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Abstract 

The well-known Three Prisoners Paradox ha.s been solved by Bayesian condition­
ing over the choice made by the Warder when asked to name a(nother) prisoner 
who will be shot. This paper generalizes the paradox to situations of N prison­
ers, k executions and m announcements made by the Warder. We also extend the 
consequences of hierarchically placing uniform and symmetrical priors (for exam­
ple in the classical N = 3, k = 2, m = 1 scenario) for the probability p of the 
Warder naming Pruoner B, say. We prove that breaks of indifference and neutral­
ity caused by assignment of uniform and symmetrical priors in lieu of degenerate 
indifference probabilities hold in general. We speculate on the general impossibility 
of maintaining noninformativeness throughout hierarchization. 
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... for this "unknown probability" cannot be defined, and the 
hypotheses that one would like to introduce in this way have no 
objective meaning. - Bruno de Finetti, 1937 

I regard the use of hierarchical chains as a technique helping 
you to sharpen your subjective probabilities. - I.J. Good, 1981 

Speaking of unknown probabilities or of probability of a prob­
ability must be forbidden as meaningless. - Bruno de Finetti, 1977 
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1 Introduction 

The Three Prisoners Paradox is an old problem which deals with elementary 
probability, conditional probability a.nd probability updating, a.nd enlarge­
ment of sample spaces. It has been called by Richard Jeffrey a. "well-known 
horror story". We start by quoting Jeffrey's statement of the paradox (page 
122 of Jeffrey[1992]): 

There are three prisoners, A, B, and C. Two are to be shot and the 
other freed; none is to knOTD his fate until the morning. Prisoner A asks 
the Warder to confide the name of one other than himself who will be shot, 
explaining that as there must be at least one, the Warder won't be giving 
away anything relevant to A's own case. The Warder agrees, and tells him 
that B will be a'iot. This cheers A up a little, by making his judgmental 
probability for being freed rise from 1/3 to 1/2. But that's silly: A knew 
already that one of the others would be shot, and (as he told the Warder) he 
i.s ,w wiser about his own /au for knowing the name of some other victim. 

The paradox appeared in a.n equiva.Jent version as the "Let's Make a 
Deal" problem, which draw a. lot of attention (outside academia at first) a. 
decade a.go (Morgan et a.l.[1991]). 

The solution to the paradox is given by the consideration of a sample 
space !l = {Ab, Ac, Bc,Cb}, where Xy represents the outcome "prisoner X 
will live a.nd the Warder informs that prisoner Y will die". The conditional 
probability of prisoner A being freed, given that the Warder informs that 
B will die, P(Alb), is then found to be p/(p+ 1), where pis the conditional 
probability of the Warder naming B, given that he has a choice, i.e., given 
that prisoner C will also die. We will use the notation P,.(Alb) to empha­
size the dependence of P(Alb) on p, keeping the notation P(Alb) for the 
expected va.Jue E[P,.(Alb)], in the situations in which pis random. The 
assumptions on which the solution is built a.re tha.t ea.ch prisoner has the 
same initial probability 1/3 of being freed, that the Warder always tells the 
truth, a.nd that Prisoner A plans beforehand to ask the Warder for the 
name of one prisoner other than himself who will be shot. (For the situation 
where Prisoner A does not plan to ask whatsoever and the information is 
given to him unexpectedly, see Loschi et a.l.[2001]). 

The solution ceases the paradox by ma.king the apparently contradictory 
probabilities, 1/2 and l/3, particular cases depending on the value of p. If 
p equals I, the information - that B will be shot - presented by the Warder 
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makes the conditional chance of Prisoner A indeed equal to 1/2. Let us 
consider on the other hand the situation where p = 1/2. This would be 
the noninformative or indifferent prior conditional probability Prisoner A 
would assign for the event "Warder names B", given that he (the Warder) 
could have chosen to name C instead. Such an indifferent assignment makes 
the posterior proba~ility (of A being freed, given that Warder says B will 
die) indeed equal to 1/3, the initial probability. 

·, 
The situation above, which we call "classical", has a detailed description 

in Morgan (1991), for instance. We will now focus on four results of the 
classical situation, proving only the fourth as the first three are well-known 
in the literature: 

Theorem 1. (A) If p = 1/2, then P(Alb) = P(A). 

(B) Pp(Alb) < 1/2, for every p on [O, 1). 

(C) If p has a uniform distribution on the interval [O, 1], then P(Alb) < 
P(A). 

(D) If p has a non-degenerate symmetrical distribution around 1/2, then 
P(Alb) < P(A). 

(A) is discussed above, (B) says that- in the "Let's Make a Deal" version 
of the problem - it is always wise for the Player to switch doors, (C) states 
that by adopting the so-called Bayes-Laplace Postulate for p, Prisoner A 
loses the noninformativeness he bad when his indifference entailed p = 
1/2, and (D) says that this loss holds not only for a uniform on [O, 1] 
density, but for any symmetrical (and non-degenerate) distribution around 
the indifference point 1/2. We will now prove (D): 

Proof. As Pp(Alb) = p/(p + 1) is a strictly concave function of p on the 
interval [O, l] and p has a non-degenerate distribution, Jensen's Inequality 
yields P(Alb) = E[p/(p+ 1)] < E[p]/(E[p] + 1). Asp has a. symmetrical 
around 1/2 distribution on [O, l], we have E[p] = 1/2. D 

One should notice that the proof above works for any distribution for p 
having expected value 1/2. This strengthening of the result does not have 
immediate interest at this point of the paper, though. 

This pa.per initially generalizes the problem for N prisoners, k execu­
tions, and m announcements ma.de by the Warder. We then proceed to 
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extend the four results of Theorem l to such a. generalized scenario. We 
discuss the loss of noninformativeness caused by a reiterative assignment of 
indifferent or neutral probabilities and its interpretation for Bayesian sta­
tistical inference. In the conclusion, we also speculate on the impossibility 
of keeping noninformativeness throughout hierarchization ( or conditioning, 
in a less statistical jargon) being general. 

The paper is organized as follows: 

Section 2 establishes the generalized Prisoners Paradox, the N-k-m 
Prisoners Paradox. The usual solution to the paradox is developed, un­
der the proviso that Prisoner A had assigned positive probability for what 
the Warder says. Parts (A) and (B) of Theorem 1 are extended in this 
Section. Section 3 deals with uniformity (or hierarchical indifference) in 
the generalized problem. Beta densities as the marginal distributions of 
the generalized uniform multivariate densities yield the generalization of 
pa.rt (C) of Theorem 1. Section 3 generaliz= WBO the notion of symmetry 
around indifference points and presents the generalization of pa.rt (D) of 
Theorem 1. Fina.lly, in Section 4 we present the discussion and conclusions. 

2 N-k-m Prisoners Problems 

We start by defining an appropriate probability space. N is to be inter­
preted as the number of prisoners, I: as the number of executions, and m 
as the number of announcements made by the Warder. All probabilities 
are supposed to be computed by Prisoner A ( or "You" , or "Prisoner 1"), 
without loss of generality. An element of the sample space is a. list having 
the names of the k prisoners who will be shot and another list having the 
names of the m prisoners (among those k) disclosed by the Warder. As 
he never lies nor tells you (Prisoner A) that You will be shot, the sample 
space is defined as follows: 

Definition 1. Let N, k, and m be integer numbers satisfying N ~ 3, 2 ~ 
k ~ N - 1, and 1 S m S k - 1. The elements of the sample space n are 
the matrices w2xN that satisfy: 

Wi; E { o, 1} ,i= 1,2;j= 1,2, ... ,N 

""21 = 0 

Ef..1 W1; = k 
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Ef:2 W2jW1j = m and Ef:2 w2; = m. 

We interpret W1j as the indicator of condemnation of Prisoner j, (j = 
1, 2, ... , N), while w2; is the indicator of the Warder saying that Prisoner j 
will be shot. The number of points in O is easily seen to be (~:::) (\;;1) + 
(N;1)(!) = (1 - mN-1){~}(!). 
Definition 2. An N-k-m Prisoners Problem is a discrete probability 
space (0, P), where the probability measure P defined for every subset of 
n satisfies the marginal equiprobability condition P(wt) = 1/{~), for every 
Wt E n, i.e., every row Wt such that there is a matrix w E n, the first row 
of which is Wt. 

Technical remark: Strictly speaking, the definition above fixes (for ex­
ample in the classical N = 3, k = 2, m = 1 scenario) p, which is derived 
from the probability measure P. We will nevertheless allow hierarchization 
on p, i.e., assignments of probability measures for p. This would call for 
appropriate measurability considerations in the definition ( and would allow 
the usual Bayesian notation P(Alb,p) instead of Pp(Alb)). 

Let W, W,;, W, represent random w,w,;,w,, respectively. The proba,­
bility of Prisoner A being freed is of course P(Wn = 0) = 1 - k/N. As 

the Warder will announce to You information W2 , the above probability 
P(W11 = 0) is a prior probability and we will in the sequel obtain the 
posterior probability P(Wu = OIW2 = w2)-

Let w2 be a row with positive P-probability, i.e., w2 is such that there 
is a matrix w E 0, the second row of which is w2 , with P(w) > 0. The 
case where w2 haB P-probability zero can not be dealt by Bayesian condi­
tioning and calls for solutions which use other than Ba.yes's rules for prob­
ability updating, such as, for example, Jeffrey's rule (see Hacking[1967], 
de Finetti[1972,1975], Howson and Urbach[1993], Howson[1996) for gen­
eral probability updating, Jeffrey[1965] and Diaconis and Zabell [1982] for 
Jeffrey's rule, and Loschi et. al[2001] for probability updating in the pris­
oners classical scenario). In this pa.per, only the case where w2 has positive 
P-probability is being considered. 

Theorem 2. Consider an N-k-m Prisoners Problem and a fixed point w2 

with positive P-probability. Let CW'J = { Wt : Ef=,1 w1; = k, W2j = 1 
implies w1; = 1} be the set of condemnations that a.re compatible with w2 

and let CW'J,o = { w1 E CW'J : w11 = O} be the set of condemnations that 
are compatible with w2 and with You being freed. We then have 
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(2.1) 

Proof. Definition 1 points to the construction of the sets C"'2 and Cc.>J,O· 
The proof then follows straightforwardly from the definition of conditional 
probability and the equiprobability of W1. 

□ 

Theorem 2 obtains the posterior probability P(Wu = OIW2 = w2) of 
You being freed, given that the Warder revealed w2 to You, in a general 
N-k-m prisoners problem. We now state without the easy proof a useful 
lemma: 

Le1n1na 2.1. C<.<13 haa ("Z'.:-,:") rows, C"'2,o haa (N;;~1) rows, and there are 

(1'{=~n rows which belong to CW'J and do not belong to Cw:i,o• 

Let us now consider the very important case m = k-1. In this situation, 
the posterior probability (2.1) reduces to 

(2.2) 

with the numerator in {2.2) having (N - k) terms. 

We are now able to extend the results (A) and (B) of Theorem 1 to the 
general N-k-m prisoners problem. The next theorem generalizes (B): 

Theorem 3. Consider an N-k-m Prisoners Problem and a fixed point w2 
with positive P-probability. 

{i) Form= k - 1, we have P(W11 = OIW2 = w2) s 1 - (N - k + 1)-1 , 

regardless of the values of P{~lwi) of w1 E Cw-J,O• 

(ii) Form< k - 1, we can have P(W11 = OIW2 = w2) arbitrarily close 
{or equal) to 1, depending on the values of P(w2lw1) of wt of C"'2 that are 
not in Cw:t,O· 



Indifference, Neutrality and lnformativeneaa 7 

Proof. (i) The upper bound 1 - (N - k + 1)-1 is obtained immediately by 
recalling that COJ-J,o has ( N ;;~,.;:1) elements. 

(ii) By having the values P(w2!w1) of w1 ¢ Cw:i,o arbitrarily close to 
zero, the value of the posterior P(Wn = 0jW2 = "'2) stays arbitrarily close 
to 1, as shown by (2.1). 

□ 

When m = k - 1, Part (i) of theorem 3 implies that there will be always 
at least one prisoner other than You among the (N - m) not named by 
the Warder with whom it will be wise to switch doors (cells), in the "Let's 
Make a Deal" equivalent version of the problem. One will notice that the 
prior equiprobability of those ( N - m) prisoners does not necessarily hold 
posterior to the Warder's announcement. It will be wise to switch doors 
(switch cells) only with prisoners having posterior probability of being freed 
larger than yours (the larger, the better). 

When m < k - 1, nevertheless, the a.hove extension of the conclusion 
from the classical scenario does not hold: as shown by Part(ii), there might 
not be any prisoner to switch doors with a.dva.ntageously. This is the first 
qualitative difference between the cases m = k - 1 and m < k - l. 

We are now ready to extend result (A) of Theorem 1. It will be shown 
that P(Wu = 0jW2 = w2) = P(Wn = 0) whenever all the relevant condi­
tional distributions P{w2 jw1) are chosen (discrete) uniform or of indiffer­
ence, in the flavour of the so-ca.lied "objectivistic" (or "reference") Bayesian 
school of inference (Bernardo and Smith[1994], section 5.6.2). It is intuitive 
that such uniform conditional distributions, by expressing the absolute in­
difference the Warder has relative to the m-lists he may reveal {for every 
w1 ), lead to the situation of coincidence between prior and posterior values, 
as there is no real "information" given out by the Warder. 

Theorem 4. Consider an N-k-m Prisoners Problem and a fixed point W2 

with positive P-probability. If for every w1 E Cw:i we place 

(2.3) 
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Proof. We have, respectively by Theorem 2, the hypothesis, and Lemma 
2.1, 

E..,1 ec.., 0 P{~ lwi) 
P(Wu = OIW:i = w2) = E 'P(~ I.., ) = "'1ec"'2 i 

□ 

The upper bound in Pa.rt{i) of Theorem 3, 1-{N -k+ 1)-1, is the value 
of P(Wu = OIW2 = w2) obtained by the (possibly fallacious) argument 
of posterior equiprobability of the N - k + 1 prisoners not named by the 
Wa.rder. Compa.rison ofva.lues of P(W11 = 0IW2 = w:i) given by Theorem 4 
and by the upper value in Pa.rt(i) of Theorem 3 gives rise to the generalized 
"paradox". The next section will extend result (C) of Theorem 1 to the 
generalized N-k-m scenario. 

3 Uniformity 

Result (C) of Theorem 1 state.s that the posterior probability P(Alb) is 
strictly smaller than the initial probability P(A) whenever p has a uniform 
distribution on the interval [O, 1). Assignment of such a uniform distribution 
for pis in accordance with the so-called Ba.yes (or Ba.yes-Laplace) Postu­
late. This postulate - which says that an unknown probability ought to 
ha.ve assigned to it a uniform density on the interval [O, 1) - and its justifi­
cation have been central and polemical in the history and the phil060phy 
of Statistics (e.g., Stigler[l982 and 1986), Dale[l991]). We will discuss this 
polemic in detail in Section 4. 

We will argue in this section that extension of Bayes Postulate to the 
generalized N-k-m problem entails the assignment of a uniform density for 
ea.ch simplex set of probabilities generated by a. fixed w1 • Theorem l{C) 
will then be generalized into Theorem 5. Either one states that neutral­
ity is lost after· integration of P,,(Alb) (or of P(W11 = OIW:i = w:i)). In 
particular, adoption of Bayes Postulate leads to a posterior probability for 
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Prisoner A, which is different than the prior P(A). This was not the case, 
for example, in Theorem 4, where degenerate equiprobability points were 
assigned, yielding equality of prior and posterior values. 

Example: N = 5, k = 3, m = 2 

Making, for example, w2 = be and recalling expression (2.2), we obtain, 
with obvious notation, 

P(W - 01w: - ) - P(AIW. - b ) - P(b1AD)+P(bjAE) 
11 - 2 - W2 - 2 - e - P{bcj D)+P(bcj E)+l 

Theorem 3(i) gives the upper bound P(AIW2 = be) :'.S 2/3 and Theorem 
4 gives P(AIW2 = be) = P(A) if P(bclAD) = P(bcjAE) = 1/3. The 
value 1/3 for these two probabilities, P(bejAD) and P(bejAE), expresses 
the indifference of the Warder a.bout what he may say, for every given 
list w1 of CW:z ( or your indifference about what the Warder may say, for 
every given list w1 of CW:z)- If, for example, w1 = AD [ or, more formally, if 
w1 = (0, 1, 1, 0, 1)] the Warder may say be, be, or ee. Indifference about this 
choice brings the discrete uniform distribution P(belAD) = P(belAD) = 
P(cejAD) = 1/3. The same holds given w1 = AE. 

We claim that the role of the hierarchical uniform density for p in 
the classical scenario is played in the example above by hierarchical uni­
form densities for the random vectors [P(belAD), P(bejAD), P(eelAD)] and 
[P(bcjAE), P(bdjAE), P(edlAE)]. As both trivariate random vectors have 
the sum of their non-negative components equal to 1, their uniform densi­
ties are over the resultant simplex sets, analogously to the classical scenario, 
where, strictly speaking, the uniform density for p is a uniform density over 
the simplex set { (p, 1 - p) : 0 :5 p S 1} . 

In general, we can now prove the extension of result (C) of Theorem 1: 

Theorem 5. Consider an N-k-m Prisoners Problem and a fixed point w2• 
with positive P-probability. Suppose also that m = k-1. If, for every fixed 
w1 E CW:z•,o, the joint distribution of the values of P(w2 lw1) is uniform over 
the simplex set 

Sw,. = { P(W2lw1) ~ 0 : W21 = 0, w2; E { 0, 1} for j > 1, Ef:2 w2;w1; = 
Ef=,2w2; = k-1 and EW:z P{w2lw1) = 1}, 

then P(Wn = 0IW2 = W2•) S P(W11 = 0). 
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Proof. Representing I:wiEG~•.o P(w2lwt) by T"'l•• we will have, by (2.2), 

(3.1) 

As t/(t + 1) is a concave function oft on the set of non-negative real 
numbers, Jensen's Inequality yields 

P(Wn = 0IW2 = ~•) = E[T"'2•/(TWJ• + 1)] ~ E[TWJ•]/(E[TWJ•] + 1). 
Now, each P(w2 lw1 ) in Cw-J. is distributed as the marginal of a uniform 

density over the simplex set Swi. We ca.n look such a uniform density as a 
Dirichlet density over S,,,1 with k parameters, all equal to 1. A well-known 
property (e.g., DeGroot 1970) of the Dirichlet density give us the density 
of ea.ch marginal P{w2 lw1) as beta(l,k - 1). Io other words, TWJ• is a. sum 
of N - k random variables identically distributed as beta(l,k - 1). Since 
their common expected value is k-1 , we obtain the result. 

D 

One will notice that the proof above does not ask for any restriction on 
the joint distributions of the values P(w2lw1), other tha.n each set of the 
marginal densities being suitable betas. The result therefore is more general 
in this sense and holds, for example, for joint densities with dependent beta 
marginal densities. As a. matter of fa.ct, the result is even stronger: it is 
enough that E[TWJ•] ~ (N - k)/k. We have nevertheless emphasized the 
beta. distribution as it is a (non-uniform!) marginal consequence of the 
assumption of "not knowing anything" about the Warder options. On the 
other hand, the result is not proved yet for the case m < k - 1. 

4 Conclusion 

What would Bayes himself have done ? More precisely, were he in place of 
Prisoner A and thinking that nothing at all is known antecedently to 
any trials made or observed concerning it a.bout p ? (boldface a.re 
Bayes's own words. Bayes[1763], page 392). We quote from Stigler (1982, 
page 254): " Bayes made no comment that could be taken as extending 
beyond the immediate binomial situation he considered, although posterity 
(starting with Laplace) had no such scruple ...... It is tempting to ask how 
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Bayes would have addressed such problems". Our question deals with a 
situation where p, if seen as a parameter, is transformed to determine a 
Bernoulli (p/(p + 1)) random observable, while as a probability it is con­
ditional on b. In trying to answer such a question, and bearing in mind 
Stigler's reading of Bayes's Scholium, we again are puzzled by the Paradox 
! Bayes could demand a discrete uniform distribution for the indicator of 
Prisoner A being freed, this meaning a Bernoulli(l/2) random observable as 
Prisoner B is dead. On the other hand, Bayes could think that the Warder 
naming one of the other prisoners who will be shot constitutes irrelevant 
information and demand a Bernoulli(l/3) random observable. The former 
situation implies a degenerate on 1 distribution for p, while the latter im­
plies any distribution on [O, 1] making 1/3 the expected value of p/(p+ 1)) 
(no such distribution is symmetric around 1/2). These speculations will 
remain open. To fix p = 1 would make Bayes an even more radical pre­
dictivistic Bayesian ? (Stigler [1982), Wechsler(1993]). Such an assignment 
would follow from the sole observation made - the Warder's information -
but the conditioning event A had never been verified. On the other hand, 
asymmetric distributions on [O, l] playing the role of noninformative priors 
for p would strengthen Stigler's point on Bayes's scope and aim of Ba.yes 
pOBtula.te. 

What can be more safely thought of is that Bayes himself would not 
advocate the use of the uniform density on (0, l] (let alone on the simplex 
sets of the general scenario) because of the consequent loss of neutrality 
shown by Theorem 5. 

What would Bruno de Finetti have done ? It seems much easier to 
address this question, not only because de Finetti left us much more written 
works than Bayes did, but mainly from the unquestionable and direct style 
he used to express his radical uncompromising definition of probability. The 
two De Finetti epigraphs of this pa.per, for example, leave little doubt a.bout 
his reasoning were he in place of Prisoner A: for De Finetti, P(Alb) could 
only be p

1 
/ (p

1 + 1), with p' being the sharp value of his personal conditional 
probability P(blA). This is all that can be said (and there is no reason to 
believe he would necessary let anyone know the value p

1
). De Finetti would 

never think of a probability for p : "Speaking of unknown probabilities 
or of probability of a probability must be forbidden as meaningless" (De 
Finetti, 1977). Nor would he "not know" his OWN probability. We believe 
that not even the understanding of p as the integration variable in the 
integral representation of the law of a suitable sequence of exchangeable 
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0 - 1 random variables would change his point of view, as the whole Prison 
situation is unique, without any replication (let alone an infinite sequence 
of replications). It is interesting to compare De Finetti's position with 
Bayes's, or even with the position of the contemporary statisticians that 
use invariably hierarchical models and/or reference priors: De Finetti would 
never find himself deprived of neutrality nor of indifference, if it hapened 
that his p

1 = 1/2. In fact, he would think that Theorems LC, l.D, 5, and 
6 in this paper are meaningless, to say the least. , 
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