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1. Introduction and Summary

In this paper, we review our approach [47] to the second law of thermodynamics

as a theorem asserting the growth of the mean (Gibbs–von Neumann) entropy

of a class of quantum spin systems undergoing automorphic (unitary) adiabatic

transformations. The structure of the proofs in the original reference is clarified

at several points in which only a sketch is given, at the same time allowing for

a larger class of interaction potentials (of polynomial decrease rather than only

exponential decrease at infinity). We also compare this framework with our previous

approach to the second law, together with Narnhofer [30] based on the (quantum)

Boltzmann entropy. Our main new result is that non-automorphic interactions with

the environment, although known to produce on the average a strict reduction of the

Boltzmann entropy of systems with finite number of degrees of freedom [30, Lemma

3], are proved to conserve the mean entropy on the average, as a consequence of

the latter’s property of affinity. As a consequence, we do not need to assume that

such interactions are rare on the thermodynamic time scale, in order to assure the

validity of the second law (see the remarks on the last paragraph of [30]).
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As described by Wehrl in a still very readable paper [43, p. 227 et seq. “A para-

dox”], the common assertion of the second law of thermodynamics, that the entropy

of a closed system never decreases, is in striking contradiction to the following fact.

Let SG
N,V denote the Gibbs–von Neumann entropy of a system of N particles in a

box of volume V , i.e.

SG
N,V = −kBTrρN,V log(ρN,V ), (1)

where ρN,V is a positive trace-class operator (density matrix) describing the sys-

tem and Tr is the trace over the corresponding Hilbert space HN,V . For a system

described by a time-independent Hamiltonian HN,V , however, the density matrix

ρN,V (t) at time t is obtained from the density matrix at time zero ρN,V from the

formula

ρN,V (t) = exp(−iHN,V t)ρN,V exp(iHN,V t) (2)

and since exp(iHN,V t) is a unitary operator, the repeated eigenvalues of ρN,V (t)

are the same as the eigenvalues of ρN,V , and thus

SG
N,V (t) = SG

N,V (0). (3)

As Wehrl remarks, “there is one way out of this dilemma: the time-evolution of a

system is not described by the Schrödinger equation, but by some other equation.

In fact, in statistical mechanics one uses, with great success, equations like the

Boltzmann equation, the master equation, and other equations.” We refer to [39]

for a very comprehensive discussion of the master equation approach, as well as

references. This approach concerns open systems. In the present paper we shall be,

however, concerned with closed systems — systems completely isolated from all

external influences. Traditional thermodynamics takes this idealization as starting

point, which is also done by Lieb and Yngvason in their rigorous axiomatic approach

[21]. Examples such as the evolution of the Universe or the adiabatic irreversible

expansion of a gas, in which the isolation of the system may be achieved to any

degree of accuracy, suggests that this idealization also has a fundamental character,

from the physical point of view (see also [47]).

We wish to maintain the universal definition (1) of the Gibbs–von Neumann

entropy, and attempt to find a dynamical proof of the second law, continuing to

assume a deterministic evolution (2), which implies (3). An important hint in this

direction was provided by Penrose and Gibbs [33, p. 1959; 12] in the framework of

classical statistical mechanics, whereby (1) becomes

SΓ
G(ρ) = −kB

∫
Γ

dxρ(x) log(ρ(x)) (4)

(defining x log(x) = 0, for x = 0, as we do throughout), where Γ denotes phase space

and ρ is a phase space density, i.e. a non-negative function, absolutely continuous

with respect to Lebesgue measure dx, such that∫
Γ

dxρ(x) = 1. (5)
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The number of particles N and the box of volume V are implicit in Γ; if necessary

to make them explicit, we shall write ΓN,V . Define [33] an adiabatic process as a

process in which no heat enters or leaves the system, starting at time zero, when

the Hamiltonian is Ht=0 and the phase space density ρ0 is invariant under Ht=0,

and ends at time one, when the Hamiltonian has changed to Ht=1, supposed to

yield a mixing (hence ergodic) motion thereafter. In spite of the time-dependence

of the Hamiltonian, Liouville’s theorem remains valid, which permits to calculate

the phase space density ρt for t ≥ 0, but the final equilibrium is assumed to be

described by the coarse-grained phase-space density ρ̄, defined by the averaging

prescription

ρ̄(x) = lim
T→∞

∫ 1+T

1

ρtdt

T
, (6)

which exists for a.e. x ∈ Γ, by Birkhoff’s ergodic theorem and which, for ergodic

systems as assumed, yields an invariant density (see, e.g., [42, Chap. 1, paragraph

5]), just as equilibrium is modeled in Gibbs-ensemble theory. We may now state

Theorem 1.1 (Penrose–Gibbs Theorem). Under the above assumptions,

SΓ
G(ρ0) ≤ SΓ

G(ρ̄). (7)

As remarked by Penrose [33, p. 1959], mathematically, the inequality (7) illus-

trates the non-interchangeability of the functional SΓ
G, given by (4), and the limit

on the right-hand side of (6), since, by Liouville’s theorem (the analogue of (3)), the

left-hand side of (7) equals limT→∞
∫

1+T
1

SΓ
G(ρt)dt

T , while the right-hand side equals

SΓ
G(limT→∞

∫
1+T
1

ρtdt

T ).

In [47], we observed that, for finite systems, i.e. associated to a phase space Γ

of finite measure (with N, V finite), SΓ
G, given by (4), is a continuous functional of

ρ (in the natural, weak* topology, see [39, p. 57]), and therefore, unfortunately, (3)

continues to hold.

For classical systems, it is the mixing property which determines the approach

to equilibrium, in the sense

lim
t→∞

∫
Γ

ρt(x)G(x)dx = 〈G〉eq ≡
∫
Γ

ρ̄(x)G(x)dx (8)

for G an observable, i.e. a continuous function over phase space (see [33, (1.35),

p. 1949], and references given there). Equation (8) suggests regarding ρ as a state,

i.e. a normalized linear functional over the algebra of observables, which turns out

to be the natural choice for both classical and quantum statistical mechanics, in the

former case the algebra being abelian. In this context, the notion of mean entropy

sG(ρ) = lim
V →∞

S
ΓN,V

G (ρ)

V
(9)
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as a functional of the state ρ is the natural quantity to be considered. In (9), the

limit V → ∞, assumed to exist, is the thermodynamic limit in the sense of van

Hove, whereby N → ∞, V → ∞, with N
V = d, d denoting the particle density in

classical statistical mechanics [36], or the van Hove limit in the case of quantum

spin systems.

The reason for considering the mean entropy sG(ρ) rather than the entropy

SΓ
G(ρ) of finite systems is two-fold, and appears in both contexts of automorphic

evolutions (Sec. 3) and non-automorphic evolutions (Sec. 4), the latter also relevant

to the measurement problem studied by Hepp in his seminal paper [16].

First, the limit t → ∞ will not, in general, commute with the limit of infinite

volume (for an explicit example of this fact in a soluble model in cosmology describ-

ing the CMB (cosmic microwave background) radiation, see [46]). Indeed, the rate

of approach to equilibrium may grow indefinitely when the volume tends to infinity,

and it is therefore of essential importance to consider the densities, such as the

entropy density in (9), or the space-average of the magnetization in the model of

Sec. 4.

Second, quantum systems imperatively require the use of infinite systems in the

study of dynamics, since, for finite systems, the Hamiltonian has a discrete spectrum

and the observables are quasi-periodic functions of time (see [33, Sec. 1.5]).

It turns out that consideration of sG(ρ) rather than S
ΓN,V

G (ρ) entails two

bonuses: in the first place, it is upper-semicontinuous rather than continuous, lead-

ing to a refined form of Theorem 1.1, in which strict growth (of sG(ρ)) for large

times is possible (Theorem 3.1). But even more is true: the property of affinity

allows a proof of stability of the second law, in the form of Theorem 3.1, under

what we believe to be a paradigmatic non-automorphic interation with the envi-

ronment (Theorem 4.1) — in sharp contrast to the situation for finite systems,

in which a reduction of the average entropy (von Neumann or Boltzmann) occurs

[30, Lemma 3].

As observed, a state ω will be defined as a normalized, positive linear functional

over the algebra A of observables of an infinite system. Readers unfamiliar with this

notion may consult the classic book [39]. This seems to be the adequate moment

to make a brief interlude to explain our restriction to quantum spin systems. We

believe that the forthcoming Theorem 3.1 should have a wide domain of applicabil-

ity, including classical statistical mechanics, but consideration of the momenta still

poses an open problem in the classical case (see [37, p. 1666]). Concerning the time

evolution of quantum systems, only for quantum spin systems is the time-evolution

an automorphism of the natural C* algebra of observables, a fact used in Theo-

rem 3.1; for quantum continuous systems, it is not, in general, the case. In order to

start our explanation, we must introduce the main concepts.

An automorphism τt(A) of A is basic concept: it is a one-to-one mapping of

A onto A which preserves the algebraic structure. For quantum spin systems, it

equals the limit in the operator norm of the time-evolutes exp(iHΛt)A exp(−iHΛt)
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as the region Λ ↗ Zν , and one speaks of a C*-dynamical system (A, τt). The letter

ν will always denote the spatial dimension.

Comparison with the discussion preceding Theorem 1.1 suggests the following

definition (which follows [33] closely, adapting his discussion to a framework which

includes states of infinite systems).

Definition 1.2. Let a C*-dynamical system (A, τt) be given, with t ∈ [−r,∞).

An adiabatic transformation consists of two successive steps. The first step, called

preparation of the state, starts at some t = −r, with r > 0, when the state ω−r is

invariant under the automorphism τ−r, and ends at t = 0. We require the cyclicity

condition

τ−r = τ0 = τ. (10)

The second step is a dynamical evolution of the state ω in the form

t ∈ R → ωt ≡ ω ◦ τt, (11)

where the circle denotes composition, i.e. (ω ◦ τt)(A) = ω(τt(A)). We call (11) an

automorphic evolution. It is assumed to be non-trivial, i.e. the state after prepara-

tion is not invariant under the evolution:

(ω0 ◦ τ) �= ω0. (12)

Note that the automorphism τ refers to a time-independent interaction. Between

t = −r ant t = 0 in the above definition a “time-dependent Hamiltonian” is sup-

posed to act, see the above discussion of the Penrose–Gibbs theorem in the classical

case. Indeed, according to Definition 1.2, the system is closed from t = 0 to any

t > 0, but not from t = −r to t = 0, where it is subject to external conditions, but

is still thermally isolated. One form of the second law of thermodynamics may be

found in the seminal paper of Pusz and Woronowicz [34]: if ω−r is a passive state

(defined in [34] or [5, p. 101]), it is unable to perform work in a cyclic process. This

statement is analogous to the Kelvin–Planck statement, rigorously formulated and

proved as Theorem 3.4 of [21]. Under certain additional conditions ([34], or [5, The-

orem 5.3.22]), it may be proved that ω−r is either a ground state, a thermal (KMS)

state or a ceiling (infinite temperature) state. We shall refer to any of the latter

states as an equilibrium state, and chose our ω−r in Definition 1.2 as an equilibrium

state. As remarked in [5, (5.4.4), p. 211], passivity “reflects a property of stability

of equilibrium states which is basically kinematic”. It does not include the second

step in Definition 1.2, which is basically dynamic and may be called a relaxation.

For finite systems, this process conserves the entropy, but we shall see that, for

systems with infinite number of degrees of freedom, it may lead to growth of the

mean entropy. In the explicit examples we are able to provide, the mean entropy

is conserved and equals zero in the first step, while the growth appears in second

step; it is a characteristic of states of infinite systems that pure states may tend to

mixed states for large times, a fact observed by Hepp [16].
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Equation (12) is a condition of dynamical instability. We shall correspondingly

refer to ω0 as an unstable state.

Remark 1.1. The “time-arrow” problem.

In Definition 1.2 we see that primitive causality requires a time interval r �= 0

preceding the time of appearance of the state ω0 = ω during which the state is

prepared. This is obviously not time-reversal invariant, and this mere fact implies

the existence of an “arrow of time”, see also [47, 32]. We shall implicitly assume it

in the present paper. See also Sec. 4.4.

2. Quantum Spin Systems

2.1. Generalities

A prototype, which we shall use, is the generalized Heisenberg Hamiltonian (gen-

eralized Ising model (gIm) if J1 = 0):

HΛ = −2
∑

x,y∈Λ

[J1(x− y)(S1
xS

1
y + S2

xS
2
y) + J2(x− y)S3

xS
3
y ], (13)

where ∑
x∈Zν

|Ji(x)| < ∞ and Ji(0) = 0 for i = 1, 2. (14)

Above, �Sx ≡ (S1
x, S

2
x, S

3
x), where Si

x = 1/2σi
x, i = 1, 2, 3 and σx are the Pauli

matrices at the site x. Above, HΛ acts on the Hilbert space HΛ = ⊗x∈ΛC
2
x and

�Sx is short for 1 ⊗ · · · ⊗ �Sx ⊗ · · · ⊗ 1. We define A(Λ) = B(HΛ). These local

algebras satisfy: (1) Causality: [A(B),A(C)] = 0 if B ∩ C = φ and (2) Isotony:

B ⊂ C ⇒ A(B) ⊂ A(C). AL = ∪BA(B) is termed the local algebra; its clo-

sure with respect to the norm, the quasilocal algebra (observables which are, to

arbitrary accuracy, approximated by observables attached to a finite region). The

norm is A ∈ B(HΛ) → ‖A‖ = sup‖Ψ‖≤1‖AΨ‖, Ψ ∈ HΛ. An automorphism

τt(A) equal to the norm limit of limΛ↗∞ exp(iHΛt)A exp(−iHΛt) for A ∈ A(Λ).

The limit limΛ↗∞ will denote the van Hove limit [5, p. 287]).

For a finite quantum spin system the Gibbs–von Neumann entropy is (kB = 1)

SΛ = −Tr(ρΛ log ρΛ). (15)

We may view ρΛ as a state ωΛ on A(Λ) — a positive, normed linear functional on

A(Λ): ωΛ(A) = TrHΛ(ρΛA) for A ∈ A(Λ) (positive means ωΛ(A
†A) ≥ 0, normed

ωΛ(1) = 1).

2.2. Finite versus infinite systems

This notion of state generalizes to systems with infinite number of degrees of

freedom ω(A) = limΛ↗∞ ωΛ(A), at first for A ∈ AL and then to A. The state
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ωt
Λ(A) = ωΛ(exp(iHΛt)A exp(−iHΛt)) does not have a limit as Λ ↗ ∞ because

the spectrum is discrete and the state an almost periodic function of t.

As we shall see later, for states of infinite systems, however, the situation is

entirely different !

The function St
Λ ≡ SΛ(ω

t
Λ) = −Tr(ρtΛ log ρtΛ) = S0

Λ. It is a continuous functional

of the state ωt
Λ. For a large system the mean entropy is the natural quantity from

the physical standpoint:

s(ω) ≡ lim
Λ↗∞

(
SΛ

|Λ|
)
(ω). (16)

The mean entropy has the following two properties [17]:

(a) 0 ≤ s(ω) ≤ logD, where D = 2S + 1;

(b) s is upper semicontinuous, that is lim supn→∞s(ωn) ≤ s(ω).

For (b) see [4, Appendix 2, Lemma I.1]: ωn is a sequence of states such that ωn → ω

in the weak*-topology, i.e. ωn(A) → ω(A)∀A ∈ A. One simple example of (b)

is a characteristic function of a closed set. For the statistical thermodynamical

significance of this property, se [39, p. 55].

Let Γ = Zν and P0(Γ) denote the collection of all finite parts of Γ. We consider in

this paper, quantum spin systems described by a Hamiltonian for any finite region

Λ ⊂ Zν

HΦ(Λ) =
∑
X⊂Λ

Φ(X), (17)

where Φ is a translation-invariant interaction function from P0(Γ) into the Hermi-

tian elements of the quasi-local algebra A, such that Φ(X) ∈ A(X) and

Φ(X + x) = τx(Φ(X))∀X ⊂ Zν , ∀x ∈ Zν . (18)

Although general quantum lattice systems could be treated, including Fermion

lattice systems, we shall for simplicity restrict ourselves to quantum spin systems

with two-body interactions. In this case, stability requires that∑
0	=x∈Zν

‖Φ({0, x})‖ < ∞. (19)

If, in (13), we consider the Ising limit, i.e. set J1 ≡ 0, and define J2 = J , we

obtain the generalized Ising model (gIm) studied by Emch [8] and Radin [35] (we

changed the overall sign to agree with Radin’s notation)

HΛ =
1

2

∑
x,y∈Λ

J(|x− y|)σ3
xσ

3
y (20)

with

J(0) = 0 and
∑
x∈Zν

|J(|x|)| < ∞. (21)
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Let, now, ν = 1, and define two subclasses of models of the gIm:

J(|x|) = ξ−|x| with ξ > 1 and x �= 0 (exponential model Eξ) (22)

and

J(|x|) = 1

|x|α with α > 1 and x �= 0 (Dyson model Dα). (23)

The above conditions on ξ and α are required for stability (21). Under certain

conditions, the Dyson model displays a ferromagnetic phase transition [7]. With

P0(Z
ν) denoting the set of all finite subsets of Zν as before, for each triple A =

(A1, A2, A3), where the Ai ∈ P0(Z
ν , i = 1, 2, 3) are pairwise disjoint, define

σA ≡
∏

x1∈A1

σ1
x1

∏
x2∈A2

σ2
x2

∏
x3∈A3

σ3
x3
. (24)

Let ω be any state satisfying

ω(σA) = 0 ∀A such that A3 �= φ. (25)

We have the following theorem.

Theorem 2.1. For the gIm with interaction either of the exponential model Eξ

with ξ a transcendental number, or the Dyson model Dα, and any initial state (at

t = 0) ω satisfying (25),

lim
t→∞(ω ◦ τt) = ωeq ≡ ⊗x∈ZTrx, (26)

where the limit on the left-hand side of (26) is taken in the weak* topology.

For the proof, see [35, Corollary, p. 2953].

2.3. The Lieb–Robinson bound and a limit theorem of

Nachtergaele, Sims and Young on local approximations to

time-translation automorphisms

Quantum spin systems are similar to quantum fields because of the now famous

Lieb–Robinson bound ([20], see also [5, p. 254]). Following the last reference, let us

assume, instead of (19),

‖Φ‖λ ≡
∑
x∈Zν

‖Φ({0, x})‖ exp(λ|x|) < ∞ (27)

for some λ > 0. Then, for A,B ∈ A0,

‖[(τxτt)(A), B]‖ ≤ 2‖A‖‖B‖ exp[−|t|(λ|x|/|t| − 2‖Φ‖λ)]. (28)

In (28), (τxτt) may be replaced by (τtτx). The commutator [(τxτt)(A), B] with

B ∈ A0 provides a measure of the dependence of the observation B at the point x

at time t at the origin at time t = 0, showing that this effect decreases exponentially

with time outside the cone

|x| < |t|
(
2‖Φ‖λ

λ

)
. (29)

2230005-8

R
ev

. M
at

h.
 P

hy
s.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

D
A

D
E

 D
E

 S
A

O
 P

A
U

L
O

 o
n 

11
/0

3/
22

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



2nd Reading

September 20, 2022 11:9 WSPC/S0129-055X 148-RMP J070-2230005

The second law of thermodynamics as a deterministic theorem

Equation (29) means that physical disturbances propagate with “group velocity”

bounded by

vΦ ≡ inf
λ

(
2‖Φ‖λ

λ

)
. (30)

Such bounds have been considerably developed in the last thirty years, and the

recent reference by Nachtergaele, Sims and Young [24] contains a comprehensive

summary of some of these results, as well as an extensive list of references to earlier

work on the subject.

Even more significant for us in Sec. 3 are new results in [24] on local approxima-

tions of time-translation automorphisms of local observables, which hold even under

conditions weaker than (27), for which the interpretation of the Lieb–Robinson

bounds in terms of a bounded “group velocity” of physical disturbances (28), (29)

no longer applies. We now assume (only) (19) and follow [24] to introduce the

notion of an F function on the metric space (Γ, d), with d a distance function,

in order to quantify the locality properties of an interaction. For definitiveness,

Γ = Zν , Aloc
Γ denotes a local algebra, i.e. AX with X ∈ P0(Γ), with, as before,

P0(Γ) denoting the collection of all finite parts of Zν and d(x, y) ≡∑ν
i=1 |xi − yi|,

for x = (x)i, y = (yi), i = 1, . . . ν. F is assumed to be a non-increasing function

F : [0,∞) → (0,∞) satisfying the properties:

(i) F is uniformly integrable over Γ, i.e.

‖F‖ ≡ sup
x∈Γ

∑
y∈Γ

F (d(x, y)) < ∞. (31)

(ii) F satisfies the convolution condition

CF ≡ sup
x,y∈Γ

∑
z∈Γ

F (d(x, z))F (d(z, y))

F (d(x, y))
< ∞. (32)

An equivalent formulation of (32) is that there is a constant CF < ∞ such that∑
z∈Γ

F (d(x, z))F (d(z, y)) ≤ CFF (d(x, y)) ∀x, y ∈ Γ. (33)

The F functions describe the decay of a given interaction. Let F be an F -function

on (Γ, d) and Φ : P0(Γ) → Aloc
Γ be an interaction. The F -norm of Φ is defined by

‖Φ‖F = sup
x,y∈Γ

1

d(x, y)

∑
Z∈P0,x,y∈Z

‖Φ(Z)‖ (34)

from which ∑
Z∈¶0,x,y∈Z

‖Φ(Z)‖ ≤ ‖Φ‖FF (d(x, y)). (35)

An important question will arise in Sec. 3 in connection with the following issue:

automorphisms of strictly local observables delocalize along the quasi-local algebra

A, as seen explicitly in [35, p. 2951] in the limit Λ ↗ ∞, but there are (again by
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the same formulae) local approximations to them. The following theorem will be of

crucial importance for us in Sec. 3.

Theorem 2.2. Let Λn ⊂ Λn+1, ∀n ≥ 1 denote an exhaustive sequence of increasing

and absorbing finite regions {Λ}n, denoted Λn ↗ Γ, A be an element of the strictly

local algebra Aloc
Γ and

τΛt = exp(iHΛt)A exp(−iHΛt) (36)

with HΛ defined by (17), under the condition

‖Φ‖F < ∞ (37)

for a given F -function F . Then,

‖τΛn
t (A) − τΛm

t (A)‖ ≤ It(Φ)
∑
x∈X

∑
y∈Λn−Λm

F (d(x, y)), (38)

where

It(Φ) ≡ 2‖A‖
CF

(2CF |t‖|Φ‖F ) exp(2CF |t‖|Φ‖F ). (39)

Above, we may assume that A ∈ AX for some X ∈ P0(Z
ν), and since the sequence

is exhaustive, ∃N ≥ 1 for which X ⊂ Λn∀n ≥ N . The integers n,m in (41) satisfy

N ≤ m ≤ n. Further

τt(A) = lim
Λ↗∞

τΛt (A) ∀A ∈ Aloc
Γ (40)

exists in norm, and the convergence is uniform for t in compact subsets of R.

Proof. See [24, Theorem 3.4 and (3.78) of Theorem 3.5]. The right-hand side of

(38) converges to zero, as n,m → ∞, by (31), assumption (37) and definition (34).

We have the following basic corollary.

Corollary 2.3. Theorem of Nachtergaele, Sims and Young on local approximations

to automorphisms of local observables

Under the assumptions of Theorem 2.2,

‖τΛn
t (A)− τΛm

t (A)‖ ≤ It(Φ)
∑
x∈X

∑
y∈Γ−Λm

F (d(x, y)). (41)

We shall assume that our two-body translation-invariant interactions satisfy the

condition P below:

P The interactions Φ have polynomial decay at infinity, i.e. for some 0 < β < ∞,

|Φ({0, x})| ≤ β(1 + |x|)−α, (42)
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where |x| = d(x, 0) and

α > ν. (43)

Condition (43) is due to the stability requirement (19).

In our applications in Sec. 3 we shall use Corollary 2.3. The right-hand side of

(41) converges to zero, as m → ∞, under assumption (37), but the set X in (41)

must be also finally made to grow indefinitely, due to the definition of the mean

entropy. This will require condition P for suitable α, as we shall see in connection

with the forthcoming inequality of Fannes.

2.4. A theorem of Fannes and a main auxiliary theorem

The entropy satisfies the subadditivity property [17]

SΛ1∪Λ2(ω) ≤ SΛ1(ω) + SΛ2(ω) (44)

for Λ1 ∩ Λ2 = φ.

Of great importance in Sec. 3 is the following theorem, due to Fannes [10], let

ω1 and ω2 be two states on A, i.e. ω1, ω2 ∈ EA, and for Λ0 ⊂ Zν , let ω1,Λ0 and

ω2,Λ0 denote the corresponding density matrices. Denote by λ1
k, λ

2
k, k = 1, . . . , D|Λ0|

the repeated eigenvalues of ω1,Λ0 and ω2,Λ0 , respectively, in ascending order. Define

εk = |λ1
k − λ2

k| (45)

and

a =
∑
k

εk. (46)

Theorem 2.4.

(i) a ≤ sup
‖A‖≤1,A∈AΛ0

|Tr[(ω1,Λ0 − ω2,Λ0)A|, (47)

(ii) |SΛ0(ω1)− SΛ0(ω2)| ≤ |Λ0|a logD + e, (48)

a ≤ ‖ω1 − ω2‖. (49)

By (48) and (49),

|s(ω1)− s(ω2)| ≤ ‖ω1 − ω2‖ logD. (50)

Proof. See [10]. Equation (47) is the last inequality of the second line of his (1),

and (48) is the last inequality before the final statement in [10]. Due to (49), which

is also shown in [10], it follows that 0 ≤ a ≤ 2, and the constant in (48) is thus

bounded by sup0≤a≤2(2a− a log a) = e.

Theorem 2.4 has some important consequences.
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Proposition 2.5. Let Λ0 be a finite fixed subset of Zν , Λ ⊃ Λ0 and

ωΛ,t ≡ exp(−iHΛt)ωΛ exp(iHΛt). (51)

Then, the following inequality holds:

|S((ωt)Λ)− S(ωΛ,t)| ≤ |Λ0| logD sup
A∈AΛ0 ,‖A‖=1

‖τt,Λ,A‖+ cΛ, (52)

where

cΛ ≡ e+ 2|Λ− Λ0| logD (53)

and A−B denotes the complement of B in A. Above,

ωt ≡ ω ◦ τt (54)

and

τt,Λ,A ≡ τt(A)− exp(iHΛt)A exp(−iHΛt). (55)

Proof. By the subadditivity property of the entropy (44) and property (1) of the

mean entropy

|S((ωt)Λ)− S(ωΛ,t)| ≤ |S((ωt)Λ0)− S(ωΛ,t
Λ0

)|+ 2|Λ− Λ0| logD, (56)

where ωΛ,t
Λ0

denotes the restriction of ωΛ,t to AΛ0 . By (48),

|S((ωt)Λ0)− S(ωΛ,t
Λ0

)| ≤ |Λ0|dΛ log(D) + e (57)

with

dΛ ≡ sup
A∈AΛ0 ,‖A‖≤1

|TrHΛ0
[((ωt)Λ0 − (ωΛ,t

Λ0
)A]|. (58)

But

sup
A∈AΛ0 ,‖A‖≤1

|TrHΛ0
[((ωt)Λ0 − ωΛ,t

Λ0
)A]|

≤ sup
A∈AΛ0 ,‖A‖≤1

|TrHΛ0

[
ωΛ

(
lim
n→∞σn,Λ,A − exp(itHΛ)A exp(−itHΛ)

]
,

where

σn,Λ,A ≡ TrΛn−Λ[ωΛn−Λ(exp(itHΛ)A exp(−itHΛ)].

The above inequality yields, together with (56)–(58), (52) and (53).

We now use Proposition 2.5, together with (41), to arrive at the main auxiliary

theorem.

Theorem 2.6. Let ω be a translation-invariant state on A, with a dynamics τt; t ∈
R generated by a family of Hamiltonians (17), satisfying (18) and (19). If the

interactions Φ have polynomial decay at infinity (42), with

α > 2ν (59)
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it follows that the mean entropy s(ωt) of ωt, given by (54) satisfies

s(ωt) = lim
m→∞

1

|Λ0,m|S(exp(−itHΛ0,m)ωΛ0,m exp(itHΛ0,m)), (60)

where {Λ0,m} is a sequence of boxes tending to Zν as m → ∞.

Proof. By definition,

s(ωt) = lim
m→∞

1

|Λ0,m|S((ωt)Λ0,m). (61)

We now pick Λ0 = Λ0,m ⊂ Λ = Λm in (52) and (53), where, for each m ≥ 1,

lim
m→∞

|Λ0,m|
|Λm| = 1 (62)

and

lim
m→∞

|Λm − Λ0,m|
|Λ0,m| = 0. (63)

By (52) and (53) of Proposition 2.5, we obtain the inequality

|S((ωt)Λm)− S(ωΛm,t)| ≤ |Λ0,m|(logD)fm, (64)

where

fm ≡ sup
A∈AΛ0,m ,‖A‖≤1

‖τt,Λm,A‖+ 2|Λm − Λ0,m| logD, (65)

where, by definition (54) and (55),

‖τt,Λm,A‖ = ‖τt(A) − τΛm
t (A)‖. (66)

We now use (42) and (59). A suitable F -function in this case is [24, Appendix,

(A.9)]

F (|x|) = (1 + |x|)−2ν−ε (67)

for some ε > 0, with |x| = d(x, 0). By (31), (67) and (62), it readily follows from

(41) that

lim
m→∞ sup

A∈AΛ0,m ,‖A‖≤1

‖τt(A)− τΛm
t (A)‖ = 0. (68)

Putting, now, together (52), (53), (63) and (68), we obtain (60).

It is to be noted that (59) is stronger than the stability condition (43). The

existence of local approximations to automorphisms of fixed local observables holds,

by (41), for any stable interaction, but (60), which will be crucially needed in Sec. 3,

requires a sufficiently fast decay of the interactions.
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3. The Second Law of Thermodynamics as a Theorem Asserting

the Growth of the Mean Entropy Under Adiabatic

Transformations

3.1. A refined form of the Penrose–Gibbs Theorem 1.1

The Penrose–Gibbs Theorem 1.1 may now be stated in a refined form, which incor-

porates the assumption of an infinite number of degrees of freedom.

Theorem 3.1. A statistical-thermodynamical version of the second law of ther-

modynamics Let a quantum spin system, described by a finite-region Hamiltonian

(17), and the state ω fulfill the assumptions of Theorem 2.6. Assume further that

ωt ≡ ω ◦ τt satisfies the condition

lim
t→∞ωt = ω̄, (69)

where the limit is taken in the weak*-topology, that the mean entropy s exists and

is defined by (16), and denote the initial state by ω0 = ω. Then

s(ω) ≤ s(ω̄). (70)

In words: the mean entropy of the initial state may increase, but cannot decrease,

towards that of the “coarse-grained” state ω̄ under an adiabatic transformation (that

is, with ωt in (69) defined as in Definition 1.2).

Proof. We consider the sequence {ωn}n=0,1,2,..., which a fortiori satisfies

ωn → ω̄ as n → ∞ (71)

in the weak*-topology. By property (b) of the mean entropy, s is upper semicon-

tinuous in the weak*-topology and therefore,

lim supn→∞s(ωn) ≤ s
(
lim
n→∞ωn

)
= s(ω̄), (72)

where the limit on the right-hand side of (72) is taken in the weak*-topology.

By (60) and the invariance of the trace TrHΛ0,m
, for each m ≥ 1, under unitary

transformations on the space HΛ0,m , it follows that s(ωn) = s(ω0) = s(ω), and (70)

results from (72).

Remark 3.1. Theorem 3.1 answers in the affirmative the questions raised by Ruelle

in [37, (iv), p. 1666].

3.2. Applications to the gIm

Th gIm corresponds to the strong interaction limit in the language of the lattice

gas (see, e.g., [5, p. 425]): we expect that interactions are crucial for the approach

(or return) to equilibrium! Therefore, in spite of being special, the present case does

have certain physically sound aspects. Another example of this feature is the fact

that the special case of the gIm considered in [8] describes well certain experiments
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of free induction decays in solids [22]. This dynamics also received attention more

than forty years later [6], and even quite recently in [23].

We consider the two subclasses of models of the gIm for ν = 1, the exponential

model Eξ (22) (which a fortiori satisfies (42) and (59)), and the Dyson model Dα

(23), with α satisfying (59). Then (26) holds, which is (69), with

ω̄ ≡ ⊗x∈ZTrx (73)

as long as ω = ω0 satisfies (25). As a prototypical example, take

ω0 = ⊗x∈ZP
+,1
x , (74)

where

σ1
xP

+,1
x = P+,1

x . (75)

We have the following.

Corollary 3.2. For the exponential model Eξ (22) and the Dyson model Dα (23)

with α > 2 and ω0 given by (74), Theorem 3.1 is fulfilled in a non-trivial way, with

s(ω0) = 0 and s(ω̄) = log 2 (with S = 1/2).

Proof. The finite-volume version satisfies

SΛ(ω0)

|Λ| = (−λ logλ)λ=0 = 0

for all Λ ⊂ Z, hence s(ω0) = 0. The finite volume version

SΛ(ω̄)

|Λ| =

(
−

2∑
i=1

λi logλi

)
λ1=λ2=1/2

= log 2

for all Λ ⊂ Z, hence s(ω̄) = log 2.

Remark 3.2. Note that the two values s(ω0) = 0 and s(ω̄) = log 2 correspond to

the two extreme values in property (1) of the mean entropy. Thus, ω̄ corresponds to

a maximum of the mean entropy, which is identified with the “infinite temperature

state”. The initial state ω0 may be seen as a nonlocal perturbation of the equilibrium

state ω̄, if (69) is viewed as a return to equilibrium, or as a nonlocal perturbation

of the ferromagnetic ground state ωg ≡ ⊗x∈ZP
±,3
x . In the latter case, ω̄ would be

viewed as a non-equilibrium stationary state. A model of the preparation of the

system, suitable as the first step in Definition 1.2, consists in the following.

Schematically, a CaF2 crystal is placed in a magnetic field, thus determining

the z-direction. Subsequently, a rf-pulse is applied to the sample, turning the net

nuclear magnetization in the x-direction. The latter is then measured as a function

of time: an oscillatory function slowly damping to zero ([22, Fig. 1.1] in the original

experiment). See also [8].
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4. Stability of the Second Law Under Interactions with the

Environment

4.1. The many histories picture strictly within Schrödinger

quantum mechanics, K systems and their physical relevance

In this section, we introduce the many-histories picture strictly within Schrödinger

quantum mechanics, which will be used in our main theorem in this section. In

the context of infinite systems, their introduction is due to Narnhofer and Thirring

[29, 28], whose motivation was the proof of the macroscopic purification of states

observed in Nature as a consequence of interactions with the environment. For this

purpose, they needed the concept of (quantum) K system, introduced by Emch [9]

and themselves (see [27] and references given there, as well as [40]).

A K system is a standard, and central, concept in the theory of classical dynam-

ical systems (see, e.g., [42, Definition 4.7, p. 101]). A prototype of a K system is the

baker’s map [18, p. 74], which is also an Anosov system [2], and displays exponential

instabilities leading to the mixing property (8). Such systems are “memoryless”, i.e.

they possess a stochastic character which justifies equilibrium statistical mechanics.

The microscopic mechanism of this loss of memory is the sensitive (exponential)

dependence on initial conditions, produced by the “defocalizing shocks” between

the particles (e.g., gas molecules) occurring in caricatures of interacting classical

systems, such as the hard sphere gas, see [33, p. 1950] for a pedagogic introduction

and early references.

An algebraic K system is a family of subalgebras An, n ∈ Z of an algebra A,

with the properties: (i) An+1 ⊇ An; (ii)
⋃

n An = A; (iii)
⋂

n An = z1 and an

automorphism σ of A with σ(An) = An+1.
⋂

n means the set-theoretic intersection.

As in [27], we take An as von Neumann algebras, with
⋃

n meaning algebraic

union together with strong closure in the representation with a given invariant state:

the von Neumann K-system (An, σ, ω). The isomorphism σ : An → An+1 has, by

(iii), no non-trivial σ-invariant subalgebra B ⊂ An. We identify σ−1 with the time

evolution, and assume that ω is a KMS state with modular automorphism σ−t, i.e.

ω(AB) = ω(σi(B)A) ∀A,B ∈ A. (76)

We have to refer to [5, p. 84], for the above terminology, but remark that it will

not be used in the sequel.

In the next subsection, we shall be concerned with the above mentioned gen-

eralization in [29, 40] of the many-histories interpretation of quantum mechan-

ics [13, 11, 31] to (infinite) von Neumann K systems (An, σ, ω) with a set of

projections Pα ∈ A, α ∈ {1, . . . , r}. The operator σ−1 assigns to each Pα a

“time evolution” σ−t(Pα) = Pα(t) and in this way, a sequence of “events”

{Pα1(t1), Pα2 (t2), . . . , Pαn(tn)} (a “history”, briefly written α for the index set or

the corresponding vector) and a probability distribution over the set {α} of histories
W (α) ≥ 0 with

∑
α

W (α) = 1 (77)
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and such that

W (α) ≡ ω(Pα1(t1) · · ·Pαn(tn) · · ·Pα1(t1)). (78)

The analogue of (78) for systems with finite number of degrees of freedom is

W (α) = TrPαn(tn) · · ·Pα1(t1)ρPα1(t1) · · ·Pαn(tn)

= Tr
√
ρPα1(t1) · · ·Pαn(tn)Pαn−1(tn−1) · · ·Pα1(t1)

√
ρ.

As Wightman observes in his review of the quantum theory of measurement [44],

“The above formulae were already written down by Aharonov et al. [1] and used by

them in a discussion of time reversal invariance in quantum measurement theory.

These authors regarded the formulae as standard quantum mechanics”.

For the infinite systems the density matrix does not exist, but the notion of a

state as a positive linear functional ω as generalization of Tr
√
ρA

√
ρ = ω(A) carries

over, with (78) replacing the standard formulae.

What we need for the main theorem of this section, Theorem 4.1, is the above

framework for infinite K systems and histories. The Narnhofer–Thirring model used

there is a K system (trivially) and the framework applies, as long as we have to do

only with finite times, which is the case, there, too. The following results, which

we present here for completeness, have to do with the limit of infinite times. They

are, however, crucial, for the purification result of [29], which is the most important

physical application of the theory.

The probability distributions (78) have the properties: (a) decoherence

ω(Pα1(t1) · · ·Pαn(tn) · · ·Pα′
1(t1) · · ·Pα′

n(tn))

→ δα,α′ as ti − ti+1 → ∞∀ i,

(b) symmetry W (α1, . . . , αn) tends to a symmetric function in the indices α1, αn

as ti − ti+1 → ∞∀ i.
Property (a) is a consequence of the fact that K systems are asymptotically

abelian, i.e. classical for large times (see [40] and references given there) and prop-

erty (b) means that for long times the system forgets all causal links, in analogy to

the “memoryless” character of classical K systems.

We have the following fundamental theorem of Narnhofer and Thirring [27, 40].

Narnhofer–Thirring Theorem

Let (An, σ, ω) be a von Neumann K system, with σ−1 the time evolution. Given

a set P1, . . . , Pr ∈ A, ε > 0 and n ∈ N, n < ∞, there exists a T < ∞ such that for

each history W (α) given by (78),∣∣∣∣∣W (α)−
n∏

i=1

ω(Pαi)

∣∣∣∣∣ < ε (79)

whenever ti+1 − ti > T∀ i ∈ [1, n].
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It is to be emphasized that Narnhofer and Thirring [29] and Thirring [40] use

the history interpretation as a simple description of the essential effect of a mea-

surement, but strictly within the Copenhagen interpretation. This follows because

only the so-called consistent histories are considered, i.e. such that

ω(Pα′Pα) = δα′,α. (80)

This is necessary for an interpretation in terms of classical probabilities and is

satisfied as soon as (79) holds.

It may be important, to avoid any confusion, to remark that Griffiths [13],

see also [14, 15] bases his interpretation of quantum mechanics on the probability

theory of consistent families of histories. This approach has resolved some important

paradoxes in the conventional theory, see in this connection [15]. We thank Professor

Griffiths for these remarks.

4.2. Non-automorphic interactions with the environment

No physical system is entirely isolated, although isolation may be brought about,

in principle, to an arbitrary degree of accuracy. Even concerning the Universe —

the prototype of an isolated system — there will be “events”, i.e. interactions with

the environment, which may be modeled by the state collapse of a given state, that

is, non-automorphic evolutions. One such model is the Narnhofer–Thirring model

[29, 28].

As a physical motivation, consider the question of the macroscopic purification

of states by interactions with the environment [29], such as a magnet below the

transition temperature (for a rigorous model of this situation, see [5, Theorem

6.2.48, p. 320]). It is known that domains of such a magnet are, in Nature, found in a

definite direction. To quote [29] (see also [30]): “even if nobody looks at them, there

will be enough ‘events’ (i.e. interactions with the environment) to purify the state

over the classical part”. Such are prototypical of the unavoidable interactions of an

(even to a good approximation “closed”) system with the environment, and were

first shown to drive the state into a factor state by Narnhofer [25] and Narnhofer

and Robinson [26]. We refer to Wightman’s review paper for superselection sectors

due to environmental interactions of mesoscopic systems [45].

We consider as the classical quantity of the model the mean magnetization

�m = lim
N→∞

1

2N

N∑
x=−N

�σx. (81)

Classically, pure states are those in which all spins except a finite number of them

point in the same direction �m. Below the phase transition temperature the state

ω is a mixture of pure, or more generally, extremal invariant states ω1, ω2 (see

[5, Theorem 6.2.48, p. 320]):

ω = μω1 + (1− μ)ω2 with 0 < μ < 1. (82)
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By (78), the histories are also convex combinations

Wω(α) = μWω1(α) + (1 − μ)Wω2(α). (83)

It was proved in [29] that, for long histories n → ∞ and ti+1 − ti → ∞, and a

dynamics described by (von Neumann) K-system they purify in the sense that in

(83) either Wω1 or Wω2 dominates, i.e.
Wωi

Wωj
< ε for arbitrarily small ε and i �= j:

which one dominates depends on the history, although one cannot dominate over

the other for all histories since∑
α

Wω1(α) =
∑
α

Wω2(α) = 1. (84)

As in [29], consider the simplest non-trivial case with two states ω1,2 and two

projectors P , 1−P , and denote ω1,2(P ) = p1,2. The model of a measuring apparatus

will be defined next, following [29]. The algebra is the spin algebra A = {�σx}x∈Z.

The shift �σx → �σx+1 is taken as a discrete evolution. We first describe the system

S. Let Ω1,2 denote two disjoint states

|�n) : Ω1) = ⊗∞
x=−∞|�n)x

with �σx · �nx|�nx)x = |�nx)x with �n2
x = 1;

|�m) : Ω2) = ⊗∞
x=−∞|�m)x with �n �= �m.

The two corresponding representations are denoted Π1,Π2 on (incomplete tensor

product) Hilbert spaces H1 and H2, respectively. The corresponding mean magne-

tizations are

�M	n = lim
N→∞

1

2N + 1

N∑
x=−N

Π1(�σx) = �n1 (85)

and

�M	m = lim
N→∞

1

2N + 1

N∑
x=−N

Π2(�σx) = �m1. (86)

The mixed state

ω ≡ μω1 + (1− μ)ω2 (87)

is obtained by a vector in the orthogonal sum of Π1 and Π2:

|ΩS) =
√
(μ)|Ω1)⊕

√
(1− μ)|Ω2) ∈ H1 ⊕H2 ≡ HS

with Π = Π1 ⊕Π2 and (ΩS ,Π(�σx)Ω) = μ�n+ (1− μ)�m.

The corresponding representation Π is reducible: there are two “superselection sec-

tors” [45], the mean magnetization

�M = lim
N→∞

1

2N + 1

N∑
x=−N

Π(�σ)x) = μ�n11 + (1− μ)�m12
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lies in the center Z = Π(A) ∩ Π(A)′, where the prime denotes the commutant,

i.e. the set of bounded operators in the representation space which commute with

Π(A), which is not a multiple of unity. For the measuring device (“apparatus”) A,

Narnhofer and Thirring also use a Hilbert space description, representing a device

measuring one of two spin directions �s and �−s (“up” or “down”): the state of

the device measuring the direction of �σi may be represented by a two-dimensional

vector [
ui

di

]

(pointer up and down). The measuring array is again an infinite tensor product

⊗i

[
ui

di

]
which belongs to HA (where A stands for “apparatus”), and we start with

a state |Ω)A, where all ui are zero. For the time evolution, we take a shift U ,

and then consider an instantaneous measurement of the direction �s of a spin, the

corresponding projector being

Pk =
1

2
(1 + �σk · �s) = |s)k × (|s)k)†.

If the answer is one, we have the pointer unchanged, if the answer is zero, we turn

the pointer up. The turning of the pointer is effected by an operator τ ,

τk

[
ui

di

]
=

[
di

ui

]
.

Thus, the effect of measuring �σ1 is

V1 = P1 + (1− P1)τ1

or written in full detail, with operators on H = HS ⊗HA,

V1 = (Π1(P1)⊕Π2(P1))⊗ 1+ (1−Π1(P1))⊕ ((1 −Π2(P1))) ⊗ τ1. (88)

The time evolution U between the measurements shifts by one unit

UΠ1,2(Pk) = Π1,2(Pk+1)U together with Uτk = τk+1U, (89)

so that the full time evolution of |Ω) = |ΩS ⊗ |Ω)A after n time units is

|Ω(n)) = V1UV1U · · ·V1U |Ω) = V1V2 · · ·Vn|Ω) (90)

since Uk|Ω) = |Ω). The results of the measurements are encoded in the HA-part of

|Ω(n)), so we decompose |Ω(n)), given by (90) in an orthogonal basis of HA,

|Ω(n)) =
1∑

αi=0

v(α)τα1
1 · · · ταn

n |ΩA) (91)

with v(α) ∈ HS . Wherever αi = 0, the corresponding spin is in direction �s, for

αi = 1 we have �−s:

v(α) = v1(α)⊕ v2(α) (92)

2230005-20

R
ev

. M
at

h.
 P

hy
s.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

D
A

D
E

 D
E

 S
A

O
 P

A
U

L
O

 o
n 

11
/0

3/
22

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



2nd Reading

September 20, 2022 11:9 WSPC/S0129-055X 148-RMP J070-2230005

The second law of thermodynamics as a deterministic theorem

together with

P1|n)1 = |s)1(s|n) (93)

and

(1− P1)|n) = |−s)(−s|n). (94)

If we introduce |(s|n)|2 = p1, thus |(−s|n)|2 = 1 − p1, and similarly |(s|m)|2 = p2,

|(−s|m)|2 = 1− p2, and if α contains l zeros and (n− l) ones, we have

‖v1(α)‖2 = μpl1(1− p1)
n−l; ‖v2(α)‖2 = (1 − μ)pl2(1− p2)

n−l (95)

together with

W (α) = ‖v(α)‖2. (96)

Note that there is no collapse of the wave-function after each measurement — the

evolution is unitary and only at the end the configuration of classical pointers is

read. We shall refer to the above model as the Narnhofer–Thirring model.

4.3. Invariance of the mean entropy on the average and

comparison with finite systems

We are now ready to present our main results. First, let us examine finite systems

or more precisely, systems with a finite number of degrees of freedom. We consider,

as in [30], a finite composite system consisting of a finite system together with

a measurement apparatus, for example a finite version of the Narnhofer–Thirring

model, described by a collection of projectors {Pα}, α ∈ [1, n], such that

PαPα′ = Pαδα,α′ . (97)

Inspired by von Neumann ([41, Chap. V], see also the discussion in Wightman [44,

p. 431] concerning degenerate spectra), it is natural to take the {Pα} (α = 1, . . . , n)

as “macroscopic observables”, and define a density matrix ρ as decoherent with

respect to the set {Pα} if

Pα′ρPα = 0 if α �= α′. (98)

When a measurement is performed and the position of the pointer was observed,

the probability of its position can only be evaluated if we repeat the measurement.

In the individual observation it has a definite value, and the measured system is in a

pointer position: reduction of the wave-function turns into the collapse of the wave-

function. We have gained knowledge, not necessarily in the individual case, but on

the average, and indeed, by [30, Lemma 3], the average von Neumann entropy Sav,

defined by

Sav =

n∑
α=1

Tr(ρPα)S(ρα), (99)
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where

S(ρ) = −Tr(ρ log(ρ)) (100)

(with kB = 1) is the von Neumann entropy, is reduced ; above,

ρα ≡ [Tr(ρPα)]
−1PαρPα (101)

is one of the collapsed states, obtained with probability Tr(ρPα) through unitary

evolution of an initial decoherent state, i.e. which satisfies (98). This follows from

the strict concavity of the entropy of a finite system, i.e.

SΛ(αρ
1
Λ + (1− α)ρ2Λ) > αSΛ(ρ

1
Λ) + (1− α)SΛ(ρ

2
Λ). (102)

The mean entropy is, however, affine [17]:

s(αω1 + (1− α)ω2) = αs(ω1) + (1− α)s(ω2). (103)

For the statistical-thermodynamical significance of the property of affinity, see

[39, p. 60].

We now consider the Narnhofer–Thirring model. After n (time) steps, we use

the notation

αn = (α1, . . . , αn). (104)

Theorem 4.1. Let ω be the state (87). Then, in the Narnhofer–Thirring model

with initial state ω, the mean entropy is conserved on the average by the collapse

of ω:

sav = s(ω), (105)

where

sav ≡
∑
αn

Wω(αn)s(ωαn
) (106)

and

ωαn
≡ ω(Pαn

.)[Wω(αn)]
−1. (107)

Proof. Reading the pointer in a position αn, i.e. after n time steps, the initial state

collapses to (107). The property of affinity (103) now implies that

sav =
∑
αn

Wω(αn)s(ωαn
)

= s

(∑
αn

Wω(αn)[Wω(αn)]
−1ω(Pαn)

)

= s(ω)

by linearity of ω and the fact that
∑

αn
Pαn = 1.

As a consequence of Theorem 4.1, we have the following.
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Corollary 4.2. The statistical thermodynamical version of the second law of ther-

modynamics Theorem 3.1 is stable under non-automorphic interactions with the

environment, exemplified by the Narnhofer–Thirring model, in sharp contrast to the

second law of thermodynamics for the quantum Boltzmann entropy [30].

The last sentence of Corollary 4.2 follows from [30, Lemma 3].

4.4. Physical interpretation

In his paper “Against measurement”, John Bell [3] insisted on the necessity of phys-

ical precision regarding such words as reversible, irreversible, information (whose

information? information about what?).

In the adiabatic transformation there is a first step, a finite preparation time

during which external forces act, at the end of which the Hamiltonian associated to

the initial equilibrium state is restored, and remains so “forever” during the second

step. The dynamics of preparation of the state is therefore *not* time-reversal

invariant, leading to the time arrow mentioned in Remark 1.1.

Given a time arrow, the process ω1(0) → ω2(∞) is reversible (irreversible) if

and only if the inverse process ω2(0) → ω1(∞) is possible (impossible). The first

alternative takes place if and only if s(ω1) = s(ω2), the second one if and only if

s(ω1) < s(ω2). Infinite time t = ∞ means that t is much larger than a quantity

tD, the relaxation time, or decoherence time in measurement theory. Of course,

irreversibility is incompatible with time-reversal invariance, because the entropy or

the mean entropy cannot both strictly increase and strictly decrease with time. This

is the Schrödinger paradox [38], cited in Lebowitz’s inspiring review of the issue of

time-assymetry [19].

Entropy SΛ = |Λ| logD− IΛ, with IΛ denoting the (quantum) information. For

quantum spin systems 0 ≤ SΛ/|Λ| ≤ logD, and therefore, 0 ≤ IΛ/|Λ| ≤ logD.

It attains its maximum value for pure states, which are characterized by SΛ = 0.

Under “collapse”, each collapsed state is pure and therefore, information is gained:

this explains that the (Boltzmann and von Neumann) entropies are reduced, on

the average, violating the second law (on the average). Equivalently, entropy is,

in Boltzmann’s sense, a measure of a macrostate’s wealth of “microstates”, and

therefore grows by mixing, but it turns out that this growth is *not* extensive and

disappears upon division by |Λ|, i.e. taking the infinite volume limit (inequalities of

Lanford and Robinson [17]), so that the affinity property (103) results and with it,

the stability of the second law in the form of Theorem 3.1 under interactions with

the environment (Corollary 4.2).

5. Conclusion

One central and dominating feature of the analysis over finite versus infinite dimen-

sional spaces is that in the infinite dimensional case the solution may depend
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discontinuously on the parameters of the problem. Indeed, infinite systems may

exhibit singularities, not present in finite macroscopic systems, well-known in the

theory of phase transitions : they are parametrized by critical exponents, which,

moreover, display universal properties, in excellent agreement with experiment!

Another example is furnished by the upper-semicontinuity of the mean entropy

(versus continuity of the finite entropy).

In greater generality, the physical “N large but finite” differs qualitatively from

“N infinite” because the latter exhibits universal properties not found in finite

systems. Two examples of these universal properties, crucial in our approach, are

the upper semicontinuity and affinity of the mean entropy, whose finite-volume

counterparts (continuity of SΛ

|Λ| and strict concavity of SΛ

|Λ| ) are not universal because,
not being uniform in |Λ|, they depend on the volume |Λ| of the system. The fact that

(only) “N infinite” is in good agreement with experiment is explained by the fact

that, with N ≈ 1024, macroscopic systems are extremely close to infinite systems

(the success of the thermodynamic limit!)

It is well known that the thermodynamic entropy, which is relevant to the second

law, does not, in general, coincide with the (microscopic) Gibbs–von Neumann

entropy, except for a limited class of states which includes the standard equilibrium

states. Our approach introduces two types of coarse-graining in the entropy; the

first, in space, by building the mean entropy. This enables consideration of states of

infinite systems which may (and do sometimes) have non-trivial ergodic properties:

starting from an unstable state at an initial time t = 0, they may approach a

different (“equilibrium”) state as t → ∞ — i.e. there is also a “coarse graining” in

time. The important issue here is the fact that a sequence of pure states may tend

to a mixed state, a fact first observed by Hepp [16], see also [29], and valid only

for states of infinite systems. In the examples given, the first step of the adiabatic

transformation — which is the thermodynamically non-trivial step — yields no

change in the mean entropy (it remains equal to the initial value of zero), it is

only the second step, which is thermodynamically trivial — a relaxation — which

yields a change in the specific entropy. This feature is not realistic and is due to the

extreme scarcity of models in which the time evolution of states is under control.

Both Theorems 3.1 and 4.1 are, however, of general validity, because of the universal

properties mentioned above, and of the natural type of coarse-graining associated

to the use of the mean entropy (a density).

There is what seems to us to be a close analogy with the situation in classical

dynamical systems as regards the intuitive reason for this possible growth of the

mean entropy with time. If one looks at the entropy S(Ut, Vt) of a system with finite

number of degrees of freedom, (Ut, Vt) are analogous to the individual “trajectories”

of a classical map, which, for a (time-reversible) K system, such as the baker map

[18, Fig. 1.2.4 and Sec. 1.3] are highly erratic and do not tend to any limit as t → ∞.

On the other hand, in s(ut, vt), where s is the mean entropy and u, v the energy

and volume densities, the u, v densities may be expected to behave qualitatively as
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the density ρt, e.g., in the baker transformation [18, Example 4.1.3, p. 48],

lim
t→∞ ρt = ρ̄ ≡ 1, (108)

Eq. (108) is analogous to (129), where, for t = n = 1, 2, . . ., i.e. discrete time units,

ρn = Pnρ0 (109)

and P denotes the Ruelle–Perron–Frobenius operator [18] which maps densities to

densities, and ρ0 denotes an arbitrary initial density

ρ0 ∈ L1(X), ρ0 ≥ 0,

∫
X

ρ0(x)dx = 1 (110)

with X denoting the unit square in R2. By (110), ρ0 cannot be a delta function,

i.e. individual trajectories are excluded. P is a Markov operator [18], with a unique

fixed point, which is the function

ρ̄ = 1∀x ∈ X (111)

(analogous to the uniform “microcanonical” distribution on the square). The reduc-

tion of information which results from building a density provides a “restoring

force” towards equilibrium (111), with maximal disorder or entropy. See also [46].

Our main new result in this paper is that non-automorphic interactions with

the environment, although known to produce on the average a strict reduction

of the Boltzmann entropy of systems with finite number of degrees of freedom

[30, Lemma 3], are proved to conserve the mean entropy on the average, as a con-

sequence of the latter’s property of affinity. As a consequence, we do not need to

assume that such interactions are rare on the thermodynamic time scale, in order

to assure the validity of the second law (see the remarks on the last paragraph of

[30])and stability with regard to interactions with the environment follows instead

(Corollary 4.2). We view this as an additional important indication of the natural-

ness of the present approach, suggesting that it may turn out to be of general valid-

ity, including classical mechanics (see the introduction) and relativistic quantum

field theory, but serious open problems of technical nature remain in both cases.
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