
Journal of Combinatorial Optimization (2023) 45:127
https://doi.org/10.1007/s10878-023-01058-x

Balanced connected partitions of graphs: approximation,
parameterization and lower bounds

Phablo F. S. Moura1 ·Matheus J. Ota2 · Yoshiko Wakabayashi3

Accepted: 8 June 2023 / Published online: 20 June 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
A connected k-partition of a graph is a partition of its vertex set into k classes such
that each class induces a connected subgraph. Finding a connected k-partition in
which the classes have similar size is a classical problem that has been investigated
since late seventies. We consider a more general setting in which the input graph
G = (V , E) has a nonnegative weight assigned to each vertex, and the aim is to
find a connected k-partition in which every class has roughly the same weight. In
this case, we may either maximize the weight of a lightest class (max–min BCPk)
or minimize the weight of a heaviest class (min–max BCPk). Both problems are NP-
hard for any fixed k ≥ 2, and equivalent only when k = 2. In this work, we propose a
simple pseudo-polynomial 3

2 -approximation algorithm for min–max BCP3, which is
an O(|V ||E |) time 3

2 -approximation for the unweighted version of the problem. We
show that, using a scaling technique, this algorithm can be turned into a polynomial-
time (32 + ε)-approximation for the weighted version of the problem with running-
time O(|V |3|E |/ε), for any fixed ε > 0. This algorithm is then used to obtain, for
min–max BCPk , k ≥ 4, analogous results with approximation ratio (k2 + ε). For
k ∈ {4, 5}, we are not aware of algorithms with approximation ratios better than those.
We also consider fractional bipartitions that lead to a unified approach to design simpler
approximations for both min–max and max–min versions. Additionally, we propose
a fixed-parameter tractable algorithm based on integer linear programming for the
unweighted max–min BCP parameterized by the size of a vertex cover. Assuming the

B Phablo F. S. Moura
phablo.moura@kuleuven.be

Matheus J. Ota
mjota@uwaterloo.ca

Yoshiko Wakabayashi
yw@ime.usp.br

1 Research Center for Operations Research & Statistics, KU Leuven, Leuven, Belgium

2 Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Canada

3 Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, Brazil

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10878-023-01058-x&domain=pdf
http://orcid.org/0000-0002-8176-0874

127 Page 2 of 27 Journal of Combinatorial Optimization (2023) 45 :127

Exponential-TimeHypothesis, we show that there is no subexponential-time algorithm
to solve the max–min and min–max versions of the problem.

Keywords Balanced connected partition · Fractional partition · Approximation
algorithms · Fixed parameter tractable · Complexity lower bound

Mathematics Subject Classification 68Q25 · 68W25 · 05C85

1 Introduction

The problem of partitioning a connected graph into a given number k ≥ 2 of connected
subgraphs with prescribed orders was first studied by Lovász (1977) and Győri (1978)
in the late seventies. Let [k] denote the set {1, 2, . . . , k}, for every integer k ≥ 1.
A connected k-partition of a connected graph G = (V , E) is a partition of V into
nonempty classes {Vi }ki=1 such that, for each i ∈ [k], the subgraphG[Vi] is connected,
where G[Vi] denotes the subgraph of G induced by the set of vertices Vi .

We denote by (G, w) a pair consisting of a connected graph G = (V , E) and a
function w : V → Q≥ that assigns nonnegative weights to the vertices of G. For
each V ′ ⊆ V , we define w(V ′) = ∑

v∈V ′ w(v). Furthermore, if G ′ = (V ′, E ′) is
a subgraph of G, we write w(G ′) instead of w(V ′). If P = {Vi }i∈[k] is a connected
k-partition of G, then w+(P) stands for maxi∈[k] {w(Vi)}, and w−(P) stands for
mini∈[k] {w(Vi)}.

The concept of balance of the classes of a connected partition can be expressed
in different ways. In this work, we consider two related variants whose objective
functions express this concept.

Problem Min-Max Balanced Connected k-Partition (min−max BCPk)
Instance: a connected graph G = (V , E), and a weight function w : V → Q≥.
Find: a connected k-partition P of G.
Goal: minimize w+(P).

The problemmax−min BCPk is defined analogously: it has the same set of instances,
but it seeks a connected k-partition P that maximizes w−(P).

The problems min−max BCP2 and max−min BCP2 are equivalent, that is, an
optimal solution for one of the versions is also an optimal solution for the other version
(but they may have different optimal values). However, for k > 2, both problems are
not equivalent.

For all problems mentioned here the input graph G is always simple and connected
(and possibly with further properties). We also use the convention that n (resp. m) is
the number of vertices (resp. edges) of the graph under consideration.

Throughout this paper we assume that k ≥ 2.When k is in the name of the problem,
we are considering that k is fixed. The problems in which k is part of the instance are
denoted similarly but without specifying k in the name (e.g. max−min BCP). The
unweighted (or cardinality) versions of the problems refer to the case in which all ver-
tices have equal weights, which may be assumed to be 1.We denote the corresponding

123

Journal of Combinatorial Optimization (2023) 45 :127 Page 3 of 27 127

problems as 1-min-max BCPk , 1-max-min BCPk , 1-min-max BCP and 1-max-min
BCP.

In this paper, we show approximation algorithms formin−max BCPk , butmention
approximation results for both min−max BCPk and max−min BCPk . We observe
that whenever we refer to an approximation algorithm, we mean that it runs in poly-
nomial time on the size of the instance. If an approximation ratio α can be guaranteed
for an algorithm that may run in pseudo-polynomial time, we also refer to it as a
pseudo-polynomial α-approximation. This is not a usual terminology, but it will be
appropriate for our purposes.

Problems on balanced connected partitions can model a rich collection of appli-
cations in logistics, image processing, data base, operating systems, cluster analysis
and robotics (Becker and Perl 1983; Lucertini et al. 1993; Maravalle et al. 1997; Zhou
et al. 2019).

Dyer and Frieze (1985) proved that 1-max-minBCPk isNP-hard on bipartite graphs
for every k ≥ 2. Furthermore, 1-max-min BCPk has been shown by Chlebíková
(1996) to be NP-hard to approximate within an absolute error guarantee of n1−ε, for
all ε > 0. For theweighted versions, Becker et al. (1998) proved thatmax−min BCP2
is NP-hard on grid graphs. Wu (2012) showed that max−min BCPk is NP-hard on
interval graphs for every k. Chataigner et al. (2007) proved that max−min BCPk

is strongly NP-hard, even on k-connected graphs. Hence, unless P = NP, the
problem max−min BCPk does not admit a fully polynomial-time approximation
scheme (FPTAS). They also showed that, when k is part of the instance, the prob-
lem max−min BCP cannot be approximated within a ratio better than 6/5, unless
P = NP.

We now turn to existential or algorithmic results for the unweighted versions of the
k-connected partition problems.When the input graphG is k-connected, Győri (1978),
and Lovász (1977) proved that one can always find a connected k-partition where each
class has a prescribed number of vertices (and each class contains a prescribed vertex).
The proof of this result given by Győri (1978) does not seem to yield a polynomial-
time algorithm for every k. Holyer (2019) presented a polynomial-time algorithm for
k = 2, 3, 4. Before this result, Suzuki et al. (1990a) devised a linear-time algorithm
to find a connected 2-partition on a 2-connected graph. When the input graph is 3-
connected, Suzuki et al. (1990b) presented a quadratic-time algorithm to compute a
connected 3-partition. If G is planar and 4-connected, Nakano et al. (1997) showed
that a connected 4-partition can be found in linear time (also when the prescribed
vertices are on the same face in some embedding of G).

For max−min BCPk (resp. min−max BCPk), Perl and Schach (1981) (resp.
Becker et al. (1982)) designed polynomial-time algorithm when the input graph
is a tree. Also for trees, Frederickson (1991) proposed linear-time algorithms for
both max−min BCPk and min−max BCPk . Polynomial-time algorithms were also
derived for max−min BCP2 on graphs with at most two cut-vertices (Chlebíková
1996;Alimonti andCalamoneri 1999). Formax−min BCPk on ladders, a polynomial-
time algorithm was obtained by Becker et al. (2001).

Chlebíková (1996) designed a (4/3)-approximation algorithm formax- min BCP2.
Chen et al. (2020) observed that the algorithm obtained by Chlebíková has approxi-
mation ratio 5/4 for min−max BCP2 (but requires another analysis). These authors

123

127 Page 4 of 27 Journal of Combinatorial Optimization (2023) 45 :127

also obtained approximation algorithms with ratios 3/2 and 5/3 formin−max BCP3
and max−min BCP3, respectively. For the unweighted version 1- min- max BCPk ,
k ≥ 3, Chen et al. (2021) presented a k/2-approximation algorithm. In 2012, Wu
(2012) designed a FPTAS for max−min BCP2 restricted to interval graphs. When k
is part of the input, recentlyCasel et al. (2021) derived a very involved 3-approximation
algorithm for bothmax−min BCP andmin−max BCPwhich is based on the crown
decomposition of the graph. For recent exact algorithms based on mixed integer linear
programs for these problems, we refer the reader to Miyazawa et al. (2020, 2021).

1.1 Contributions

We show an approximation algorithm for min−max BCPk , k ≥ 3, that was
inspired by the k/2-approximation algorithm, designed by Chen et al. (2021) for (the
unweighted version) 1- min- max BCPk . The algorithmwe present here has basically
the same approximation ratio: namely, k/2+ ε, for any arbitrarily small ε > 0. When
the weights assigned to the vertices of the input graph are bounded by a polynomial
on the order of the graph, it achieves the ratio k/2. The additional constant ε in the
ratio k/2 comes from a scaling technique used to deal with weights that might be
very large. These results are presented in Sect. 2. We note that a 3/2-approximation
algorithm for min−max BCP3 was obtained by Chen et al. (2020), but its analysis
and implementation are slightly more complicated than the algorithm we show here.

For k ≥ 4, we did not find in the literature approximation algorithms for
min−max BCPk . But when k is part of the input, the algorithm by Casel et al.
(2021), mentioned above, is a 3-approximation for min−max BCP (and also
for max−min BCP). Thus, only for k ∈ {4, 5}, the algorithm we show for
min−max BCPk have the best ratio known in the literature. They are simple to be
implemented.

We present results on a fractional connected 2-partition problem in Sect. 3. More
precisely, given a fraction p/q such that 2/3 ≤ p/q < 1, we show an algorithm that
produces either a connected bipartition {V1, V2} ofG withw(V1) ≤ w(V2) ≤ p

q w(G),
or reveals that G has a cut-vertex u and provides information on the weights of the
components of G − u. Of course in this case, we do not have the notion of balance
of the two classes. However, we shall see that such fractional bipartitions lead to a
unified approach to design simpler approximation algorithms for both min−max and
max−min versions of the problem.

In Sect. 4, we prove that 1-max-min BCP is fixed-parameter tractable when the
parameter is the size of a vertex cover of the input graph. The proposed algorithm is
based on an integer linear program that has a doubly exponential dependency on the
size of a vertex cover. To the best of our knowledge, no FPT algorithm for balanced
connected partition problems is described in the literature. We believe that the strat-
egy used to model connected partitions may be useful to show that other problems
involving connectivity constraints are fixed-parameter tractable when the parameter
is the size of a vertex cover. On the negative side, we present lower bounds for solving
the max−min or min−max version of the problem assuming the Exponential-Time

123

Journal of Combinatorial Optimization (2023) 45 :127 Page 5 of 27 127

Hypothesis (ETH).More precisely, in Sect. 5, we show that there is no subexponential-
time algorithm for solving any of these problems, unless ETH fails.

A preliminary version of this work containing parts of these results appeared in the
Proceedings of the 8th Annual International Conference on Algorithms and Discrete
Applied Mathematics (CALDAM 2022) (Moura et al. 2022). This paper contains full
proofs and additional results: implementation details, fractional bipartition, and lower
bounds.

2 Approximation algorithms for MIN−MAX BCPk with k ≥ 3

Chen et al. (2021) devised an algorithm for 1-min-max BCPk with approximation
ratio k

2 . These authors show first an algorithm for 1- min- max BCP3, and then derive
algorithms for 1-min-max BCPk , k ≥ 4. The first algorithm iteratively applies two
simple operations, called Pull andMerge, to reduce (if possible) the size of the largest
class (up to some bound). In what follows, we show how to generalize such operations
for theweighted case to design a (32 +ε)-approximation formin−max BCP3, for any
ε > 0. Then, we show how to use the connected 3-partition returned by this algorithm
to obtain a connected k-partition for k ≥ 4.

Throughout this section, k is a positive integer, and (G = (V , E), w) denotes
an instance of min−max BCPk , where w : V → Q≥. When the pair (V , E) is not
needed in the context, such an instance is denoted as (G, w). Also, when convenient,
we denote by W the sum of the weights of the vertices in G, that is, W = w(G). In
this section, we assume without loss of generality that w is an integer-valued function
(otherwise, we may simply multiply all weights by the least common multiple of the
denominators).

The following trivial fact is used to show the approximation ratio of the algorithms
for min−max BCPk proposed here. When convenient, we denote by OPTk(I) the
value of an optimal solution for an instance I of min−max BCPk .

Fact 1 Any optimal solution for an instance I = (G, w) of min−max BCPk has
value at least w(G)/k, that is, OPTk(I) ≥ w(G)/k.

For k ≥ 3, let Gk be the class of connected graphs G containing a cut-vertex v

such that G − v has at least k − 1 components. We denote by c(H) the number of
components of a graph H . The next lemma provides a lower bound for the value of
an optimal solution of min−max BCPk on instances (G, w) with G ∈ Gk .
Lemma 1 Let I = (G, w) be an instance ofmin−max BCPk in which G ∈ Gk , k ≥ 3,
and v is a cut-vertex of G such that c(G − v) = � ≥ k − 1. Let C = {Ci }i∈[�] be
the set of the components of G − v. Suppose further that w(Ci) ≤ w(Ci+1) for every
i ∈ [� − 1].

Then every connected k-partition P of G satisfies

w+(P) ≥ w(v) +
∑

i∈[�−k+1]
w(Ci).

In particular, OPTk(I) ≥ w(v) + ∑
i∈[�−k+1] w(Ci).

123

127 Page 6 of 27 Journal of Combinatorial Optimization (2023) 45 :127

Proof Consider a connected k-partition P of G, and let V ∗ be the class in P that
contains v. Let q∗ := |{C ∈ C : V (C) ⊆ V ∗}| and q := |{C ∈ C : V (C) � V ∗}|.

Note that each class inP \{V ∗} is either a component ofG−v or it is a set properly
contained in a unique component ofG−v. Hence,q∗+q = � andq ≤ k−1. Therefore,
q∗ = � − q ≥ � − k + 1. Since w(C1) ≤ w(C2) ≤ . . . ≤ w(C�), we conclude that
w(V ∗) ≥ w(v) + ∑

i∈[�−k+1] w(Ci), and therefore, w+(P) ≥ w(V ∗). Clearly, it
holds that OPTk(I) ≥ w(v) + ∑

i∈[�−k+1] w(Ci). 	

Assumption We assume henceforth that in the instances (G, w) of min- max BCPk ,
k ≥ 3, all vertices have weight at most W/2, where W is the sum of the weights
of the vertices in G. The reason for this is the fact that when G has a vertex v with
w(v) > W/2, we can easily find an optimal solution. Indeed, if c(G − v) < k then
we can take an arbitrary connected (k − 1)-partition P ′ of G − v. The union of P ′
with {v} forms an optimal connected k-partition of G. If c(G−v) ≥ k, then Lemma 1
indicates how to obtain an optimal solution. This assumption implies that any set with
weight larger than W/2 has at least two vertices.

Our algorithm formin−max BCP3 is inspired by the algorithm proposed by Chen
et al. (2021). We adopt basically the same notation used by these authors to refer to
the basic operations which are the core of the algorithm.

The strategy used in the algorithm is to start with an arbitrary connected 3-partition
and improve it by applying successively (while it is possible) the operations Merge

and Pull, defined in what follows.
We say that a connected 3-partition {V1, V2, V3} of G is ordered if w(V1) ≤

w(V2) ≤ w(V3). The input for Pull and Merge is an ordered connected 3-partition
{V1, V2, V3} with w(V3) > W/2. The output is also an ordered connected 3-partition.
In this context, we say that an ordered 3-partition P = {V1, V2, V3} is better than an
ordered 3-partition Q = {X1, X2, X3} if either w(V3) < w(X3); or w(V3) = w(X3)

and |V3| < |X3|.
We say that two classes Vi and Vj are adjacent if there is an edge in G with one

endpoint in Vi and the other in Vj . For any X ⊆ V , we denote by N (X) the set of
vertices in V \X that are adjacent to a vertex of X .

– Merge(P)

– Input: an ordered connected 3-partition P = {V1, V2, V3} of (G, w).
– Pre-conditions: (a) w(V3) > w(G)/2; (b) V1 and V2 are adjacent.
– Output: obtain a connected 3-partition {V1 ∪ V2, V ′

3, V
′′
3 }, where {V ′

3, V
′′
3 } is

an arbitrary connected 2-partition of G[V3] with 0 < w(V ′
3) ≤ w(V ′′

3), and
return an ordered partition.

From the pre-conditions we have that w(V1) + w(V2) < w(G)/2 < w(V3). Since
w(V ′′

3) < w(V3), it follows that Merge(P) constructs a 3-connected-partition that
is better than P . Note that a depth-first search suffices to check the pre-conditions.
Moreover, a connected 2-partition {V ′

3, V
′′
3 } ofG[V3], as desired, can be easily obtained

from any spanning tree of this graph (note that V3 has at least two vertices with positive
weights).

– Pull(P,U , i)

123

Journal of Combinatorial Optimization (2023) 45 :127 Page 7 of 27 127

– Input: an ordered connected 3-partition P = {V1, V2, V3} of (G, w), a
nonempty subset U of vertices, and i ∈ {1, 2}.

– Pre-conditions: (a) w(V3) > w(G)/2; (b)U � V3, G[Vi ∪U] and G[V3 \U]
are connected; (c) w(Vi ∪U) < w(V3).

– Output: obtain a connected 3-partition {Vj , Vi ∪ U , V3 \ U } where j ∈
{1, 2}\{i}, and return an ordered partition.

Observe that if w(U) > 0, then all classes in the returned connected 3-partition
have weight strictly smaller thanw(V3). Ifw(U) = 0, then V3 \U is the heaviest class
of the new partition and |V3 \ U | < |V3|. Hence Pull(P,U , i) always produces a
connected 3-partition that is better than P . Moreover, it is only executed when a setU
satisfying the pre-conditions is given. Thus, this operation can be executed inO(|V |)
time. For simplicity, we say that such a set U is pull-admissible (w.r.t. i).

In what follows we describe an algorithm for Min- Max- BCP3 (see Algorithm 2)
without going into implementation details. It is based on the Merge and Pull oper-
ations, and a routine called PullCheck, that either outputs a pull-admissible set, if
it exists, or returns an emptyset (indicating that no pull-admissible set exists in that
step). In the end of this section, we discuss an efficient implementation of PullCheck
that runs in linear time.

Algorithm 1 PullCheck
Input: An ordered connected 3-partition P = {V1, V2, V3} of (G, w) and i ∈ {1, 2}
Output: Either a set U ⊂ V3 that is pull-admissible w.r.t. i or the emptyset ∅.

1: procedure PullCheck(G, w,P, i)
2: for v ∈ N (Vi) ∩ V3 do
3: Let C = {C1, . . . ,C�} be the components of G[V3 − v] with w(C1) ≤ . . . ≤ w(C�).
4: Let U = {v} ∪ ⋃

j∈[�−1] V (C j).
5: if w(Vi) + w(U) < w(V3) then
6: return U
7: return ∅

Lemma 2 Algorithm 1 on input (G, w), with an ordered connected 3-partition, either
returns a pull-admissible set or returns the empty set when no pull-admissible set
exists. Moreover, it can be implemented to run in polynomial time.

Proof By construction, the set U in line 6 is pull-admissible. Now let T � V3 be a
set that is pull-admissible w.r.t. i . We may assume that G[T] is connected, otherwise,
each of its components is pull-admissible and we can consider any of them. Let v ∈ T
be a vertex adjacent to Vi . Clearly, v will be checked at line 2. Let C = {C1, . . . ,C�}
be the components of G[V3 − v] with w(C1) ≤ . . . ≤ w(C�). (Note that � ≥ 1, as T
is a proper subset of V3.) Since G[V3 \ T] and G[T] are connected, we conclude that
G[T]must contain �−1 components of C. Moreover, precisely one of the components
in C is not contained in G[T] (but T may contain part of it). (To see this, consider the
block structure of G[V3] and analyze when � = 1 and � ≥ 2.) It follows from this
observation that the set U = {v} ∪ ⋃

j∈[�−1] V (C j) is such that w(U) ≤ w(T). As T
is pull-admissible, it holds that w(Vi) + w(U) ≤ w(Vi) + w(T) < w(V3). Hence, at
line 6, the set U , which is pull-admissible, will be returned by Algorithm 1.

123

127 Page 8 of 27 Journal of Combinatorial Optimization (2023) 45 :127

Since the connected components ofG[V3−v] canbe computed in timeO(|V |+|E |),
Algorithm 1 runs in polynomial time. 	

Algorithm 2 Min- Max- BCP3

Input: An instance (G, w) of min−max BCP3
Output: A connected 3-partition of G
Routines: Merge, Pull and PullCheck.

1: procedure Min- Max- BCP3(G, w)
2: Let P = {V1, V2, V3} be an ordered conn. 3-partition of G; W = w(G)

3: while w(V3) > W/2 do
4: if V1 and V2 are adjacent then
5: P ← Merge(P) # P = {V1, V2, V3}
6: else if PullCheck(P, i) returns a set U �= ∅ for i ∈ [2] then
7: P ← Pull(P,U , i) # P = {V1, V2, V3}
8: else
9: break
10: return P

Lemma 3 Algorithm 2 on input (G, w), where G = (V , E) andw is an integer-valued
function, outputs a connected 3-partition of G. Moreover, it can be implemented to
run in O(w(G)|V ||E |) time.
Proof The algorithm starts with an arbitrary connected 3-partition of G and only
modifies the current partition when aMerge or Pull operation is performed. As both
operations are performed only when the corresponding pre-conditions are satisfied;
and by Lemma 2, PullCheck finds a pull-admissible set or certifies correctly that no
such set exists, Algorithm 2 is correct.

Each time aMerge operation is executed, theweight of the heaviest class decreases.
When a Pull operation is executed, either theweight of the heaviest class V3 decreases
or theweight of the heaviest class remains unchangedbut its cardinality decreases (with
respect to the previous partition). Thus, if H is the weight of the heaviest class in a
certain step of the algorithm, atmost |V |PullOperationsmay lead to 3-connected par-
titions with the same weight H . This implies that at most w(G)|V | calls of Merge or
Pull operations are performed by the algorithm. It is immediate thatMerge and Pull
can be executed in O(|E |) time. By Proposition 1 (page 15) the routine PullCheck
can be implemented to run inO(|E |) time. Thus, Algorithm 2 can be implemented to
run in O(w(G)|V ||E |). 	

It is clear that when Algorithm 2 halts and returns a partition P , one of the two
cases occurs: (a) either the loop condition in line 3 failed, and in this case, P has value
w+(P) ≤ w(G)/2, or (b) neither Merge nor Pull operations could be performed
(and w+(P) > w(G)/2). In what follows, we prove that in case (b) the input graph
has a particular “star-like” structure which allows us to conclude that the solution
produced by the algorithm is optimal.

Lemma 4 Let P = {V1, V2, V3} be an ordered connected 3-partition produced by
Algorithm 2, and let Gi = G[Vi], for i ∈ {1, 2, 3}. If w(V3) > w(G)/2, then the
following statements hold:

123

Journal of Combinatorial Optimization (2023) 45 :127 Page 9 of 27 127

1. w(V1) < w(G)/4, and V1 and V2 are not adjacent; and
2. there exists u ∈ V3 such that u is a cut-vertex of G, {G1,G2} ⊆ C, w(C) ≤

w(V1) ≤ w(V2) for each C ∈ C \ {G1,G2}, where C is the set of components
of G − u. Moreover, if |C| = 3 then w(u) > w(G)/4.

Proof Since w(V3) > w(G)/2, the algorithm terminated after executing line 9. This
implies that neither Merge nor Pull operation can be performed on P . Particularly,
it means that V1 and V2 are not adjacent. Moreover, w(V1) + w(V2) < w(G)/2,
because w(V3) > w(G)/2. Since w(V1) ≤ w(V2), it follows that w(V1) < w(G)/4.
This proves statement 1.

Since G is connected, and V1 and V2 are not adjacent, there exists uv ∈ E(G)

such that u ∈ V3 and v ∈ V1. Let C′ be the set of components of G3 − u. Note that
C′ �= ∅ becausew(u) ≤ w(G)/2, and consider a componentC ∈ C′. Let us define S =
{u}∪ (

⋃
C ′∈C\{C} C ′). Note that, if u is not a cut-vertex of G3, then C = G3 − u is the

unique component of C′ and S = {u}. If u is a cut-vertex ofG3, then C′ containsC and
other components of G3 − u distinct from C ; hence G[S] = G3 − V (C). It is clear
that G[C] and G[S] are connected subgraphs of G. Since it is not possible to perform
Pull(P, S, 1), it holds that w(V3) = w(S) + w(C) ≤ w(S) + w(V1). Therefore, we
have that w(C) ≤ w(V1) ≤ w(V2).

Suppose, to the contrary, that V1 is adjacent to C . Thus, the partition {V1 ∪
V (C), V2, V3 \ V (C)} is a connected 3-partition of G. Since w(C) + w(V1) ≤
2w(V1) < w(G)/2, Algorithm 2 could perform Pull(P, V (C), 1), a contradic-
tion. Similarly, V2 is not adjacent to C , otherwise the algorithm could execute
Pull(P, V (C), 2) becausew(C)+w(V2) ≤ w(V1)+w(V2) < w(G)/2 < w(V3). By
statement 1, V1 and V2 are not adjacent, and thus we have N (V1)∩V3 = N (V2)∩V3 =
{u}. Therefore, u is a cut-vertex ofG and C = {G1,G2}∪C′. This concludes the proof
of statement 2. 	

Theorem 1 Algorithm 2 is a pseudo-polynomial 32 -approximation for min- maxBCP3
that runs in O(w(G)|V ||E |) time on an instance (G = (V , E), w).

Proof LetP = {V1, V2, V3} be an ordered 3-partition ofG, returned by the algorithm;
and let Gi = G[Vi], for i = 1, 2, 3. By Lemma 3, P is indeed a connected 3-partition
of G and it can be computed in time O(w(G)|V ||E |). If w(V3) ≤ w(G)/2, then it
follows directly from Fact 1 that w+(P) = w(V3) ≤ (3/2)OPT3(G, w).

Suppose now that w(V3) > w(G)/2. This means that Algorithm 2 terminated
because neitherMerge nor Pull operation could be performed onP . By Lemma 4(2),
there exists u ∈ V3 such that u is a cut-vertex of G, {G1,G2} ⊆ C, and w(C) ≤
w(V1) ≤ w(V2) for eachC ∈ C \{G1,G2}, where C is the set of components ofG−u.
Thus, w+(P) = w(V3) = w(u) + ∑

C∈C\{G1,G2} w(C) ≤ OPT3(G, w), where the
last inequality follows fromLemma 1. Therefore, in this case, the partitionP produced
by the algorithm is an optimal solution for the instance (G, w) of min−max BCP3.

	

We note that Algorithm 2 applied to instances in which w(v) = 1 for each vertex v

corresponds to the algorithm designed by Chen et al. (2021) for 1- min- max BCP3.
In this case, it runs in timeO(|V ||E |) since pull-admissible sets always have positive

123

127 Page 10 of 27 Journal of Combinatorial Optimization (2023) 45 :127

weight, at most |V | Merge or Pull operations are performed, and PullCheck takes
time O(|E |).

In what follows, we show how to extend the result obtained for min- max BCP3
to obtain results for min−max BCPk , for all k ≥ 4. For simplicity, we say that a
vertex u satisfying condition 2 of Lemma 4 is a star-center. Moreover, when u is a
star-center, we label the � components ofG−u as C = {C1,C2, . . . ,C�}, whereC� =
G[V2], C�−1 = G[V1] and w(Ci) ≤ w(Ci+1) for all i ∈ [� − 1].

The next algorithm uses a routine called GetSingletons which receives as input
a connected graph G = (V , E), a connected k′-partitionP of G, and an integer q ≥ 0
such that k′ + q ≤ |V |, then it produces a connected (k′ + q)-partition of G in
time O(|V ||E |) (where q of the classes in the partition are singletons).

Algorithm 3 GetSingletons
Input: A connected graph G = (V , E), a connected k′-partition P of (G, w), and an integer q ≥ 0

such that k′ + q ≤ |V |
Output: A connected (k′ + q)-partition of G

1: procedure GetSingletons(G, w, q,P)
2: while q > 0 do
3: Let U ∈ P be such that |U | ≥ 2 and u be a non cut-vertex of G[U].
4: P ← (P \ {U }) ∪ ({{u}} ∪ {U \ {u}})
5: q ← q − 1
6: return P

Algorithm 4 Min- Max- BCPk (fixed k, k ≥ 3)
Input: An instance (G = (V , E), w) of min−max BCPk
Output: A connected k-partition of G
Routines: Min- Max- BCP3, GetSingletons

1: procedure Min- Max- BCPk(G, w)
2: P ← Min- Max- BCP3(G, w) # P = {V1, V2, V3}
3: if w+(P) ≤ w(G)/2 or |V3| = 1 then
4: P ′ ← GetSingletons(G, w, k − 3,P)

5: else
6: Let u be the star-center and let C = {Ci }i∈[�] be the components of G − u.
7: if � ≥ k − 1 then
8: Let t = � − k + 1 and V ′ = (

⋃
i∈[t] V (Ci)) ∪ {u}.

9: P ′ ← {V ′, V (Ct+1), . . . , V (C�−1), V (C�)}
10: else
11: P ← {{u}} ∪ {Ci }i∈[�]
12: P ′ ← GetSingletons(G, w, k − 1 − �,P)

13: return P ′

Theorem 2 For each integer k ≥ 3, Algorithm 4 is a pseudo-polynomial k
2 -

approximation for the problem min−max BCPk that runs in O(w(G)|V ||E |) time
on an instance (G = (V , E), w).

Proof Wefirst note that Algorithm 3 is correct, sincewhile q > 0 it iteratively removes
q non cut-vertices from nontrivial classes of P and create singleton classes. As |V | ≥

123

Journal of Combinatorial Optimization (2023) 45 :127 Page 11 of 27 127

k′ + q, when q > 0 there always exists a nontrivial class U ∈ P satisfying the
conditions in line 3 (because P is a k′-connected partition and k′ < |V |). Note that,
since G[U] is connected and nontrivial, we may take a spanning tree in G[U]; then,
any leaf of such a tree is a non cut-vertex. Thus, Algorithm 3 has time complexity
O(|V ||E |).

Now we turn to Algorithm 4. We may assume that k ≥ 4, since for k = 3 the
result follows from Theorem 1. Let {V1, V2, V3} be the ordered connected 3-partition
produced in line 2, and let Gi = G[Vi], for i = 1, 2, 3.

If the condition in line 3 is satisfied, then since Algorithm 3 is correct, the partition
P ′ (in line 4) is a connected k-partition of G. Clearly, if V3 is a singleton {u}, then P ′
is optimal, since w(u) ≤ OPTk(G, w). Moreover, when w+(P) ≤ w(G)/2, it holds
that w+(P ′) ≤ w(G)/2 ≤ (k/2)OPTk(G, w), where the last inequality is justified
by Fact 1.

Suppose now that w(V3) > w(G)/2 and |V3| ≥ 2. By Lemma 4(2), there exists a
star-center u ∈ V3. Let C = {Ci }i∈[�] be the components of G − u. We now consider
two cases according to the values of k and �.

If � ≥ k − 1, then in any connected k-partition of G the class containing u
must also contain t = � − k + 1 components of G − u. The class V ′ defined
in line 8 consists of the union of u and the t lightest such components. Clearly,
P ′ := {V ′, V (Ct+1), . . . , V (C�−1), V (C�)} is a connected k-partition of G, and
w+(P ′) = max{w(V ′), w(V2)} (recall that C� = G[V2]). If w+(P ′) = w(V ′), it
follows from Lemma 1 that P ′ is an optimal connected k-partition of G. Otherwise,
w+(P ′) = w(V2) ≤ w(G)/2 ≤ (k/2)OPTk(G, w).

If � ≤ k−2, starting with the connected partition P = {{u}}∪ {Ci }i∈[�] (as defined
in line 11), using Algorithm 3 we obtain a connected k-partition P ′ of G. Clearly,
w+(P ′) ≤ w(V2) ≤ w(G)/2, and so w+(P ′) ≤ (k/2)OPTk(G, w).

Finally, let us analyze the time complexity of Algorithm 4. As we have men-
tioned, Algorithm 3 has time complexity O(|V ||E |). Since Algorithm 2 (in line 2)
is a pseudo-polynomial algorithm for min- max BCP3 that runs in O(w(G)|V ||E |)
time (cf. Theorem 1), we conclude that Algorithm 4 is a pseudo-polynomial k

2 -
approximation for min- max BCPk with the same running time. 	

By Theorem 2, Algorithm 4 is a (polynomial) k
2 -approximation if the weights

assigned to the vertices are bounded by a polynomial on the order of the graph. In
case the weights assigned to the vertices are arbitrary, it is possible to apply a scaling
technique and use the previous algorithm as a subroutine to obtain a polynomial
algorithm formin−max BCPk with approximation ratio (k2 +ε), for any fixed ε > 0.

We now prove a more general result, applicable to any pseudo-polynomial α-
approximation algorithm for min−max BCPk whose running time depends on the
value of the weights.

Theorem 3 Let k ≥ 3 be an integer, and let I = (G = (V , E), w) be an
instance of min−max BCPk . If there is a pseudo-polynomial α-approximation algo-
rithmA formin−max BCPk that runs inO(w(G)c|V ||E |) time for some constant c,
then Algorithm 5 is an α(1 + ε)-approximation for min−max BCPk that runs in
O(|V |2c+1|E |/εc) time.

123

127 Page 12 of 27 Journal of Combinatorial Optimization (2023) 45 :127

Algorithm 5 ε-Min- Max- BCPk (fixed k, k ≥ 3)
Input: An instance (G = (V , E), w) of min−max BCPk
Output: A connected k-partition of G
Routine: a pseudo-polyn. α-approx. algorithm A for min−max BCPk

1: procedure ε- Min- Max- BCPk(G, w)
2: θ ← maxv∈V w(v)

3: λ ← εθ
|V |

4: for v ∈ V do
5: ŵ(v) ←

⌈
w(v)

λ

⌉

6: P ← A(G, ŵ)

7: return P

Proof Let P∗ (resp. P) be an optimal solution (resp. a solution produced by Algo-
rithm5) on input I . Denote by V ∗

k and Vk the heaviest classes inP∗ andP , respectively.
First, note that P∗ is a feasible solution for the instance (G, ŵ), and so ŵ+(P∗) =∑
v∈V ∗

k
ŵ(v) ≥ OPTk(G, ŵ). Moreover, ŵ+(P) = ∑

v∈Vk ŵ(v) ≤ αOPTk(G, ŵ)

sinceA is an α-approximation. It is clear from line 5 thatw(v)/λ ≤ ŵ(v) ≤ w(v)/λ+
1 for every v ∈ V . Hence, the following sequence of inequalities hold:

w+(P) =
∑

v∈Vk
w(v) ≤ λ

∑

v∈Vk
ŵ(v) ≤ λαOPTk(G, ŵ)

≤ λα
∑

v∈V ∗
k

ŵ(v) ≤ λα
∑

v∈V ∗
k

(
w(v)

λ
+ 1

)

= αOPTk(G, w) + λα|V ∗
k |. (1)

Since λ = εθ/|V | (see line 3) and θ ≤ OPTk(G, w), it follows from inequality (1)
that

w+(P) ≤ αOPTk(G, w) + αεθ ≤ α(1 + ε)OPTk(G, w).

The running-time of Algorithm 5 is clearly dominated by the running-time of A
on input (G, ŵ) in line 6 which takes time O(ŵ(G)c|V ||E |). It follows from the
scaling in line 5 that ŵ(v) ≤ w(v)/λ + 1 ≤ |V |/ε + 1 for every v ∈ V . Therefore,
ŵ(G) ≤ |V |2/ε + |V |, and thus, the algorithm runs in O(|V |2c+1|E |/εc) time. 	

Corollary 1 For each integer k ≥ 3 and ε′ > 0, there is a (k2 + ε′)-approximation
for min−max BCPk that runs in O(|V |3|E |/ε′) time on an instance (G =
(V , E), w).

Proof The result follows from Theorem 3, by taking Algorithm 5 with ε = ε′/(k/2)
and Algorithm 4 as the routine A it requires. The approximation ratio k/2 of Algo-
rithm 4 is guaranteed by Theorem 2. 	

An algorithm analogous to Algorithm 5 can be designed for max−min BCPk . In

this case, change line 2 to θ ← minv∈V w(v), change line 5 to ŵ(v) ←
⌊

w(v)
λ

⌋
, and

123

Journal of Combinatorial Optimization (2023) 45 :127 Page 13 of 27 127

Fig. 1 Illustration of the GetHeaviestComponents algorithm. All vertices of the graph H depicted in (a)
have unit weight; those with black filling are the cut-vertices; and the dashed lines indicate the blocks of H .
In (b), we show the block tree T of H , and the weights (wT) of its vertices. For the vertex v shown in T , we
consider the tree T̂ rooted at v and indicate by the dashed lines the subtrees of T̂ rooted at each neighbor
of v

consider a routine that is a pseudo-polynomial α-approximation formax−min BCPk .
Then, a theorem similar to Theorem 3 can be obtained for max−min BCPk .

2.1 Finding a pull-admissible set efficiently

In Lemma 3 we mentioned that Algorithm 2 can be implemented to run in
O(w(G)|V ||E |) time. To guarantee this result, we show that Algorithm PullCheck

can be implemented to run in linear time. We discuss this in what follows.
Note that, the loop starting at line 2 of PullCheck refers to vertices v ∈ N (Vi)∩V3.

For each such vertex v, there are two possibilities. If v is not a cut-vertex ofG[V3], then
the setU = {v} is a candidate to be a pull-admissible set, and this can be easily checked.
If v is a cut-vertex of G[V3], then the set U that is the union of {v} and the vertex
sets of all components of G[V3] − v except the heaviest one is a candidate for a pull-
admissible set. Thus, finding efficiently the heaviest component of G[V3]−v (when v

is a cut-vertex of G[V3]) is a crucial step. Our strategy is to take care of all cut-vertices
of G[V3] at once, by running first a procedure called GetHeaviestComponents.

This procedure is described in what follows for an arbitrary connected graph H .
It constructs a block tree T of H , and assigns first a weight wT (x) to each vertex x
of T (see lines 4–5 of Algorithm 6). The tree T has two classes of vertices: the class
corresponding to the cut-vertices of H , denoted by VC (T), and the class corresponding
to the nontrivial blocks (biconnected components) of H .

When VC (T) �= ∅, then we consider T̂ , the tree T rooted at an arbitrary vertex in
VC (T), and assign to each vertex x in T̂ a value α(x) defined as the weight (w.r.t.
wT) of the subtree of T̂ rooted at x . The function α(·) is used to define a value h(v),
for each vertex v ∈ VC (T), that corresponds the weight of the heaviest component of
H − v (see lines 13–14 of Algorithm 6). The procedure GetHeaviestComponents
outputs a pair (T , h) (Fig. 1).

123

127 Page 14 of 27 Journal of Combinatorial Optimization (2023) 45 :127

Algorithm 6 GetHeaviestComponents

Input: A connected graph H and weights w : V (H) → Q≥
Output: A block tree T of H and a function h : VC (T) → Q, such that

h(v) = weight of the heaviest component of H − v.
1: procedure GetHeaviestComponents(H , w)
2: Construct a block tree T of H
3: Let VC (T) be the vertices of T that are cut-vertices of H
4: Compute wT : V (T) → Q. If x ∈ VC (T) then wT (x) := w(x); otherwise,

5: x corresponds to a block B of H and wT (x) := ∑
u∈V (B)\VC (T) w(u)

6: if VC (T) = ∅ then
7: return (T ,∅)

8: else
9: Let T̂ be the tree T rooted at an arbitrary vertex in VC (T)

10: for x ∈ V (T̂) do
11: α(x) ← weight (w.r.t. wT) of the subtree of T̂ rooted at x

12: for v ∈ VC (T) do
13: Let u be the parent of v in (T̂)

14: h(v) ← max
{
maxz∈NT (v)\{u}{α(z)}, w(H) − α(v)

}

15: return (T , h)

The next algorithm, called PullCheck+, gives more detail about the implemen-
tation of algorithm PullCheck. It uses the algorithm GetHeaviestComponents

described previously.

Algorithm 7 PullCheck+

Input: An ordered conn. 3-part. P = {V1, V2, V3} of (G, w), and i ∈ {1, 2}.
Output: Either a set U � V3 that is pull-admissible w.r.t. i , or the emptyset ∅.

1: procedure PullCheck+(P, i)
2: (T , h) ← GetHeaviestComponents(G[V3], w)

3: for v ∈ N (Vi) ∩ V3 do
4: if v ∈ VC (T) and w(Vi) < h(v) then
5: Let {C1, . . . ,C�} be the components of G[V3] − v with w(C1) ≤ . . . ≤ w(C�).
6: return U := {v} ∪ ⋃

j∈[�−1] V (C j)

7: else if v /∈ VC (T) and w(Vi) + w(v) < w(V3) then
8: return U := {v}
9: return ∅

It should be noted that the test done in line 4 of PullCheck+, if satisfied, indicates
that the set U defined in line 6 is indeed a pull-admissible set. Note that for the
components defined in line 5, we have that h(v) = w(V3)−(w(v)+∑

j∈[l−1] w(C j)).
Thus, w(Vi) < h(v) is equivalent to w(Vi) + w(U) < w(V3), where U = {v} ∪⋃

j∈[�−1] V (C j).

Proposition 1 Algorithm7 (PullCheck+) describes an implementationof PullCheck
that receives a connected 3-partition of (G = (V , E), w) and in O(|E |) time returns
either a pull-admissible set or the empty set when no pull-admissible set exists.

Proof It suffices to note that a block tree of a connected graph G = (V , E) can be
constructed inO(|E |) time, and therefore the routineGetHeaviestComponents also

123

Journal of Combinatorial Optimization (2023) 45 :127 Page 15 of 27 127

takesO(|E |) time. Once (T , h) is constructed, the for-loop of PullCheck+ takes time
at most O(|E |). The correctness of PullCheck+ is guaranteed by the correctness of
PullCheck (proved in Lemma 2). 	

3 Fractional bipartition and its consequences for
MIN−MAX (MAX−MIN) BCP2

In this section we present a simple algorithm, called Fractional- Bip, that finds (if
existent) a desired fractional connected bipartion of a weighted graph (G, w). More
precisely, given a fraction p/q such that 2/3 ≤ p/q < 1, the algorithm either returns
a connected bipartition {V1, V2} of G with w(V1) ≤ w(V2) ≤ p

q W or reveals that
G has a cut-vertex u and provides information on the weights of the components of
G − u. Of course in this case, we do not have the notion of balance of the two classes.
However, we shall see that such fractional bipartitions lead to a unified approach to
design simpler approximation algorithms for both min−max and max−min versions
of the problem.

As the algorithm for min- max BCP3, given in the previous section, Fractional-
Bip also iteratively applies an operation to reduce the weight of the heaviest class. This
operation is called Frac- Pull, in analogy to the operation Pull, seen previously.
We give its description, and then use it in the Algorithm Fractional- Bip.

– Frac- Pull(P,U , p/q)

– Input: an ordered connected bipartition P = {V1, V2} of (G, w), W = w(G),
a nonempty set U of vertices, and a fraction p/q ≥ 2/3.

– Pre-conditions: (a) w(V2) > (p/q)W ; (b)U � V2, G[V1 ∪U] and G[V2 \U]
are connected; (c) w(V1 ∪U) < w(V2).

– Output: Set {V1, V2} ← {V1 ∪ U , V2\U } and reorder the classes if necessary
to return an ordered partition.

In the next algorithm we refer to a routine called Frac- PullCheck, that is similar
to the routine PullCheck (Algorithm 1), and therefore will not be described here. It
returns (if existent) a nonempty set U that is required in the operation Frac- Pull.
This set is used to update the current bipartition. Then either the algorithm halts with
a bipartition {V1, V2} with w(V1) ≤ w(V2) ≤ (p/q)W , or informs that G has a
cut-vertex u that provides information on the structure of G. The proof of Lemma 5
indicates how such a cut-vertex can be found, and Proposition 2 guarantees that for
p/q = 2/3 the bipartition is optimal for bothmin−max BCP2 andmax−min BCP2.

Lemma 5 Algorithm Fractional- Bip on the input (G, w, p/q), with p/q ≥ 2/3
and W = w(G), produces a connected bipartition P = {V1, V2} of G, for which one
of the following statements holds:

1. w(V1) ≤ w(V2) ≤ (p/q)W; or
2. w(V2) > (p/q)W, there exists u ∈ V2 such that u is a cut-vertex of G, and every

connected component C of G − u is such that w(C) ≤ w(V1).

123

127 Page 16 of 27 Journal of Combinatorial Optimization (2023) 45 :127

Algorithm 8 Fractional- Bip

Input: A connected graph (G, w) and a fraction p/q such that 2/3 ≤ p/q < 1
Output: An ordered connected bipartition {V1, V2} of G
Routines: Frac- Pull and Frac- PullCheck

1: procedure Fractional- Bip(G, w, p/q)
2: Let P = {V1, V2} be an ordered connected bipartition of G = (V , E); W = w(G)

3: while w(V2) > (p/q)W do
4: if Frac- PullCheck(P, p/q) returns a nonempty set U then
5: P ← Frac- Pull(P,U , p/q) # P = {V1, V2}
6: else
7: return P and a cut-vertex u of G
8: return P

Proof Note that, in the beginning,P = {V1, V2} is a connected bipartition, and Frac-
Pull always returns a connected bipartition. If the bipartition P is returned (at line 8)
because the while condition (line 3) is not satisfied, it is immediate that case 1 occurs.

If the bipartitionP is returnedwithin thewhile loop (line 7), thenw(V2) > (p/q)W .
Since G is connected, there exists vu ∈ E such that v ∈ V1 and u ∈ V2. Let C be the
set of connected components of G[V2\u]. Fix C ∈ C and let S = V2\C . (If |C| = 1,
then S = {u}.) Since Frac- Pull({V1, V2}, S, p/q) could not be performed in the
step that preceded the break, we have that w(V1) + w(S) ≥ w(V2) = w(C) + w(S),
and hence

w(C) ≤ w(V1).

It remains to prove that u is a cut-vertex of G (that is, there is no vertex in V1 that
is adjacent to V2 \ {u}). For that, suppose that V1 is adjacent to a component C ∈ C.
Since w(V2) > (p/q)W , we have that w(V1) < (1 − p/q)W . Using the inequality
above and the fact that p/q ≥ 2/3, we obtain that

w(V1) + w(C) ≤ 2w(V1) < 2(1 − p/q)W ≤ (p/q)W < w(V2).

But, if w(V1) + w(C) < w(V2), then for U = C , the pre-conditions of
Frac- Pull operation are satisfied, and the algorithm could have performed Frac-

Pull({V1, V2},C, p/q), a contradiction. Thus, we conclude that u is a cut-vertex of
G (and also of G[V2]). In this case, G has a star-like structure, where u is the “center”
and G − u has the connected components V1 and those in C. 	

It is immediate that if the input graph is 2-connected, then the case (2) mentioned
in Lemma 5 does not occur. In this case, we obtain the following result.

Corollary 2 Let (G, w, p/q) be an input to Algorithm Fractional- Bip. If G is
2-connected, W = w(G), 2/3 ≤ p/q < 1, then this algorithm produces a connected
bipartition {V1, V2} of G with w(V2) ≤ (p/q)W.

We recall that OPT2(I) denotes the value of an optimal solution for an instance I
of min−max BCP2. In what follows, we denote by ÔPT2(I) the value of an optimal
solution for an instance I of max−min BCP2.

123

Journal of Combinatorial Optimization (2023) 45 :127 Page 17 of 27 127

Proposition 2 Algorithm Fractional- Bip usedwith fraction p/q = 2/3 is a pseudo-
polynomial algorithm that has approximation ratio 4/3 for min- max BCP2, and
approximation ratio 3/2 for max−min BCP2.

Proof Let I = (G, w) be an instance of min−max BCP2 or max−min BCP2,
W = w(G), and let P = {V1, V2} be a bipartition of G returned by Fractional-

Bip(G, w, 2/3). By Lemma 5, either case (1) or (2) occurs. If (1) occurs, thenw(V1) ≤
w(V2) ≤ 2

3W .
Case (a) Consider the problem min−max BCP2.

If case (1) occurs, w+(P) = w(V2) ≤ 2
3W ≤ 2

3 (2OPT2(I)) = 4
3 OPT2(I).

If (1) occurs, then w(V2) > (2/3)W and V2 contains a cut-vertex u of G.
Moreover, if C is the set of the connected components of G[V2 \ {u}] then
w(C) ≤ w(V1) for all C ∈ C. Considering the weights of the components,
and the structure of G, it is easy to see that {V1, V2} is an optimal solution of
min−max BCP2 (it is the unique optimal solution if all components C ∈ C are
such that w(C) < w(V1); otherwise, if there exists C ′ ∈ C such that w(C ′) =
w(V1) then exchanging C ′ with V1 in the previous solution, we obtain another
optimal solution.)

Case (b) Consider the problem max−min BCP2.

If case (1) occurs, w−(P) = w(V1) ≥ 1
3W ≥ 1

3 (2ÔPT2(I)) = 2
3 ÔPT2(I).

If case (2) occurs, analogously to Case (a), we conclude that {V1, V2} is an
optimal solution of max−min BCP2 (that may not be unique, as in Case (a)). /

	

Frac- PullCheck routine can be implemented (as PullCheck routine) to run

in linear time. In fact, its implementation is simpler, because this time only two sets
V1 and V2 are considered. Algorithm Fractional- Bip is a pseudo-polynomial time
algorithm as its running time depends on the weights of the vertices. But in the special
case in which the weights are uniform (which can be considered one), the algorithm
is polynomial.

We observe that the algorithm designed by Chlebíková for max−min BCP2 is
essentially for 2-connected graphs. When the input graph is not 2-connected, one
has to run the algorithm for each 2-connected component, with new weights on its
vertices; then, choose the best solution (translated to the original graph). Algorithm
Fractional- Bip does not require that the input graph be 2-connected. Thus, it may
be an alternative, specially for the unweighted case, as it will be polynomial, and can
be applied directly to any connected graph. In this case, the approximation ratio (for
max−min BCP2) changes from 4/3 to 3/2. An analogous observation holds with
respect to the algorithm for min−max BCP2 (the ratio changes from 5/4 to 4/3).

4 Parameterized MAX−MIN BCP

In this section we design an integer linear program based fixed-parameter tractable
(FPT) algorithm for 1- max- min- BCP parameterized by the vertex cover. In this

123

127 Page 18 of 27 Journal of Combinatorial Optimization (2023) 45 :127

problem, we are given an unweighted graph G, a positive integer k, and a vertex
cover X of G. The objective is to find a connected k-partition of G that maximizes
the size of the smallest class. We will show that we can formulate this problem as
an integer linear program that runs in time doubly exponential in the size of a vertex
cover of the input graph.

Let us consider a fixed instance (G, k) of 1- max- min- BCP and a vertex cover X
of G. Let us denote by I the stable set V (G) \ X . Recall that we assume that k ≤
|V (G)| = |X | + |I |. From now on, we assume that k ≤ |X | and |X | ≥ 2. The reason
for this is that if k > |X |, then there are at least k − |X | classes of size exactly 1
contained in I , and so an optimal solution (which has value equal to 1) can be easily
computed; and if |X | = 1, then G is a star, and so it is trivial to compute an optimal
solution.

Before presenting the details of the proposed algorithm, we prove a simple lemma
that guarantees the existence of an optimal solution in which each class intersects the
given vertex cover X .

Lemma 6 Let (G, k) be an instance of 1- max- min- BCP and let X be a vertex cover
of G. Then, there exists an optimal connected k-partition {Vi }i∈[k] of G such that
Vi ∩ X �= ∅ for all i ∈ [k].
Proof Suppose to the contrary that no such partition exists. Let {V ′

i }i∈[k] be a connected
k-partition ofG with the smallest number of classes contained in I , and let V ′

j = {v} ⊆
I , for some j ∈ [k], be one of these classes.

Since k ≤ |X |, there exists � ∈ [k] \ { j} such that |V ′
� ∩ X | ≥ 2. One may

easily find a partition {V ′
�,1, V

′
�,2} of V ′

� such that, for i ∈ {1, 2}, G[V ′
�,i] is connected

and V ′
�,i ∩ X �= ∅. If N (v) ∩ V ′

� �= ∅, then assume without loss of generality that
N (v) ∩ V ′

�,1 �= ∅. In this case, there is a connected k-partition {Vi }i∈[k] of G such that
Vj = V ′

�,1 ∪ {v}, V� = V ′
�,2 and Vi = V ′

i for every i ∈ [k]\{ j, �}. If N (v) ∩ V ′
� = ∅,

then there exists t ∈ [k]\{ j, �} such that N (v) ∩ V ′
t �= ∅ since G is connected.

Clearly, such a class intersects X , that is, V ′
t ∩ X �= ∅. Thus, there is a connected

k-partition {Vi }i∈[k] of G such that Vj = V ′
�,1, V� = V ′

�,2, Vt = V ′
t ∪ {v} and Vi = V ′

i
for every i ∈ [k]\{ j, �, t}. In both cases, the partition has a smaller number of classes
contained in I than {V ′

i }i∈[k], a contradiction to the choice of this partition. 	

We next use hypergraphs to model the constraints of our formulation for 1- max-

min- BCP. A hyperpath of lengthm between two vertices u and v in a hypergraph H is
a set of hyperedges {e1, . . . , em} ⊆ E(H) such that u ∈ e1, v ∈ em , and ei ∩ ei+1 �= ∅
for each i ∈ {1, . . . ,m − 1}. A set of hyperedges F ⊆ E(H) is a (u, v)-cut if there is
no hyperpath between u and v in H − F .

For each S ⊆ X , we define I (S) = {v ∈ I : N (v) = S}. Let u, v ∈ X be a
pair of non-adjacent vertices in G, and let �X (u, v) be the set of all separators of
u and v in G[X]. Consider a separator Z ∈ �X (u, v), and denote by C(Z) the set
of components of G[X − Z]. Now suppose that for some i ∈ [k], the subgraph
G[Vi] contains a u − v path P that avoids Z . Then P contains at least one vertex
in I . Loosely speaking, P uses vertices in I as “bridges” between the components
in C(Z). This observation motivates the following construction. Let HZ denote the
hypergraph with vertices C(Z) such that, for each S ⊆ X with I (S) �= ∅, there is a

123

Journal of Combinatorial Optimization (2023) 45 :127 Page 19 of 27 127

Fig. 2 Illustration of the hypergraph construction. Continuous lines indicate the components in C(Z).
Subsets S of X are represented with dashed lines and their corresponding vertices I (S) are depicted with
squares. In this example, the pairs of hyperedges are precisely the minimal (Cu ,Cv)-cuts in HZ

hyperedge {C ∈ C(Z) : S ∩ V (C) �= ∅} in HZ . We denote by �Z (u, v) the set of all
(Cu,Cv)-cuts in HZ , where Cu and Cv are the components of G[X − Z] containing
u and v, respectively (Fig. 2).

In the proposed formulation, for each v ∈ X and i ∈ [k], there is a binary vari-
able xv,i that equals 1 if and only if v belongs to the i-th class of the partition.Moreover,
for every S ⊆ X and i ∈ [k], there is an integer variable yS,i that equals the amount
of vertices in I (S) that are assigned to the i-th class. The intuition for the meaning of
the y-variables is that all vertices in I (S), for a fixed S ⊆ X , play essentially the same
role in a connected partition. Hence, the formulation does not need to have decision
variables associated with the vertices in I (S), and so it only has an integer variable
to count the number of these vertices that are chosen to be in each class. The idea
of using integer variables to count indistinguishable vertices in a stable set was used
before by Fellows et al. (2008) for the Imbalance problem.

Let us define η = 2|X |, that is, η is the number of subsets of X . Let B(G, X , k) be
the set of vectors in R(|X |+η)k that satisfy the following inequalities (2)–(8).

∑

v∈X
xv,i +

∑

S⊆X

yS,i ≤
∑

v∈X
xv,i+1 +

∑

S⊆X

yS,i+1 ∀i ∈ [k − 1], (2)

∑

i∈[k]
xv,i = 1 ∀v ∈ X , (3)

xu,i + xv,i −
∑

z∈Z
xz,i −

∑

S∈F
yS,i ≤ 1 ∀uv /∈ E(G[X]), Z ∈ �X (u, v),

F ∈ �Z (u, v), i ∈ [k], (4)

yS,i ≤ |I (S)|
(

∑

v∈S
xv,i

)

∀S ⊆ X , i ∈ [k], (5)

∑

i∈[k]
yS,i = |I (S)| ∀S ⊆ X , (6)

xv,i ∈ {0, 1} ∀v ∈ X and i ∈ [k], (7)

yS,i ∈ Z≥ ∀S ⊆ X and i ∈ [k]. (8)

123

127 Page 20 of 27 Journal of Combinatorial Optimization (2023) 45 :127

Inequalities (2) establish a non-decreasing ordering of the classes according to their
sizes. Inequalities (3) and (6) guarantee that every vertex of the graph belongs to exactly
one class (i.e. the classes define a partition). Due do Lemma 6, we may consider only
partitions such that each of its classes intersects X . Thus, whenever a vertex in the
stable set I is chosen to belong to some class, at least one of its neighbors in X has
to be in the same class. This explains the meaning of inequalities (5). Inequalities (4)
guarantee that each class of the partition induces a connected subgraph. This will be
clearer in the proof of Lemma 7 below.

Lemma 7 Let G be a connected graph, let k ≥ 2 be an integer, and let X be a vertex
cover of G. The problem 1- max- min- BCP on instance (G, k) is equivalent to

max

⎧
⎨

⎩

∑

v∈X
xv,1 +

∑

S⊆X

yS,1 : (x, y) ∈ B(G, X , k)

⎫
⎬

⎭
.

Proof Let {Vi }i∈[k] be a connected k-partition of G such that Vi ∩ X �= ∅ for every i ∈
[k]. Suppose further that the classes in this partition are ordered so that |Vi | ≤ |Vi+1|
for all i ∈ [k−1]. From {Vi }i∈[k], we construct a vector (x̄, ȳ) ∈ R|X |k ×Rηk such that
its non-null entries are precisely defined as follows. For each i ∈ [k], we set x̄v,i = 1
for every v ∈ X ∩ Vi , and ȳS,i = |I (S) ∩ Vi | for every S ⊆ X .

We next show that (x̄, ȳ) satisfies inequalities (2)–(8). It easily follows from
the construction of the vector and from the hypothesis on {Vi }i∈[k] that inequali-
ties (2),(3),(6),(7), and (8) hold for (x̄, ȳ).Moreover, sinceVi∩X �= ∅ for every i ∈ [k],
inequalities (5) hold for (x̄, ȳ). It remains to prove that inequalities (4) are satisfied.

Consider an integer i ∈ [k] such that there is a pair of non-adjacent vertices u, v ∈
X∩Vi . Let Z ⊆ X\{u, v} be a separator of u and v inG[X]. SinceG[Vi] is connected,
there exists a path P in this graphwith endpoints u and v such that either V (P)∩Z �= ∅
or V (P) ∩ I �= ∅. Suppose that V (P) ∩ Z = ∅, otherwise inequalities (4) for Z are
clearly satisfied by (x̄, ȳ). Hence, there is a hyperpath in HZ linking Cu and Cv ,
where Cu and Cv are the components of G[X − Z] containing u and v, respectively.
As a consequence, for each cut F separating Cu and Cv in the hypergraph HZ , there
exists a vertex z ∈ V (P) ∩ I such that N (z) ∈ F , and so ȳN (z),i ≥ 1. Therefore,
inequalities (4) are satisfied by (x̄, ȳ).

Let (x̄, ȳ) ∈ B(G, X , k). Consider a subset S ⊆ X . It follows from inequality (6)
for S that there is a partition {Ii (S)}i∈[k] of I (S) such that |Ii (S)| = ȳS,i . We remark
that some classes in this partition may be empty. For each i ∈ [k], let us define Vi =
(
⋃

S⊆X Ii (S)) ∪ {v ∈ X : x̄v,i = 1}. One may easily verify that |Vi | = ∑
v∈X x̄v,i +∑

S⊆X ȳS,i . Observe now that I (S)∩ I (S′) = ∅ for all S, S′ subsets of X with S �= S′,
and thus {I (S)}S⊆X is a partition of I with possibly some empty classes. Furthermore,
inequalities (3) guarantee that each vertex in X belongs to exactly one class Vi , for
some i ∈ [k]. Therefore, {Vi }i∈[k] is a partition of the vertices in G. Because of
inequalities (2), we also have that |Vi | ≤ |Vi+1| for all i ∈ [k−1]. We shall prove that
G[Vi] is connected for each i ∈ [k].

Suppose, to the contrary, that there exists i ∈ [k] such that G[Vi] is not connected.
Because of inequalities (5), every component of G[Vi] has to intersect X . Let us

123

Journal of Combinatorial Optimization (2023) 45 :127 Page 21 of 27 127

define Z = X \ Vi , and let HZ be the hypergraph of the components of G[X − Z] as
defined earlier. It follows that, for each hyperedge S of HZ , no vertex in I (S) belongs
to Vi . Hence, for every pair of vertices u, v ∈ Vi ∩ X belonging to distinct components
of G[Vi], it holds that

x̄u,i + x̄v,i −
∑

z∈Z
x̄z,i −

∑

S∈E(HZ)

ȳS,i = 2 > 1.

This is a contradiction to the fact that (x̄, ȳ) satisfies inequalities (4). As a consequence,
we conclude thatG[Vi] is connected for each i ∈ [k]. Therefore {Vi }i∈[k] is a connected
k-partition of G.

Finally, it follows from Lemma 6 that the proposed integer linear program has
an optimal solution that corresponds to an optimal connected k-partition of G. As a
consequence, it is equivalent to solving 1- max- min- BCP on instance (G, k). 	

The main tool to design fixed-parameter tractable algorithms using Integer Linear
Programing (ILP) is a theorem due to Lenstra (1983) which shows that checking
the feasibility of an ILP problem with a fixed number of variables can be solved in
polynomial time. The time and space complexity of Lenstra’s algorithm were later
improved by Kannan (1987), and Frank and Tardos (1987). In this work, we consider
the following optimization version of their results.

In the ILP problem, we are given as input a matrix A ∈ Zp×q , vectors b ∈ Zp

and c ∈ Zq . The objective is to find a vector x ∈ Zq that satisfies all inequalities (i.e.
Ax ≤ b), and maximizes cT x . Let us denote by L the size of the binary representation
of an input (A, b, c) of the problem.

We next present the maximization version of the theorem showed in Cygan et al.
(2015) on the existence of an FPT algorithm for an ILP problem parameterized by the
number of variables.

Theorem 4 (Cygan et al. 2015) An integer linear programming instance of size L
with q variables can be solved usingO(q2.5q+o(q) · (L + logMx) log(MxMc)) arith-
metic operations and space polynomial in L + logMx, where Mx is an upper bound
on the absolute value a variable can take in a solution, and Mc is the largest absolute
value of a coefficient in the vector c.

The previous theorem is now used to show that 1- max- min- BCP admits an algo-
rithm that runs in time doubly exponential in the size of a vertex cover of the input
graph.

Theorem 5 The problem 1- max- min- BCP, parameterized by the size of a vertex
cover of the input graph, is fixed-parameter tractable.

Proof Consider an instance (G, k) of max- min- BCP, and a vertex cover X of G.
From Lemma 7, max

{∑
v∈X xv,1 + ∑

S⊆X yS,1 : (x, y) ∈ B(G, X , k)
}
is equivalent

to solving instance (G, k). Observe now that the size of this integer linear program
is 22

O(|X |)
log|G|. By Theorem 4, it can be solved in time 22

O(|X |) |G|O(1). Therefore
1- max- min- BCP is fixed parameter-tractable when parameterized by the size of a
vertex cover of the input graph. 	

123

127 Page 22 of 27 Journal of Combinatorial Optimization (2023) 45 :127

We conclude this section mentioning results on parameterized complexity of the
related problem called Equitable Connected Partition (ECP), obtained by Enciso et al.
(2009). In this problem, it is given a graph G and an integer k, and one looks for a
connected k-partition of G into classes whose cardinalities differ by at most one. Note
that, k is part of the input. These authors proved that ECP is FPT when parameterized
by the minimum size of a vertex cover, and also when parameterized by the maximum
number of leaves of a spanning tree of G. They also proved that ECP is W[1]-hard
when parameterized by the pathwidth of G, or the minimum size of feedback vertex
set of G, or some other parameters.

5 Lower bounds for BCP

We now derive lower bounds on the complexity of finding balanced connected parti-
tions. To this end, let us define the decision version of max−min BCP.

Problem 1 Max- Min BCP Decision

Instance: a tuple (G, w, k, t) consisting of a connected graph G = (V , E), a
weight function w : V → Q≥, an integer k ≥ 2 and t ∈ Q.

Question: is there a connected k-partition P of G such that w−(P) ≥ t?

We define min−max BCP- D analogously, changing the question to the existence
of a connected k-partition P such that w+(P) ≤ t . We simply refer to BCP- D, when
both maximization and minimization versions are included.

Let Φ denote a Boolean formula in conjunctive normal form (CNF). We say that
Φ is a q-CNF formula if each of its clauses contains exactly q literals. We denote by
q- SAT the problem of deciding whether a q-CNF formula is satisfiable; and refer
to an N -variable q- SAT an instance of q- SAT with N variables. For every integer
q ≥ 3, we define

sq = inf{δ : there exists a 2δN -time algorithm to solve any N -variable q- SAT}.

Conjecture 1 (Exponential-Time Hypothesis (ETH) Impagliazzo and Paturi (2001))

s3 > 0,

or equivalently, there exists an ε > 0 such that 3- SAT cannot be solved in time
O(2εN) on N -variable instances.

Lemma 8 (Linear-time reduction from 3- SAT to BCP- D) Let Φ be an instance
of 3- SAT consisting of N variables and M clauses. There exists a O(N + M)-
time algorithm that constructs from Φ an instance (G, w, 2, τ) of BCP- D with
|V (G)| = 3N + M + 2, such that Φ is satisfiable if, and only if, (G, w, 2, τ) is
a yes-instance of BCP- D.

123

Journal of Combinatorial Optimization (2023) 45 :127 Page 23 of 27 127

Proof Let Φ = (X , C) be an instance of 3- SAT consisting of a set X of N variables
and a setC = {C1,C2, . . . ,CM } ofM clauses. LetG be the graph obtained from (X , C)

as follows:

– for each variable x ∈ X , the graphG contains vertices vx and vx̄ , and a third vertex
αx which is adjacent to both vx and vx̄ ;

– for each clause Ci ∈ C, the graph G has a vertex Ci which is linked to a vertex vz
if, and only if, z is a literal appearing in Ci ;

– G has two additional vertices T and F such that both are adjacent to vx and vx̄ for
every x ∈ X .

Note thatG is a bipartite graph (see Fig. 3). Take τ = (N +1)(2N +M), and define
aweight functionw : V (G) → Q≥ as follows:w(T) := τ −N−M ,w(F) := τ −N−
N (2N +M), andw(vx) = w(vx̄) = w(Ci) := 1 andw(αx) := 2N +M for all x ∈ X
andCi ∈ C. This reduction produces a graph withw(G) = 2τ , |V (G)| = 3N +M+2
and and |E(G)| = 4N + 3M . Therefore, the instance (G, w, 2, τ) of BCP- D can be
constructed in time O(N + M).

Suppose there exists a connected 2-partitionP = {V0, V1} ofG such thatw−(P) ≥
τ (orw+(P) ≤ τ). Asw(G) = 2τ , we have thatw−(P) = w+(P) = τ . Note first that
the vertices T and F donot belong to the sameclass ofP , since T and F are not adjacent
in G and w(T) + w(F) = τ . We now assume without loss of generality that T ∈ V1
and F ∈ V0. If there was a variable x ∈ X such that αx /∈ V0, then we would have
w(V0) ≤ 2τ −w(T)−w(αx) = 2τ − (τ − N −M)− (2N +M) = τ − N ≤ τ −1, a
contradiction to the choice ofP . Thus, αx belongs to V0 for every x ∈ X . This implies
that, for each x ∈ X , the class V1 cannot contain both vx and vx̄ since these vertices
separate αx from F ; thus, |{vx , vx̄ }∩V1| ≤ 1. Suppose that {vx , vx̄ }∩V1 = ∅ for some
x ∈ X . In this case, the class V1 has weight w(V1) ≤ w(T) + M + N − 1 = τ − 1,
a contradiction. Hence, V1 contains either vx or vx̄ for all x ∈ X . Finally, one may
easily verify that Ci ∈ V1 for all Ci ∈ C.

Let ρ : X → {true, false} be such that ρ(x) := true if, and only if, vx ∈ V1.
From the construction of G, we conclude that Φ is satisfiable with the assignment ρ.

Suppose now that there is an assignment ρ : X → {true, false} that satisfies
(X , C). Construct a vertex partition P = {V0, V1} of G as follows:

V0 = {F} ∪ {vx : x ∈ X and ρ(x) = false}
∪ {vx̄ : x ∈ X and ρ(x) = true} ∪ {αx : x ∈ X},

V1 = {T } ∪ {vx : x ∈ X and ρ(x) = true}
∪ {vx̄ : x ∈ X and ρ(x) = false} ∪ {Ci : Ci ∈ C}.

It is clear that V0 induces a connected subgraph of G, and that w(V0) = w(V1) = τ .
For each clause C ∈ C, there is a variable x ∈ X such that either literal x ∈ C
and ρ(x) = true, or literal x̄ ∈ C and ρ(x) = false. In both cases, there is a path
between every clause vertex Ci and T in G[V1]. Therefore, V1 induces a connected
subgraph of G, and thus P is a connected 2-partition of G. 	

Figure 3 illustrates the reduction defined in Lemma 8 and shows a solution to
the given 3-CNF formula: ρ(x) = ρ(z) = true and ρ(y) = false. The blue

123

127 Page 24 of 27 Journal of Combinatorial Optimization (2023) 45 :127

Fig. 3 A solution (in blue and
red) to the instance (G, w, 2, τ)

of BCP- D obtained from the
3- SAT instance
(x∨y∨z)∧(x̄∨ ȳ∨z̄)∧(x∨ ȳ∨z̄)

and red subgraphs, G[V0] and G[V1], correspond to the classes of the connected 2-
partition P = {V0, V1} (without the edges with endpoint T or F that are not in G[V0]
or G[V1]).

Note that the reduction from q- SAT(on N variables and M clauses) to BCP- D in
Lemma8 constructs a graph G whose order depends on N and M . Roughly speaking,
the next lemma shows that to check whether a q-CNF formula Φ with N variables
is satisfiable, one can check whether some q-CNF formulas φi with N variables and
O(N) clauses are satisfiable. Thus, the reductions corresponding to these formulas φi

construct graphs with order depending only on N , as it will become clear in the proof
of Theorem 7.

Theorem 6 (Sparsification Lemma. Impagliazzo et al. (2001)) Let q ∈ N, γ > 0, and
Φ be a q-CNF formula with N variables. There is a constant c = c(q, γ), and an
algorithm A such that

1. A computes q-CNF formulas φ1, . . . , φ� from Φ, where � ≤ 2γ N ;
2. A runs in time O∗(2γ N);
3. φi has N variables and at most cN clauses for every i ∈ [�];
4. Φ is satisfiable if, and only if, for some i ∈ [�], the formula φi is satisfiable.

Theorem 7 There exists an ε′ > 0 such that max−min (resp. min−max) BCP- D
cannot be solved in time O(2ε′n) on n-vertex bipartite graphs even when k = 2,
unless ETH fails.

Proof Suppose to the contrary that the statement is false. We shall prove that, in this
case 3- SAT on N variables can be solved in time O(2εN) for all ε > 0.

Consider an arbitrary constant ε > 0, and let Φ be a 3-CNF formula with N > 2
variables (an instance of 3- SAT). Take γ = ε/2, c = c(3, γ) and let φ1, . . . , φ� with
� ≤ 2γ N be the 3-CNF formulas, computed from Φ (in timeO∗(2γ N)), as mentioned
in Theorem 6.

For each i ∈ [�], take the formula φi and construct an instance (Gi , wi , 2, ti) of
BCP- D using the reduction described in Lemma 8. Since φi has N variables and at
most cN clauses, the graph Gi is such that |V (Gi)| ≤ 3N + cN + 2 ≤ (4 + c)N .

Take ρ = ε/2(4 + c). By our assumption, there exists an algorithm B that
solves BCP- D in time O(2ρn), where n is the number of vertices of the input graph.

123

Journal of Combinatorial Optimization (2023) 45 :127 Page 25 of 27 127

Hence, the running-time of B on input (Gi , wi , 2, ti) is

O(2ρ|V (Gi)|) = O(2ρ(4+c)N) = O(2εN/2).

To decide whether Φ is satisfiable, we run B on (Gi , wi , 2, ti) for every i ∈ [�]. By
Theorem 6 and Lemma 8, Φ is satisfiable if, and only if, for some i we have that
(Gi , wi , 2, ti) is a yes-instance of BCP- D. The total running-time of such algorithm
is

O(�2εN/2) = O(2γ N2εN/2) = O(2(γ+ε/2)N) = O(2εN).

Thus, the existence of the algorithm B for BCP- D, as we supposed above, implied
that 3- SAT on N variables can be solved in timeO(2εN) for all ε > 0, a contradiction
to ETH. 	

6 Concluding remarks

We presented an FPT algorithm for 1- max- min- BCP parameterized by the size of
a vertex cover of the input graph. Its time complexity is doubly exponential in the
size of the vertex cover. It would be interesting to see whether other parameters would
lead to better complexity for this version and also for the weighted version. The
corresponding minimization versions (unweighted and weighted) were not studied
under this perspective. It is not clear whether these versions may lead to interesting
results.

Acknowledgements The authors would like to thank the referees for the remarks and suggestions that
contributed to improve the presentation of this work.

Author Contributions All authors contributed equally to the study conception and design. All authors read
and approved the final manuscript.

Funding P.F.S. Moura is supported by Fundação de Amparo à Pesquisa do Estado de Minas Gerais -
FAPEMIG (Proc. APQ-01040-21). Y. Wakabayashi is supported by the National Council for Scientific and
TechnologicalDevelopment—CNPq (Proc. 423833/2018-9 and 311892/2021-3) andGrant #2015/11937-9,
São Paulo Research Foundation (FAPESP).

Data availability Data sharing not applicable to this article as no datasets were generated or analyzed during
the current study.

Declarations

Competing interests The authors have no relevant financial or non-financial interests to disclose.

References

Alimonti P, Calamoneri T (1999) On the complexity of the max balance problem. In: Argentinian workshop
on theoretical computer science (WAIT’99), pp 133–138

123

127 Page 26 of 27 Journal of Combinatorial Optimization (2023) 45 :127

Becker RI, Perl Y (1983) Shifting algorithms for tree partitioning with general weighting functions. J
Algorithms 4(2):101–120

BeckerRI, Schach SR, PerlY (1982)A shifting algorithm formin-max tree partitioning. JACM29(1):58–67
Becker RI, Lari I, Lucertini M, Simeone B (1998) Max-min partitioning of grid graphs into connected

components. Networks 32(2):115–125
Becker R, Lari I, Lucertini M, Simeone B (2001) A polynomial-time algorithm for max-min partitioning

of ladders. Theory Comput Syst 34(4):353–374
Casel K, Friedrich T, Issac D, Niklanovits A, Zeif Z (2021) Balanced crown decomposition for connectivity

constraints. In: Mutzel P, Pagh R, Herman G (eds), 29th annual European symposium on algorithms
(ESA 2021), volume 204 of Leibniz international proceedings in informatics (LIPIcs), pp 26:1–26:15

Chataigner F, Salgado LRB, Wakabayashi Y (2007) Approximation and inapproximability results on bal-
anced connected partitions of graphs. Discrete Math Theor Comput Sci 9(1):177–192

Chen G, Chen Y, Chen Z-Z, Lin G, Liu T, Zhang A (2020) Approximation algorithms for the maximally
balanced connected graph tripartition problem. J Comb Optim 1–21

ChenY,ChenZ, LinG,XuY, ZhangA (2021)Approximation algorithms formaximally balanced connected
graph partition. Algorithmica 83(12):3715–3740

Chlebíková J (1996) Approximating the maximally balanced connected partition problem in graphs. Inf
Process Lett 60(5):225–230

Cygan M, Fomin FV, Kowalik Ł, Lokshtanov D, Marx D, Pilipczuk M, Pilipczuk M, Saurabh S (2015)
Miscellaneous. Springer International Publishing, Cham, pp 129–150

Dyer M, Frieze A (1985) On the complexity of partitioning graphs into connected subgraphs. Discrete Appl
Math 10(2):139–153

Enciso R, Fellows MR, Guo J, Kanj IA, Rosamond FA, Suchý O (2009) What makes equitable connected
partition easy. In: Chen J, Fomin FV (eds) Parameterized and exact computation, 4th international
workshop, IWPEC 2009, Copenhagen, Denmark, September 10–11, 2009, Revised Selected Papers,
vol 5917. Lecture notes in computer science. Springer, Berlin, pp 122–133

Fellows MR, Lokshtanov D, Misra N, Rosamond FA, Saurabh S (2008) Graph layout problems param-
eterized by vertex cover. In: Proceedings of the 19th international symposium on algorithms and
computation, ISAAC ’08. Springer, Berlin, pp 294–305

Frank A, Tardos É (1987) An application of simultaneous diophantine approximation in combinatorial
optimization. Combinatorica 7(1):49–65

Frederickson GN (1991) Optimal algorithms for tree partitioning. In: Proceedings of the second annual
ACM-SIAM symposium on discrete algorithms, SODA ’91, pp 168–177

Győri E (1978) On division of graph to connected subgraphs. In: Combinatorics (Proc. Fifth Hungarian
Colloq., Koszthely, 1976), volume 18 of Colloq. Math. Soc. János Bolyai, pp 485–494

Holyer A (2019) On the independent spanning tree conjectures and related problems. Ph.D. thesis, Georgia
Institute of Technology, School of Mathematics

Impagliazzo R, Paturi R (2001) On the complexity of k-SAT. J Comput Syst Sci 62(2):367–375
Impagliazzo R, Paturi R, Zane F (2001) Which problems have strongly exponential complexity? J Comput

Syst Sci 63(4):512–530
Kannan R (1987) Minkowski’s convex body theorem and integer programming. Math Oper Res 12(3):415–

440
Lenstra HW (1983) Integer programming with a fixed number of variables. Math Oper Res 8(4):538–548
Lovász L (1977) A homology theory for spanning trees of a graph. Acta Mathematica Academiae Scien-

tiarum Hungarica 30:241–251
Lucertini M, Perl Y, Simeone B (1993) Most uniform path partitioning and its use in image processing.

Discrete Appl Math 42(2):227–256
Maravalle M, Simeone B, Naldini R (1997) Clustering on trees. Comput Stat Data Anal 24(2):217–234
Miyazawa FK, Moura PFS, Ota MJ, Wakabayashi Y (2020) Cut and flow formulations for the balanced

connected k-partition problem. In: BaïouM,GendronB,GünlükO,MahjoubAR (eds) CombinOptim.
Springer, Cham, pp 128–139

Miyazawa FK, Moura PF, Ota MJ, Wakabayashi Y (2021) Partitioning a graph into balanced connected
classes: formulations, separation and experiments. Eur J Oper Res 293(3):826–836

Moura PFS, Ota MJ, Wakabayashi Y (2022) Approximation and parameterized algorithms for balanced
connected partition problems. In: Balachandran N, Inkulu R (eds) Algorithms and discrete applied
mathematics, Lecture notes in computer science, vol 13179. Springer, Berlin, pp 211–223

123

Journal of Combinatorial Optimization (2023) 45 :127 Page 27 of 27 127

Nakano S, Rahman M, Nishizeki T (1997) A linear-time algorithm for four-partitioning four-connected
planar graphs. Inf Process Lett 62(6):315–322

Perl Y, Schach SR (1981) Max-min tree partitioning. J ACM 28(1):5–15
Suzuki H, Takahashi N, Nishizeki T (1990a) A linear algorithm for bipartition of biconnected graphs. Inf

Process Lett 33(5):227–231
SuzukiH, TakahashiN,Nishizeki T,MiyanoH,UenoS (1990b)An algorithm for tripartitioning 3-connected

graphs. J Inf Process Soc Jpn 31(5):584–592
WuBY (2012) Fully polynomial-time approximation schemes for themax–min connected partition problem

on interval graphs. Discrete Math Algorithms Appl 04(01):1250005
ZhouX,WangH,DingB,HuT,ShangS (2019)Balanced connected task allocations formulti-robot systems:

an exact flow-based integer program and an approximate tree-based genetic algorithm. Expert Syst
Appl 116:10–20

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

	Balanced connected partitions of graphs: approximation, parameterization and lower bounds
	Abstract
	1 Introduction
	1.1 Contributions

	2 Approximation algorithms for min-max BCPk with k 3
	2.1 Finding a pull-admissible set efficiently

	3 Fractional bipartition and its consequences for min-max(max-min) BCP2
	4 Parameterized max-min BCP
	5 Lower bounds for BCP
	6 Concluding remarks
	Acknowledgements
	References

