love ' s Identity has been obtained in an 
incomplete way. In order to correct this mistake the creation of 
spherical surfaces inside the body to guarantee the well known 
"jump conditions", is necessary. In stud ies based on CLI, as 
Karabalis & Beskos (1984), these considerations have not been 
made, resulting in unstable algorithms. It is also noted, that .t:or free 
surface problems, where the problematic kemel (surface 
fundamental tractions) has no influence, the CLI deficiencies will 
not be evident. 

It is ·very simple to verify that when using SLI based on 
Heaviside fundamental solution, eq. (I 0), the application o f constant 
time approximation for both displacements and tractions satisfies 
completely Graffi's theorem, (Wheeler & Sternberg (1967)), leading 
to a consistent and stable procedure. The numerical technique based 
on SLI has presented very good results in various studies, Coda and 
Venturini (1995-1999), and some new results are presented here, 
coupled and not coupled with finite element models. It is worth 
noting that. by analyzing ali the questions about classical 
formulations based on LI or CLI, they can be safely used with 
additional effort on the quality of numerical integration procedures, 
Araujo et ali (1999). For stress integral representations the 
difficulties are worse, as the time singularities of the kernels are 
increased one time. 

The discussion carried out was based on three-dimensional 
expressions. For two-dimensions the kernel singularities concerning 
time are smaller than for three-dimensions, but in general the 
integral formulation behavior is similar, Mansur et ali (200 I) and 
Mansur (1985). 

Externai Collocation Points 

In literature it is usual to find references to the direct application 
of exterior source points in eqs (8) and (9), assuming the free term 
to be zero, i.e., "Ckj = 0", as for the static case, see Kobayashi 
(1987). Following this proposition it is impossible to implement a 
stable non-singular TDBEM. This section describes the way to 
correctly write integral representations for externa! collocation 
points. 

In order to understand what is proposed it is necessary to keep 
in mind the wave motion characteristics ofthe fundamental solution. 
The elastic waves move in two fronts with distinct velocities C 1 
(longitudinal waves) and C2 (shear waves), being "C1 > C2"· After 
some period oftime 't' from the application ofthe concentrated load 
on source 's', a certain region o f the medi um has suffered a 
perturbation. In figure I, the hatched area represents the disturbed 
region. 
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Figure 1. Disturbed region after a period o f time 't' dueto the concentrated force in 's'. 

Points outside this region do not suffer the influence ofthe load. 
When the load point is inside domain or over boundary the 

/ 

convolution described by eqs (8), (9) and (12) can be shown 
schematically as in figure 2. 

fundamental solution 
convolutive movement 

Figure 2. Graphical convolution scheme. 

One should realize that, as in the convolution process the 
fundamental values are written in terms of (t-1:), the externai radius 
o f the hatched regions of figure 2 represents the initial instant, i.e. , 
'O'. Similarly, the perturbation end is at point ' s' for instant ' t'. 
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When the possibility of putting the source point outside the 
studied body is supposed, the usual procedure leads to draw the 
schematic representation offigure 3. 
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J 
Figure 3. Erroneous representation of the convoluting process. 

The algebraic representation (neglecting initial conditions and 
body forces), related to this erroneous procedure comes from 
equation (7) (o r even (8), (9) and (12)) and is written as: 

Ir I>;JQ.t-r;s l f)u 1(r )drdT= 

Ir I~u;1 (Q,t-r;s l j )pJ r)drdr 

Equation ( 13) can be divided in to two parts, as follows: 

(13) 

f r(l-e l c,) • 
r Jo Pkj{Q,t-r; s ! f )u1{r )drdF+ 

Ir s:/-e . c, ) p;J Q.t-r;s / f )ztj{r)drdF= 

f r (l-e/ c, J • 
r Jo ukJ(Q,t-r;s l f)p 1(r)drdF+ 

f r t-e l c,/';J(Q,t-r; s I f )u 1(r)drdr, 

where 'e' is the smaller distance between 's' and r . 
The meaning o f eq. ( 14) can be seen in figure 4. 

Figure 4a. Spreading of the erroneous integral representation, interval [0, t- e/c1]. 

(14) 
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Figure 4b. Spreading of the erroneous integral representation, interval [t-ele,, t] . 

It is easy to note that during the interval [t- e/C ~> t] there is no t' = t- e/C 1 , ( 16) 
presence ofthe fundamental values in eq. (13) and. therefore, part of and, therefore, 
the convoluting process is lost, which makes this representation 
worthless. t = t' + e/C 1 , ( 17) 

On the other hand, if one starts from part of eq. (14) where the 
fundamental solution is not zero, Then, substituting expression (17) in eq. (15) results: 

I r(t - e c, ) • 
r Jo Pk/Q,t-r;s l f )uJ r )drdT= f r' ' ... r Jo PkJ(Q,t'+e l C1 -r; s I f )u 1(r )drdT = 

I 
r(l - e c ) • 

r Jo ' ukJQ. t -r, s l f )p/r)drdT , ( 15) I r'' * r Jouk1 (Q,t'+e ! C1 -r;s l f)p 1(r)drdT. ( 18) 

it is possible to write a va1id integral representation for externai 
sources. This is done applying a time trans1ation o f the final instant 
o f analysis. For that sake, let us define 

Equation ( 18) means that the convoluting process, for outside 
sources, should be carried out by means of time translated 
fundamental values. 

( / 

·~ 
convolution j ­
orientation 

~ 

(;_r 

./·}~ 
/ I 

Figure 5. Correct convoluting process along interval [O,t]. 

The scheme of this procedure can be seen in figure 5 and the 
complete eq. (12) is given by: 
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(19) 

Equation (19) is the correct version of eq. (12) for outside point 
collocation. 

Algebraic Process and the Finite Element Method 

The steps to transform either eq ( 12) o r (19) in to an algebraic 
system o f equations can be found in any good reference o f TDBEM, 
as for example, Mansur (1983), Domingues ( 1993), Kobayashi 
(1987), Araujo (1994), Coda (1993) and Coda (2000a). Following 
these steps one finds: 

where the superscript n1 represents the final instant of a!! 

convoluting process related to the instant o f interest. lndices e and 
~ represent the time interval approximation considered. Thus one 

has a summation from I to n, in e and a summation from 1 to the 

time approximation order in l3 . 
Expression (20) can be written, for any final convoluting instant, 

in a compact form as follows: 

HU=GP+F (21) 

where F contains the history o f the movement. 
Following a weighting residual procedure al!ied to a spatial 

approximation technique and a time integrator, as for example 
Newmark ~ , one can write the following linear equation system in 

order to represent the dynamic equilibrium equation at any instant. 
(Finite Element Method, Bathe (1980)) 

(22) 

where superscript "f" represents finite element. 

Coupling 

In order to make the coupling between BEM and FEM the sub­
region technique is adopted, Co da & Venturini ( 1995, 1999a, 
1999b) and Beer & Watson ( 1992). 

Taking two sub-regions defined by f2; and n i, which are 

coupled with each order by means o f interface r .. , one applies eqs 
'J 

(21) and (22) for each body, resulting in 

(23) 

(24) 

Equations (23) and (24) are written for a single instant. Despite the 
occurrence of repeated índices in expressions (23) and (24) it does 
not imply summation. 

Both equilibrium and kinematical compatibility conditions 
along interface ['ii are written as: 

uu=uii, (25) 

piJ = _pJi' (26) 

where the superscripts represent the first and the second contact 
sub-region, respectively. 

uiJ and piJ values are respectively, the displacement and the 
traction along the contact surfaces. The values that do not belong to 

the contact surface are called Uie and pie. Substituting eqs. (25) 
and (26) in eqs (23) and (24 ), results in 

r1 rJ [ H;c H'i -G 'i H~c] ~ji: = [ G;c G'i o 
G
0
ii ] ~;c + {::} Hii Gi' o Gjc 

UJC p»' 

(27) 

where piJ represents the prescribed values on the contact surface 
This expression can be easily extended to an arbitrary number of 
sub-regions, see for instance Cada & Venturini (1999a), Coda et a!! 
( 1999b) and Co da (2000a) 

Numerical Examples 

In this section some new examples are shown applying the SLI 
formulation. The fundamental solution adopted is defined by the 
load function o f equation (1 0). No comparisons with other results 
are shown in this paper. Differences between SLI formulation and 
LI (or CLI) regarding stability and accuracy can be seen in Cada & 
Venturini (I 996c) for three-dimensional problems. 

Regarding computational effort one concludes that for three­
dimensional analysis the formulations based on SLI are more 
economic than the classical ones. lt occurs as it is possible to apply 
constant time approximations for displacements employing SU, 
while it is not a good choice in CU or LI formulations. It is obvious 
that when applying the same approximations for a!! schemes, LI or 
CU is more economic than SLI for three-dimensional problems. It 
occurs because the smooth fundamental solutions wavc fronts have 
larger width than the one of Dirac 's delta. For two-dimensional 
analysis the computational effort is the same (when using the same 
approximation), as the fundamental solutions values do not vanish 
after some period oftime. 

Spherical Cavity under a Loaded Half Space 

For the analysis of the half space, shown in figure 6. two 
situations wi ll be considered. The first one consists in applying the 
load over the free surface without including anything under the 
loaded surface to verif)' i f the solution converges to the static result. 
Then a spherical cavity with radius r=2.5m is placed under the 
loaded surface. Its center is located at x3 axis, 5m beyond the loaded 
surface. The influence of the spherical cavity, regarding 
displacement and stress intensity for selected points is studied. In 
figure 6, the intensity, shape and time behaviour ofthe externalload 
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are shown. The physical constants are E = 2.10 8 Kg /( ms 2 ), v = 

0,25 , p=l600kg / m3 and .ó.t=0,0085s -

As Stokes' fundamental solution is applied and interna! 
displacements and stresses are of interest, it is necessary to 
discretize an extension of the free surface, figure 7. Both vertical 
displacement and vertical stress component cr 

33 
for points A 

A 

Sm 

x3 

(0,0,0), B (0,0,5), C (I 0,0,5), D (0,0, 15) and E (I 0,0, 15), without 
the spherical cavity consideration, are shown in figure 8. 
compressive stresses were represented as positive. 

.,. 

p(t) 

p 

Sm 

Figure 6. Half space and applied load . 
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Figure 7. Surface discretization. 
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Figure Ba. Displacement at points A, B, C, D and E for the adopted loading. 
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Figure Bb. Stress component cr33 for points A, B, C, D and E for the adopted loading. 

The results are stable and converge to the static values, as 
expected. 

displacements and cr33 stresses are analyzed for points A, D, E as 
well as for an auxiliary point (0,0,8), see figures 9 and I O. A total o f 
fifty four (54) quadratic isoparametric boundary elements were used 
to model the spherical cavity. 

Now, consider a spherical cavity placed under the loaded 
surface with radius R=2.5m and centred at point B, exactly between 
the load and point D as illustrated in figure 8a. Again vertical 

J. of the Braz. Soe. Mechanical Sciences Copyright © 2002 by ABCM March 2002, Vol. XXIV I 55 



1.2E-2 

1.0E-2 

_§_ B.OE-3 
c 
Q) 

E 6.0E-3 Q) 
(.) 

co 
Ci 
C/) 4.0E-3 o 

2.0E-3 

O.OE+O 

o 

1.0E+6 

8.0E+5 

6.0E+5 

co 4.0E+5 
0... 

cn 2.0E+5 
cn 
Q) O.OE+O ...... -cn 

-2.0E+5 
ro 
E -4.0E+5 ...... 
o 
z -6.0E+5 

-8.0E+5 

-1 .0E+6 

-1.2E+6 

o 

1.2E+6 --, 

1.1E+6 

1.0E+6 
.--.. 9.0E+5 ro 
0... 8.0E+5 
cn 

7.0E+5 (j) 

~ 6.0E+5 -(j) 
ro 5.0E+5 
E 4.0E+5 ...... 
o 
z 3.0E+5 

2.0E+5 

1.0E+5 

O.OE+O 

o 

56 I V oi. XXIV, March 2002 

------ ___p,.._ 

10 20 

With cavity 

Wthout cavity 

30 40 50 60 70 80 
Number of time steps 

Figure 9a. Vertical displacement at points A, D and E. 
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Figure 9b. Stress component cr33 at point E. 
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Figure 1 O a. Normal stress cr33 at point D. 
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Figure 10b. Normal stress cr33 at points O and at an auxiliary point. 

The sphere inclusion generates a small influence on the 
displacement analysis, as the load is extended to infin ite, affecting 
mainly point O. Concerning the stress behavior, one can observe in 
tigure I O a the stress concentration at point O. lt occurs because 
point O is relatively near to the cavity bottom. In figure I Ob it is 
possible to see that under the cavity there exist two situations. One 
can observe the "'lens" effect at point O, which is placed at more 
than a diameter under the spherical cavity bottom. The spherical 
cav ity presence amplifies the stress values. At the auxiliary point, 
placed near the bottom of the sphere, one can see the ' 'shadow" 
effect; therefore the stress intensity is reduced. 

space and subjected to a set o f vertical harmonic loading is analyzed 
by the use of the time domain formulation. The footing is square 
with side length L=IOOcm. The half space is elastic and has the 

following properties: E = I Ox kg I m I s 2 • p = O .00 16kg I em ' anel 

v= 0.25 . As, for thi s example the interest is only in surtàce valucs. 
the free surtàce is not discretized (see for instance Karabalis & 
Beskos( 1984 )). One bilinear boundary element was used to 
discretize the footing. Figures li a, li b and 11 c show th <.: time 
behaviour of the app1iecl load anel the vertical displaccment o f the 
footing for the frequencies 4000rad/s, 8000rad/s c 12000rad/s . 

respectively. The time step adopted is 6.t = 2,864x I O-; s. 
Rigid Footing Subjected to Harmonic Loading 

In this example the behavior o f a rigid footing placed on a half 
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Figure 11a. Rigid footing vertical displacement for load frequency w ; 4000 rad/s. 
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Figure 11b. Rigid footing vertical displacement for load frequency w = 8000 rad/s . 
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Figure 11 c. Rigid footing vertical displacement for load frequency w = 12000 rad/s. 
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Figure 12. Amplitude for various load frequencies. 
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Figure 12 shows the vertical displacement amplitude versus load 
frequency values. 

Displacement, amplitude and frequency normalization is carried 

out as JuzJ=u zE /(pL) , JaJ=aE /(pL) and 

lw l = w L / (2rcC,), respectively. It is worth observing the 

behavior of phase changes in the movement as frequency changes, 
figure 11. As a consequence ofphase changes, the amplitude falls as 
the frequency increases. In arder to obtain more results for larger 
frequency values it is necessary to improve the discretization . 
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Two Towers Connected to the Soil by Piles 

Two towers placed near each other and connected to the soil by 
means o f piles were analyzed when one of them is subjected to an 
externai load, figure 13 . For each tower tive finite elements are 
adopted to model the buried part of the structure and ten to model 
the other part. A sudden horizontal load is applied and sustained for 
the rest of the analysis (Heaviside function), with 

FH = 4xl 0 6 kgdm I s 2
, see figure 13. 

For this example a special fundamental solution is used . It is not 
as good as the complete Lamb's solution (Johnson (1974)) for the 
half space, but for this analysis it is sufficient. lt consists of two 
Stokes' fields with one collocation point each. The first collocation 
point is placed at the real position, i.e., on the discretization nodal 
point, namely (x 1,x2,x3). The other collocation point is placed at the 
image ofthe real point related to the free surface, i.e., (x"xz,x3). The 
resulting field is achieved by subtracting the second value from the 

F -

first one. Over the boundary and following Cauchy relation, the 
tangential surface forces are zero and the vertical one is non-zero. 
As the vertical one is less importante for the horizontal movement 
(analyzed one) this fundamental solution can be used in this 
analysis. The displacement fundamental values have no importance, 
as the real surface forces, for this example, are zero. 

The adopted physical properties are: 
Towers and piles: 

E= 2,1Xl0 9 kg l(drri .s 2
) , p = 6kg l dm 

A = 79 dm 2 
, I = 491 dm 4 

• 

H a/f space: E = 2, 6 X I O 7 kg I( dm .s 2 
) , p = 2 kg I dm 3 

• 

u=0 ,33 
The displacement results are shown in figure 14 through 18. 
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Figure 13. Towers connected to the soil. 
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Figure 14. Loaded tower top displacement, long time analysis. 
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Figure 15. Loaded tower top displacement, short time analysis. 
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Figure 16. Free tower top displacement, long time analysis. 
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Figure 17. Free tower top displacement, short time analysis. 

A very common phenomenon appears in this example, i.e., one 
can see in figure 16, that the movement amplitude o f the free tower 
oscillates between a maximum and a zero value. This same behavior 
is verified for two concentrated masses connected by a spring. This 
movement leads to the conclusion that this formulation gives a 
complete solution. The time extension o f the analysis shows that the 
process is quite stable even for long time analysis. 

Conclusions 

The Time Domain Boundary Element formulation has been 
presented in its most important aspects. A discussion about the 
integral kernels has brought suggestions to find the most appropriate 
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approach to build stable and general formulations. A straightforward 
coupling formulation has been presented, as well as the correct form 
to adopt externai collocation points, leading to the possibility of 
using non-singular TDBEM as an alternative approach. Three 
examples have demonstrated the good, general and stable behaviors 
o f the forrnulation presented. Clues about the necessary care to use 
different schemes, namely CLI, LI and SLI have been given. These 
clues can help future researchers choose the most suitable technique 
for the application studied. Now it is possible to start other fields of 
studies such as viscoelasticity, anisotropy and crack growth in 
dynamics, using any desired fundamental solution and providing 
both accurate and stable results. 
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