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1 Introduction

The Three Prisoners Paradox is an old problem which deals with elementary
probability, conditional probability and probability updating, and enlarge-
ment of sample spaces. It has been called by Richard Jeffrey a ”well-known
horror story”. We start by quoting Jeffrey’s statement of the paradox (page
122 of Jeffrey[1992]):

There are three prisoners, A, B, and C. Two are to be shot and the
other freed; none is to know his fate until the morning. Prisoner A asks
the Warder to confide the name of one other than himself who will be shot,
ezplaining that as there must be at least one, the Warder won’t be giving
away anything relevant to A’s own case. The Warder agrees, and tells him
that B will be shot. This cheers A up a little, by making his judgmental
probability for being freed rise from 1/3 to 1/2. But that’s silly: A knew
already that one of the others would be shot, and (as he told the Warder) he
i8 no wiser about his own fate for knowing the name of some other victim.

The paradox appeared in an equivalent version as the "Let’s Make a
Deal” problem, which draw a lot of attention (outside academia at first) a
decade ago (Morgan et al.[1991]).

The solution to the paradox is given by the consideration of a sample
space 2 = {Ab, Ac, Bc,Cb}, where Xy represents the outcome ”prisoner X
will live and the Warder informs that prisoner Y will die”. The conditional
probability of prisoner A being freed, given that the Warder informs that
B will die, P(A[b), is then found to be p/(p+ 1), where p is the conditional
probability of the Warder naming B, given that he has a choice, i.e., given
that prisoner C will also die. We will use the notation P,(Ab) to empha-
size the dependence of P(A|b) on p, keeping the notation P(A|b) for the
expected value E[P,(A|b)], in the situations in which p is random. The
assumptions on which the solution is built are that each prisoner has the
same initial probability 1/3 of being freed, that the Warder always tells the
truth, and that Prisoner A plans beforehand to ask the Warder for the
name of one prisoner other than himself who will be shot. (For the situation
where Prisoner A does not plan to ask whatsoever and the information is
given to him unexpectedly, see Loschi et al.[2001]).

The solution ceases the paradox by making the apparently contradictory
probabilities, 1/2 and 1/3, particular cases depending on the value of p. If
p equals 1, the information - that B will be shot - presented by the Warder
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makes the conditional chance of Prisoner A indeed equal to 1/2. Let us
consider on the other hand the situation where p = 1/2. This would be
the noninformative or indifferent prior conditional probability Prisoner A
would assign for the event ”Warder names B”, given that he (the Warder)
could have chosen to name C instead. Such an indifferent assignment makes
the posterior probability (of A being freed, given that Warder says B will
die) indeed equal to 1/3, the initial probability.

The situation above, which we call ”classical”, has a detailed description
in Morgan (1991), for instance. We will now focus on four results of the
classical situation, proving only the fourth as the first three are well-known
in the literature:

Theorem 1. (A) If p = 1/2, then P(A|b) = P(A).
(B) P,(Alb) < 1/2, for every p on [0, 1).

(C) If p has a uniform distribution on the interval [0, 1}, then P(A]b) <
P(A).

(D) If p has a non-degenerate symmetrical distribution around 1/2, then
P(A|b) < P(A).

(A) is discussed above, (B) says that - in the ”Let’s Make a Deal” version
of the problem - it is always wise for the Player to switch doors, {C) states
that by adopting the so-called Bayes-Laplace Postulate for p, Prisoner A
loses the noninformativeness he had when his indifference entailed p =
1/2, and (D) says that this loss holds not only for a uniform on [0,1]
density, but for any symmetrical (and non-degenerate) distribution around
the indifference point 1/2. We will now prove (D):

Proof. As P,(A|b) = p/(p+ 1) is a strictly concave function of p on the
interval [0, 1] and p has a non-degenerate distribution, Jensen’s Inequality
yields P(A|b) = E[p/(p+1)] < E[p}/(E[p]+ 1). As p has a symmetrical
around 1/2 distribution on [0, 1], we have Efp] = 1/2. O

One should notice that the proof above works for any distribution for p
having expected value 1/2. This strengthening of the result does not have
immediate interest at this point of the paper, though.

This paper initially generalizes the problem for N prisoners, k execu-
tions, and m announcements made by the Warder. We then proceed to
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extend the four results of Theorem 1 to such a generalized scenario. We
discuss the loss of noninformativeness caused by a reiterative assignment of
indifferent or neutral probabilities and its interpretation for Bayesian sta-
tistical inference. In the conclusion, we also speculate on the impossibility
of keeping noninformativeness throughout hierarchization ( or conditioning,
in a less statistical jargon) being general.

The paper is organized as follows:

Section 2 establishes the generalized Prisoners Paradox, the N-k-m
Prisoners Paradox. The usual solution to the paradox is developed, un-
der the proviso that Prisoner A had assigned positive probability for what
the Warder says. Parts (A) and (B) of Theorem 1 are extended in this
Section. Section 3 deals with uniformity (or hierarchical indifference) in
the generalized problem. Beta densities as the marginal distributions of

the generalized uniform multivariate densities yield the generalization of
part (C) of Theorem 1. Section 3 generalizes also the notion of symmetry

around indifference points and presents the generalization of part (D) of
Theorem 1. Finally, in Section 4 we present the discussion and conclusions.

2 N-k-m Prisoners Problems

We start by defining an appropriate probability space. N is to be inter-
preted as the number of prisoners, k as the number of executions, and m
as the number of announcements made by the Warder. All probabilities
are supposed to be computed by Prisoner A ( or ”"You” , or ”Prisoner 17},
without loss of generality. An element of the sample space is a list having
the names of the k prisoners who will be shot and another list having the
names of the m prisoners (among those k) disclosed by the Warder. As
he never lies nor tells you (Prisoner A) that You will be shot, the sample
space is defined as follows:

Definition 1. Let N, k, and m be integer numbers satisfying N > 3, 2 <
k< N-1,and 1 < m < k — 1. The elements of the sample space §) are
the matrices wyxn that satisfy:

wi; €{0,1},i=1,2;5=1,2,..,N
wy =0
Eﬁilwlizk
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N P N o
2=z Wa2iw1; = m and 25:2 wyj = m.

We interpret w;; as the indicator of condemnation of Prisoner j, (j =
1,2,...,N), while w;; is the indicator of the Warder saying that Prisoner j
will be shot. The number of points in £ is easily seen to be ({7))(*-1) +
") = @ -mN () (E)

Definition 2. An N-k-m Prisoners Problem is a discrete probability
space (2, P), where the probability measure P defined for every subset of
§ satisfies the marginal equiprobability condition P(w;) =1/ (]Z ), for every

wy € Q, i.e., every row wy such that there is a matrix w € Q, the first row
of which is w;.

Technical remark: Strictly speaking, the definition above fixes (for ex-
ample in the classical N = 3,k = 2,m = 1 scenario) p, which is derived
from the probability measure P. We will nevertheless allow hierarchization
on p, i.e., assignments of probability measures for p. This would call for
appropriate measurability considerations in the definition (and would allow
the usual Bayesian notation P(A|b, p) instead of F,(A|b)).

Let W, W;;, W; represent random w,w;;,w;, respectively. The proba-
bility of Prisoner A being freed is of course P(Wy; = 0) =1 — k/N. As
the Warder will announce to You information W, the above probability
P(W;; = 0) is a prior probability and we will in the sequel obtain the
posterior probability P(W;; = 0|W; = w»).

Let w, be a row with positive P-probability, i.e., ws is such that there

is a matrix w € €2, the second row of which is wy, with P(w) > 0. The
case where w; has P-probability zero can not be dealt by Bayesian condi-
tioning and calls for solutions which use other than Bayes’s rules for prob-
ability updating, such as, for example, Jeffrey’s rule (see Hacking[1967],
de Finetti[1972,1975], Howson and Urbach[1993], Howson{1996] for gen-
eral probability updating, Jeffrey[1965] and Diaconis and Zabell [1982] for
Jeffrey’s rule, and Loschi et. al{2001] for probability updating in the pris-
oners classical scenario). In this paper, only the case where w, has positive
P-probability is being considered.
Theoremn 2. Consider an N-k-m Prisoners Problem and a fixed point wy
with positive P-probability. Let C,, = { w; : Zy:l wy; = kwy =1
implies wyj = 1} be the set of condemnations that are compatible with w;
and let Cu, 0 = { w1 € Cu, : w11 = 0} be the set of condemnations that
are compatible with w, and with You being freed. We then have
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Ewleowmo P(“’Z'“l)

P(Wy; =0|W, = =
( 11 | 2 G)2) Ew,ec‘,,P(‘*’ﬂWI)

2.1)

Proof. Definition 1 points to the construction of the sets C,, and C,, 0.
The proof then follows straightforwardly from the definition of conditional
probability and the equiprobability of W;.

O

Theorem 2 obtains the posterior probability P(W); = 0|W2 = w;) of
You being freed, given that the Warder revealed w; to You, in a general
N-k-m prisoners problem. We now state without the easy proof a useful
lemma:

Lemma 2.1. C,, has (1,:’__;") rows, C,, o has (N ;_'_,"1:‘1) rows, and there are

(Y=m-1) rows which belong to C.,, and do not belong to Cy, -

Let us now consider the very important case m = k—1. In this situation,
the posterior probability (2.1) reduces to

2 €Cuy o Plwalwn)
YoineCy, o Plwrzlwn) +1

P(Wn = 0|W2 = wg) = (2.2)

with the numerator in (2.2) having (N ~ k) terms.

We are now able to extend the results (A) and (B) of Theorem 1 to the
general N-k-m prisoners problem. The next theorem generalizes (B):

Theorem 3. Consider an N-k-m Prisoners Problem and a fixed point wq
with positive P-probability.

(i) Form =k~ 1, we have P(Wy1 =0|Wy =wy) < 1= (N -k + 1),
regardless of the values of P(wzfw;) of wy € Cy, 0.
(ii) For m < k — 1, we can have P(Wy; = 0|W; = w;3) arbitrarily close

(or equal) to 1, depending on the values of P{ws|w;) of wy of C,, that are
not in C,,, o-
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Proof. (i) The upper bound 1 — (N — k +1)~! is obtained immediately by

recalling that C,, 0 has (N.™"!) elements.

(i) By having the values P(wzjw;) of w; ¢ C,,p arbitrarily close to
zero, the value of the posterior P(Wy; = 0|W; = w,) stays arbitrarily close
to 1, as shown by (2.1).

O

When m = k-1, Part (i) of theorem 3 implies that there will be always
at least one prisoner other than You among the (N — m) not named by
the Warder with whom it will be wise to switch doors (cells), in the ”Let’s
Make a Deal” equivalent version of the problem. One will notice that the
prior equiprobability of those (N — m) prisoners does not necessarily hold
posterior to the Warder’s announcement. It will be wise to switch doors
(switch cells) only with prisoners having posterior probability of being freed
larger than yours (the larger, the better).

When m < k — 1, nevertheless, the above extension of the conclusion
from the classical scenario does not hold: as shown by Part(ii), there might
not be any prisoner to switch doors with advantageously. This is the first
qualitative difference between the cases m=k—1land m < k — 1.

We are now ready to extend result (A) of Theorem 1. It will be shown
that P(Wy = 0|W; = wy) = P(W1; = 0) whenever all the relevant condi-
tional distributions P{wq|w;) are chosen {discrete) uniform or of indiffer-
ence, in the flavour of the so-called "objectivistic” (or "reference”) Bayesian
school of inference (Bernardo and Smith[1994), section 5.6.2). It is intuitive
that such uniform conditional distributions, by expressing the absolute in-
difference the Warder has relative to the m-lists he may reveal (for every
w1), lead to the situation of coincidence between prior and posterior values,
as there is no real ”information” given out by the Warder.

Theorem 4. Consider an N-k-m Prisoners Problem and a fixed point wq
with positive P-probability. If for every wy € C.,, we place

Planton) = (* “’“)'1, (2:3)

m

then P(Wu = O|W2 =w2) = P(Wll = 0)
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Proof. We have, respectively by Theorem 2, the hypothesis, and Lemma
LT

2w, ec,, o Plonlen)

P(Wi =0{Wa = w) = v =2y =

_ S, (207 _

E..q €Cuwqy (h_v:ll)_

] l—l N—m—

e

1-k/N
O

The upper bound in Part(i) of Theorem 3, 1 — (N —k+1)~1, is the value
of P(Wy; = 0|W2 = w;) obtained by the (possibly fallacious) argument
of posterior equiprobability of the N — k + 1 prisoners not named by the
Warder. Comparison of values of P(Wi1 = 0|W2 = w,) given by Theorem 4
and by the upper value in Part(i) of Theorem 3 gives rise to the generalized

”paradox”. The next section will extend result (C) of Theorem 1 to the
generalized N-k-m scenario.

38 Uniformity

Result (C) of Theorem 1 states that the posterior probability P{Alb) is
strictly smaller than the initial probability P(A) whenever p has a uniform
distribution on the interval [0, 1]. Assignment of such a uniform distribution
for p is in accordance with the so-called Bayes (or Bayes-Laplace) Postu-
late. This postulate - which says that an unknown probability ought to
have assigned to it a uniform density on the interval [0, 1] - and its justifi-
cation have been central and polemical in the history and the philosophy
of Statistics (e.g., Stigler[1982 and 1986}, Dale[1991]). We will discuss this
polemic in detail in Section 4.

We will argue in this section that extension of Bayes Postulate to the
generalized N-k-m problem entails the assignment of a uniform density for
each simplex set of probabilities generated by a fixed w;. Theorem 1(C)
will then be generalized into Theorem 5. Either one states that neutral-
ity is lost after integration of P,(A|bd) (or of P(Wy; = O|W; = w;)). In
particular, adoption of Bayes Postulate leads to a posterior probability for
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Prisoner A, which is different than the prior P(A). This was not the case,
for example, in Theorem 4, where degenerate equiprobability points were
assigned, yielding equality of prior and posterior values.

Example: N=5k=3,m=2

Making, for example, wz = bc and recalling expression (2.2), we obtain,
with obvious notation,

P(Wy1 = 0|W, = wp) = P(A|W; = be) = pplaprbnideel,

Theorem 3(i) gives the upper bound P(A|W; = bc) < 2/3 and Theorem
4 gives P(A|W,; = bc}) = P(A) if P(be]JAD) = P(be]AE) = 1/3. The
value 1/3 for these two probabilities, P(bc|AD) and P(bc]AE), expresses
the indifference of the Warder about what he may say, for every given
list wy of C,,(or your indifference about what the Warder may say, for
every given list wy of C,,). If, for example, wy = AD [ or, more formally, if
wy = (0,1,1,0,1) ] the Warder may say bc, be, or ce. Indifference about this
choice brings the discrete uniform distribution P(be|AD) = P(be|AD) =
P(ce|AD) = 1/3. The same holds given w; = AE.

We claim that the rdle of the hierarchical uniform density for p in
the classical scenario is played in the example above by hierarchical uni-
form densities for the random vectors [P(bc|AD), P(be|AD), P(ce]AD)] and
[P(bc|]AE), P(bd|AE), P(cd|AE)]. As both trivariate random vectors have
the sum of their non-negative components equal to 1, their uniform densi-
ties are over the resultant simplex sets, analogously to the classical scenario,
where, strictly speaking, the uniform density for p is a uniform density over
the simplex set { (p,1 —p):0<p<1}.

In general, we can now prove the extension of result (C) of Theorem 1:

Theorem 5. Consider an N-k-m Prisoners Problem and a fixed point w;*
with positive P-probability. Suppose also that m = k—1. If, for every fixed
wy € Cuye 0, the joint distribution of the values of P(wz|w;) is uniform over
the simplex set

Sun = { Plwalw1) > 0:wg =0,wz5 € { 0,1} forj> 1,Ey=2w2_,-w1j =
Ej‘v:z wgj =k~1land 3, Plwalwi) =1},

then P(Wu = 0|W2 = wz‘) < P(Wn = 0).
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Proof. Representing waECu,- , Pwalun) by To,-, we will have, by (2.2),

T. e
Pr,.(Win=0W; =w") = =2 (3.1)

T T +1
As t/(t + 1) is a concave function of ¢ on the set of non-negative real
numbers, Jensen’s Inequality yields

P(Wll =0|W, = ‘4-’2*) = E[Taa'/(Tm‘ + 1)] < E[Twz']/(E[Twz'] + 1)-

Now, each P(w;|w;) in C,, is distributed as the marginal of a uniform
density over the simplex set S,,. We can look such a uniform density as a
Dirichlet density over S, with k parameters, all equal to 1. A well-known
property (e.g., DeGroot 1970) of the Dirichlet density give us the density
of each marginal P(w;lw;) as beta(1,k — 1). In other words, T+ is a sum
of N — k random variables identically distributed as beta(l,k — 1). Since
their common expected value is k=1, we obtain the result.

O

One will notice that the proof above does not ask for any restriction on
the joint distributions of the values P(wz|w;), other than each set of the
marginal densities being suitable betas. The result therefore is more general
in this sense and holds, for example, for joint densities with dependent beta
marginal densities. As a matter of fact, the result is even stronger: it is
enough that E[T,,+] < (N — k)/k. We have nevertheless emphasized the
beta distribution as it is a (non-uniform!) marginal consequence of the
assumption of "not knowing anything” about the Warder options. On the
other hand, the result is not proved yet for the case m < k — 1.

4 Conclusion

What would Bayes himself have done ? More precisely, were he in place of
Prisoner A and thinking that nothing at all is known antecedently to
any trials made or observed concerning it about » ? (boldface are
Bayes’s own words. Bayes[1763], page 392). We quote from Stigler (1982,
page 254): ” Bayes made no comment that could be taken as extending
beyond the immediate binomial situation he considered, although posterity
(starting with Laplace) had no such scruple...... It is tempting to ask how
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Bayes would have addressed such problems”. Our question deals with a
situation where p, if seen as a parameter, is transformed to determine a
Bernoulli (p/(p+ 1)) random observable, while as a probability it is con-
ditional on b. In trying to answer such a question, and bearing in mind
Stigler’s reading of Bayes's Scholium, we again are puzzled by the Paradox
! Bayes could demand a discrete uniform distribution for the indicator of
Prisoner A being freed, this meaning a Bernoulli(1/2) random observable as
Prisoner B is dead. On the other hand, Bayes could think that the Warder
naming one of the other prisoners who will be shot constitutes irrelevant
information and demand a Bernoulli(1/3) random observable. The former
situation implies a degenerate on 1 distribution for p, while the latter im-
plies any distribution on [0, 1] making 1/3 the expected value of p/(p+ 1))
(no such distribution is symmetric around 1/2). These speculations will
remain open. To fix p = 1 would make Bayes an even more radical pre-
dictivistic Bayesian ? (Stigler [1982], Wechsler{1993]). Such an assignment
would follow from the sole observation made - the Warder’s information -
but the conditioning event A had never been verified. On the other hand,
asymmetric distributions on [0, 1] playing the role of neninformative priors
for p would strengthen Stigler’s point on Bayes’s scope and aim of Bayes
postulate.

What can be more safely thought of is that Bayes himself would not
advocate the use of the uniform density on [0, 1] (let alone on the simplex
sets of the general scenario) because of the consequent loss of neutrality
shown by Theorem 5.

What would Bruno de Finetti have done ? It seems much easier to
address this question, not only because de Finetti left us much more written
works than Bayes did, but mainly from the unquestionable and direct style
he used to express his radical uncompromising definition of probability. The
two De Finetti epigraphs of this paper, for example, leave little doubt about
his reasoning were he in place of Prisoner A: for De Finetti, P(A|b) could
only be p’ /(p +1), with p' being the sharp value of his personal conditional
probability P(b|A). This is all that can be said (and there is no reason to
believe he would necessary let anyone know the value p'). De Finetti would
never think of a probability for p : "Speaking of unknown probabilities
or of probability of a probability must be forbidden as meaningless” (De
Finetti, 1977). Nor would he "not know” his OWN probability. We believe
that not even the understanding of p as the integration variable in the
integral representation of the law of a suitable sequence of exchangeable
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0 — 1 random variables would change his point of view, as the whole Prison
situation is unique, without any replication (let alone an infinite sequence
of replications). It is interesting to compare De Finetti’s position with
Bayes’s, or even with the position of the contemporary statisticians that
use invariably hierarchical models and/or reference priors: De Finetti would
never find himself deprived of neutrality nor of indifference, if it hapened
that his p = 1/2. In fact, he would think that Theorems 1.C, 1.D, 5, and
6 in this paper are meaningless, to say the least.
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