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Abstract
This study investigated the synergistic effects of chlorine or ozone application to secondary effluent prior to ultraviolet (UV) 
disinfection on the inactivation of E. coli, total coliforms, Clostridium perfringens, Giardia spp. cysts, and Cryptosporidium 
spp. oocysts. The physicochemical parameters remained statistically similar in the chlorine assays. In contrast, ozonation 
reduced the COD, solids, turbidity, and absorbance at 254 nm. The order of microorganism resistance was as follows: E. 
coli = total coliforms < C. perfringens across all treatments (both individual and sequential). The ozone dosage was more 
strongly correlated with microbial inactivation than was the applied CT (concentration × contact time), indicating greater 
efficacy with greater ozone consumption. Chick’s kinetic model provided the best fit for UV radiation, whereas the Hom 
model was more suitable for chlorination. Standalone ozone treatment notably reduced Giardia cyst concentrations, and 
standard fluorescence reduction after sequential treatments suggested oxidative damage to cyst walls. The high viability of 
Cryptosporidium oocysts after disinfection raises significant public health concerns. Synergistic inactivation varied by treat-
ment: ozone-UV (0.02 to 1.28 log) and chlorine-UV (0.07 to 0.82 log), depending on the target organism. These findings 
indicate that lower CT values for primary disinfectants can effectively reduce pathogen levels, offering a more sustainable 
approach to wastewater treatment.
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1  Introduction

Wastewater discharges are a primary source of pathogenic 
microorganisms in receiving water bodies [1]. Even with 
conventional treatment, secondary effluents often contain 
high concentrations of microorganisms, posing significant 
public health risks [2, 3]. This is why implementing waste-
water disinfection offers several benefits, including enhanc-
ing public health protection by acting as a barrier against 

environmental pathogens, reducing the risk of waterborne 
disease transmission, and promoting the safe reuse of treated 
water [4–6].

Chlorination is the most conventional disinfection method 
applied to water and wastewater and currently remains popu-
lar [7–9]. Chlorine inactivates microorganisms by oxidizing 
cellular membrane components, altering their permeability, 
or even causing cell rupture. It also precipitates proteins 
and may affect nucleic acids [4, 6]. However, chlorination 
is associated with the formation of disinfection byproducts 
(DBPs), which can be harmful to both water ecology and 
human health [10–13]. Hence, finding a balance between 
effective microorganism inactivation and the minimization 
of DBP formation has been a key area of extensive investi-
gation of alternative disinfection processes [9, 14–16] from 
which ozonation [1, 17, 18] and ultraviolet (UV) radiation 
[19–22] stand out, especially for wastewater reclamation.

Ozone is a powerful oxidizing agent, and it has 
been applied in odor control and chemical oxidation of 
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complex organic molecules [18, 23, 24]. It also presents 
strong disinfectant action [25, 26], inactivating pathogens 
by destroying cellular integrity and damaging nucleic 
acids [27]. Accordingly, UV radiation serves as an effec-
tive alternative to chlorine, offering the advantage of not 
generating toxic byproducts, and compared to ozone, it 
requires minimal maintenance and is simpler to operate 
[6]. Like ozone, UV treatments leave no residuals, a key 
benefit in wastewater treatment, and their efficiencies 
remain unaffected by pH or temperature variations [28].

Notably, because different disinfection processes have 
intrinsically different mechanisms to inactivate microor-
ganisms, they also present specific limitations [29], par-
ticularly when resistant organisms are targeted. This has 
driven growing interest in exploring potential synergistic 
effects among disinfectants [29–32]. Through synergistic 
interactions, the range of microorganisms targeted can 
be expanded and the overall efficiency can be increased 
[33]. Furthermore, such approaches can reduce disinfec-
tion costs by lowering chemical dosage requirements and 
may also decrease the DBP formation [34, 35].

In light of this, this study aimed to investigate the 
synergistic effects of applying chlorine or ozone prior 
to UV disinfection as a catalyst pretreatment. This was 
assessed on the basis of the inactivation of bacteria, 
Escherichia coli and total coliforms, and resistant organ-
isms, Clostridium perfringens, Giardia spp. cysts, and 
Cryptosporidium spp. oocysts, from secondary effluent 
subjected to individual and sequential batch treatments.

2 � Materials and methods

2.1 � Sample collection and experimental scheme

The matrix used in this study was biologically treated sec-
ondary effluent from a small-scale wastewater treatment 
plant (WWTP) located at the University of São Paulo, São 
Carlos, Brazil, which treated approximately 37.6 m3 of 
wastewater per day. This WWTP comprises a preliminary 
treatment, an upflow anaerobic sludge blanket (UASB) reac-
tor, and an activated sludge system.

Disinfection assays were carried out in bench-scale batch 
experiments. A general scheme of the experimental design 
is shown in Fig. 1.

Experiments applying standalone chlorine, ozone, and 
ultraviolet radiation were performed in triplicate, consid-
ering total coliforms, E. coli, and C. perfringens. For the 
sequential tests, two doses of chlorine and ozone, and one 
dose of ultraviolet radiation were chosen. These assays were 
carried out in quadruplicate for total coliforms, E. coli, C. 
perfringens, Giardia spp. cysts, and Cryptosporidium spp. 
oocysts as target organisms.

2.2 � Disinfection experiments

2.2.1 � Chlorination

The experiments were performed in a jar test apparatus set 
to an agitation velocity gradient of 100 s − 1, equivalent to 
100 rpm. The disinfectant applied was a sodium hypochlo-
rite (NaOCl) solution with a concentration of 10 to 12% 
(Sigma-Aldrich®). Free and total chlorine concentrations 

Fig. 1   Design of individual 
and sequential disinfection 
experiments. Note: Chlorine, 
ozone and UV doses applied in 
sequential disinfection tests are 
underlined
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were determined via the DPD (N, N-diethyl-p-phenylen-
ediamine) method via immediate reaction powder pillows 
(Hach®). Chlorinated samples were analyzed at 530 nm 
using a DR 2800 spectrophotometer (Hach®). Once the 
contact time was completed and immediately after residual 
chlorine was tested, 3% sodium metabisulfite was added to 
the samples for reaction quenching [36] so that interference 
with microbiological and physicochemical assays would be 
avoided.

2.2.2 � UV irradiation

Tests were carried out in a stainless-steel reactor 
(40 cm × 45 cm × 10 cm) illustrated in Fig. 2a. An aluminum 
reflector dome (39.7 cm × 44.7 cm × 10 cm) containing six 
low-pressure mercury vapor lamps (electrical power con-
sumption of 15 W) was attached to it. These germicidal 
lamps were evenly spaced to ensure uniform exposure and 
did not remain in contact with the liquid.

The exposure times needed to achieve the target doses (1, 
2.5, 5, and 10 Wh m− 13) were determined on the basis of the 
effluent’s absorbance at 254 nm, which was measured via a 

DR 5000 Hach® spectrophotometer. The mean intensity of 
ultraviolet radiation at 254 nm, incident on the liquid surface 
(Io), was measured through actinometry [37]. The disinfec-
tion tests were carried out with 5.4 L of secondary effluent, 
resulting in a liquid layer height of 3 cm. The lamps were 
positioned 4 cm above the top of the liquid layer.

2.2.3 � Ozonation

The pilot-scale experimental unit (Fig.  2b) applied for 
ozonation consisted of an oxygen generator using atmos-
pheric air and the pressure swing adsorption (PSA) process 
method; an ozone generator (Eaglesat®); a flow meter; a 
ceramic diffuser to generate microbubbles; an ozonation 
column (acrylic, 0.5 thick, 5 cm internal diameter, and 
150 cm height); and a gas washing bottle containing potas-
sium iodide to capture any residual ozone that did not react 
during the process.

Prior to disinfection tests, the ozone generator was kept 
on for 10 min for stabilization. Two liters of effluent were 
used to fill the ozone column. Off-gas was analyzed via 
the iodometric method [37]. The samples from the ozone 

Fig. 2   Schematic representation of the experimental units used for: a UV disinfection and b ozonation
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column were tested via the colorimetric method (Ozono HR 
AV®; DR 2800 Hach® spectrophotometer).

Two ozone productions were applied (0.11 and 0.46 g 
L− 1) at an air flow rate of 1 g.min− 1 for different exposure 
times (3.5, 6, 7, and 10 min), resulting in low (3.3 mg L− 1 to 
9.4 mg L− 1) and high (13.5 mg L− 1 to 38.5 mg L− 1) ozone 
dosages respectively. However, as the residual ozone con-
centration was substantially low, our study focused on the 
consumed ozone rate, defined as the mass of applied ozone 
divided by the contact time. The ozone application rate was 
assumed to be constant during the experiments. A detailed 
mass balance for quantifying the ozone mass and concentra-
tion deployed and consumed during the assays is provided 
in the supplementary material.

The product of the ozone concentration and the contact 
time, CT, was calculated according to Wu and Dan [38], as 
displayed in Eq. 1:

where C = consumed ozone rate (mg L− 1 min− 1) and t = con-
tact time (min).

2.2.4 � Sequential disinfection

In sequential disinfection experiments, the effluents treated 
with either ozone or chlorine were collected and transferred 
to the UV radiation disinfection unit. These assays were car-
ried out to evaluate synergistic effects of disinfectants in the 
inactivation of indicator microorganisms, as well as Giardia 
spp. cysts and Cryptosporidium spp. oocysts.

2.3 � Physicochemical analyses

The physicochemical quality of the effluent was monitored 
in terms of absorbance at 254 nm, total alkalinity, residual 
chlorine, chemical oxygen demand (COD), residual ozone, 
pH, total solids, total suspended solids, temperature, and 
turbidity. The testing procedures followed the Standard 
Methods for the Examination of Water and Wastewater [37].

2.4 � Microbiological exams

Escherichia coli and total coliforms were quantified via the 
membrane filtration method [37] using Chromocult® Coli-
form Agar (Merck®) medium. C. perfringens detection and 
enumeration were performed via the membrane filtration 
technique detailed by Medeiros and Daniel [33]. In cases 
where there was 100% inactivation of total coliforms, E. 
coli, and C. perfringens, inactivation values were calculated 
as if there were 1 CFU remaining after disinfection.

For Giardia spp. cysts and Cryptosporidium spp. oocysts, 
samples were concentrated by membrane filtration followed 

(1)CT = ∫ t

0
C(t)dt

by immunomagnetic separation, as described by Medeiros 
et al. [39]. The recovery percentages were 67.5% for Giardia 
cysts and 22.5% for Cryptosporidium oocysts. Detection was 
carried out via an immunofluorescence assay (IFA), con-
comitant with a viability assessment, by analyzing inclusion/
exclusion of the vital dye propidium iodide (PI) [40, 41]. 
Additionally, morphological damage was evaluated by alter-
ations in typical fluorescence from IFA [42, 43], in order to 
back up inferences on viability. In this sense, (oo)cysts were 
classified into three categories: viable (oo)cysts with stand-
ard fluorescence; viable (oo)cysts with altered fluorescence; 
non-viable (oo)cysts (into which there was PI uptake). In 
this study, it was inferred that extensive wall damages would 
allow PI to be incorporated by the (oo)cysts; hence, these 
would be considered nonviable, whereas mild damage would 
alter fluorescence, but (oo)cysts would remain viable. The 
slides were examined under an immunofluorescence micro-
scope (Olympus® BX51) at 400 to 800X magnification.

2.5 � Disinfection kinetics

Depending on the disinfectant under test, kinetics were 
evaluated considering adherence to the model proposed by 
Chick (1908), Chick-Watson (1908), Collins (1970), and 
Hom (1972) [44]. Equations 2, 3, 4 and 5 represent these 
equations.

where k, k’, k’’ = the inactivation rate constant (t− 1); 
No = initial microorganism concentration (before disinfec-
tion); N = the microorganism concentration at time t; C = the 
disinfectant concentration (mg L− 1); t = time; b = the x inter-
cept when N/No = 1; n, m = regression coefficients.

2.6 � Data analysis

Statistical analysis was performed via STATISTICA 7.0 
(StatSoft® Inc., 2004). Differences in the means of nor-
mally distributed data were tested by Student’s t test or, 
for multiple comparisons, one-way ANOVA and Tukey’s 
post hoc test. To investigate correlations in inactivation, 
the results of the ozonation experiments were subjected 

(2)
dN

dt
= −kN

(3)
dN

dt
= −k�Cn

N

(4)N

No
=

(

Ct

b

)−n

(5)
dN

dt
= −k��Cn

t
m−1

N
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to the Spearman rank test. P-values lower than 0.05 were 
considered statistically significant for all the aforemen-
tioned tests.

3 � Results and discussion

3.1 � Characterization of the effluent

Table 1 displays the characteristics of the secondary effluent 
used in this research, which contained autochthone micro-
organisms targeted in the disinfection tests. Even in treated 
effluent, there were still high concentrations of microbiologi-
cal contaminants.

3.2 � Individual disinfection

3.2.1 � Chlorination

The results for the physicochemical parameters are provided 
in the supplementary material (Table S1). Chlorination gen-
erally led to a pH increase at the highest applied dose, attrib-
uted to the reaction of sodium hypochlorite in aqueous solu-
tion, which releases OH⁻ ions [44]. Moreover, the observed 
increase in total solids, particularly in the dissolved fraction, 
may be associated with the addition of metabisulfite and the 
potential release of intracellular and extracellular materials 
during microbial cell oxidation.

As shown in Fig. 3, the resistance of E. coli and total coli-
forms was lower than that of C. perfringens, an anaerobic 
bacterium capable of forming spores (a resistance form). 
Inactivation of these organisms even after exposure to a CT 
of 300 mg min L− 1, was lower than one logarithmic unit.

In the assays with 5 mg L− 1, no statistically significant 
difference was observed between the inactivation of E. coli 

Table 1   Secondary effluent characterization for individual and 
sequential disinfection assays

*geometric mean;& four assays.
#detected in just one assay.
Mean ± standard deviation.

Parameter Secondary effluent

pH 7.16 ± 0.85
Temperature 24.1 ± 1.6
Total alkalinity (mg CaCO3 L− 1) 152 ± 104
Turbidity (NTU) 13.95 ± 19
Absorbance 254 nm 0.224 ± 0.03
COD (mg L− 1) 66 ± 26
N–NH3 (mg L− 1) 26 ± 19
Total solids (mg L− 1) 336 ± 47
Total suspended solids (mg L− 1) 21 ± 15
Total coliforms (CFU 100 mL− 1)* 2.2 × 105

Escherichia coli (CFU 100 mL− 1)* 1.6 × 104

Clostridium perfringens (CFU 100 mL− 1)* 6.7 × 103

Giardia spp. (cyst L− 1)*& 1.4 × 103

Cryptosporidium spp. (oocyst L− 1)*# 40

Fig. 3   Inactivation of indicator bacteria obtained by chlorination at 5 mg L− 1 and 10 mg L.− 1 at different contact times (bars refer to standard 
deviation)
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and total coliforms. However, at a dose of 10 mg L− 1, E. coli 
was the least resistant microorganism among the tested bac-
teria (t-test; p < 0.05), with CT values around 150 mg min 
L− 1 achieving 100% inactivation efficiency (~ 4.20 log). 
The inactivation of total coliforms was lower than the 3-log 
reduction reported by Li et al. [45] for reclaimed water dis-
infection with a CT of 20 mg min L− 1. Clostridium per-
fringens demonstrated the highest resistance to chlorination 
(t-test; p < 0.05) at both doses, with a maximum inactivation 
of 0.62 log at a CT of 300 mg min L− 1. In contrast, Venc-
zel et al. [46] reported a 1-log inactivation at the same CT 
(300 mg min L− 1).

One of the major challenges in comparing wastewater 
disinfection data with other studies in the literature lies in 

the variability of applied doses and contact times, often 
driven by differences in the physicochemical quality of 
the effluent, which might also vary. However, it is worth 
noting that, in this research, the high pH of the effluent 
(approximately 8.0) and high concentrations of ammonia-
cal nitrogen, with consequent formation of chloramines 
and decrease in the concentration of free chlorine, may 
have hindered microorganism inactivation by chlorine.

With respect to chlorine inactivation kinetics, the Col-
lins, Chick, and Hom models provided a good fit, as shown 
in Table 2. The model fit varied depending on the microor-
ganism; the Hom model demonstrated the best fit for total 
coliforms, the Collins model for E. coli, and the Chick 
model for Clostridium sp.

Table 2   Chick, Chick-Watson, 
Hom and Collins inactivation 
kinetics modeling parameters 
for chlorination

*not significant; data in bold indicate the best fit

Target organism Model Constants/coefficients Values R2

Total coliforms Chick k (5 mg L− 1)  − 0.2210 0.9277
k (10 mg L− 1)  − 0.2550 0.9115

Chick-Watson k’ 0.2172 0.0429*
N 0.2062

Hom K 0.7778 0.9577
N 0.2062
m 0.4908

Collins n (5 mg L− 1) 1.0370 0.9326
b (5 mg L− 1) 1.3462
n (10 mg L− 1) 1.2080 0.9311
b (10 mg L− 1) 1.3512

E. coli Chick k (5 mg L− 1) 0.3416 0.8899
k (10 mg L− 1) 0.4457 0.8294

Chick-Watson k’ 0.2353 0.1223*
n 0.4554

Hom K 1.1473 0.8902
n 0.4554
m 0.3677

Collins n (5 mg L− 1) 1.6030 0.9666
b (5 mg L− 1) 1.2128
n (10 mg L− 1) 2.1028 0.9553
b (10 mg L− 1) 1.0767

Clostridium sp. Chick k (5 mg L− 1) 0.0268 0.9665
k (10 mg L− 1) 0.0409 0.9707

Chick-Watson k’ 0.0105 0.4794*
n 0.6535

Hom K 0.0178 0.8951
n 0.6535
m 0.7878

Collins n (5 mg L− 1) 0.1277 0.7289*
b (5 mg L− 1) 1.8394
n (10 mg L− 1) 0.1933 0.7302*
b (10 mg L− 1) 1.7820
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3.2.2 � Ozonation

The results for physical and chemical parameters obtained 
after ozonation are provided in the supplementary material 
(Table S2). In short, the COD, solids, turbidity, and absorb-
ance at 254 nm decreased after ozonation, whereas pH 
increased, mainly during high applied dosages.

Figure 4 shows that ozonation required higher CT values 
to inactivate E. coli and total coliforms than chlorination 
did. For Clostridium sp., ozonation resulted in an average 
CT of 126 mg min L− 1 that was insufficient to achieve a 
1-log inactivation.

Ozonation enhances the quality of the final effluent by 
generating nonspecific hydroxyl radicals, which are formed 
through the consumption of ozone and contribute to effec-
tive disinfection [47]. Furthermore, ozone undergoes 
rapid decomposition in wastewater, releasing less selec-
tive hydroxyl radicals that play a critical role in oxidation 
processes [24]. Like chlorination, ozonation is influenced 
by the physicochemical properties of the effluent, such as 
pH, temperature, and organic matter content, making direct 
comparisons with other studies in the literature challenging. 
For instance, Shi et al. [29] achieved 5-log E. coli reduction 
using only 5 mg L− 1 of ozone in secondary wastewater efflu-
ent of higher quality, characterized by turbidity up to 4.3 
NTU and DOC levels up to 11.1 mg L− 1.

Once again, Clostridium perfringens exhibited high 
resistance, achieving less than 1-log inactivation even in CT 
126 mg min L− 1. This aligns with the findings of Gehr et al. 

[48], who reported a 2-log inactivation of fecal coliforms 
and close to 1-log for Clostridium perfringens with an ozone 
dose of 30 mg L− 1 to 50 mg L− 1.

Like chlorination, the model fit varied depending on the 
microorganism, with the Chick, Collins, and Hom models 
providing the best fits (Table 3).

3.2.3 � UV irradiation

To account for UV light attenuation in the 3 cm wastewater 
layer (absorbance of 0.224 cm− 1 at 254 nm), the effective 
UV dose was calculated by integrating irradiance over the 
depth using the Beer-Lambert law, resulting in an average 
irradiance approximately 51% of the surface value. Conse-
quently, surface doses of 1, 2.5, 5, and 10 Wh m− 3 corre-
spond to effective UV doses of approximately 10.8, 27, 54.1, 
and 108 mJ cm− 2, respectively.

The application of ultraviolet radiation did not result in 
significant changes in the physicochemical characteristics 
of the effluent (Table S4). UV radiation acts directly on the 
genetic material of the cells, causing dimerization of the 
thymine nitrogenous base; again, E. coli and total coliforms 
are less resistant than C. perfringens is (Fig. 5).

Similar to the tests with ozone and chlorine, E. coli was 
more susceptible to UV disinfection, although no signifi-
cant difference was observed in the inactivation of total coli-
forms (t-test, p > 0.05). Moreover, Clostridium perfringens 
exhibited significant resistance to the applied doses, with 
an average inactivation of approximately 0.8 log only at a 

Fig. 4   Microorganism inactivation obtained by individual ozonation at low and high applied dosages (bars refer to standard deviation)
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dose of 10 Wh m⁻3, a result comparable to that reported by 
Gehr et al. [48]. Li et al. [49] and Gehr et al. [48] observed 
the inactivation of total coliforms and E. coli, respectively, 
within a UV dose range similar to that used in the present 
study (~ 10.8 mJ cm⁻2 to 108 mJ cm⁻2). However, Wang et al. 
[6] reported similar results for E. coli and total coliforms at 
lower doses.

Regarding UV inactivation kinetics, both the Chick and 
Collins models strongly fit the disinfection results, with the 
Collins model providing the best fit (Table 4).

These findings on microbial decay rates in relation to 
intrinsic resistance to the disinfectants studied are highly 

important for the future design, operation, and monitoring 
of disinfection units. However, it is important to note that the 
studied models have limitations when applied to real-world 
conditions because of variations in the flow rate, effluent 
quality, and other factors.

3.3 � Sequential disinfection (Chlorine–UV)

The results for the physicochemical variables following the 
application of chlorine as the primary disinfectant, followed 
by ultraviolet radiation as the secondary disinfectant, are 
shown in Table S5.

For the chlorine–UV sequential disinfection, the resist-
ance of microorganisms to treatment followed the following 
order: E. coli = total coliforms < C. perfringens spores (t-test, 
p < 0.05). This trend was observed for both chlorine doses 
of 5 mg L− 1 for 5 min and 10 mg L− 1 with a dose of 10 mg 
L− 1 for 10 min. The main inactivation results are shown in 
Table 5.

Inactivation results obtained for the three microorganisms 
using standalone chlorine at 10 mg L− 1 for 10 min were sta-
tistically similar to those achieved with sequential disinfec-
tion, where the lowest chlorine dosage was followed by UV 
radiation (t-test, p > 0.05). Thus, this reduction in chlorine 
requirement suggests a lower disinfection byproduct forma-
tion while maintaining the same potential for inactivation 
of microorganisms, which is consistent with the findings 
of Wang et al. [6], who also reported synergistic effects on 
heterotrophic bacterial counts, total bacterial counts, and 
total coliforms in effluents treated with a sequential disin-
fection process involving ultraviolet radiation followed by 
chlorination.

According to Table 6, synergistic effects were more pro-
nounced for the most resistant microorganism, C. perfrin-
gens, which presented averages of 0.26 and 0.43 log10 when 
treated with 5 and 10 mg L− 1 of chlorine, respectively, fol-
lowed by UV radiation.

Neither standalone nor sequential treatments involving 
chlorine resulted in measurable reduction in the concentra-
tion of Giardia spp. cysts or Cryptosporidium spp. oocysts. 
Cryptosporidium oocysts were detected in only 25% of the 
samples (4/16), which hindered the analysis of viability or 
fluorescence changes. Among the oocysts detected, 60% 
were viable. Rennecker et al. [50] also highlighted the chal-
lenges in inactivating Cryptosporidium oocysts with chlo-
rine, which require CT values greater than 1000 mg min L− 1 
for 90% inactivation. Similarly, Driedger et al. [51] reported 
that a CT of 3700 mg min L− 1 was needed to achieve a 2-log 
inactivation of Cryptosporidium.

Giardia cysts were assessed for morphological damage 
through cyst blooming and for predictive inference via the 
vital dye propidium iodide, as shown in Fig. 6.

Table 3   Chick, Chick-Watson, Hom and Collins inactivation kinetics 
modeling parameters for ozonation

*not significant. Low = voltage of 40%; high = voltage of 60%, data in 
bold indicate the best fit

Target organism Model Constants/
coefficients

Values R2

Total coliforms Chick k (low) 0.0582 0.7921
k (high) 0.3966 0.9842

Chick-Watson k’ 0.0204 0.6307
N 1.1304

Hom K 0.2079 0.9001
N 1.6567
m  − 0.6568

Collins n (low) 0.1399 0.5258*
b (low) 1.0043
n (high) 0.7132 0.9632
b (high) 1.2197

E. coli Chick k (low) 0.1721 0.9506
k (high) 0.6557 0.9661

Chick-Watson k’ 0.1272 0.4322*
n 0.6638

Hom K 1.0489 0.9384
n 1.0510
m  − 0.5046

Collins n (low) 0.3585 0.8545
b (low) 0.6397
n (high) 1.1560 0.9857
b (high) 1.0705

Clostridium sp. Chick k (low) 0.0729 0.9407
k (high) 0.2133 0.9876

Chick-Watson k’ 0.0593 0.4524*
n 0.4886

Hom K 0.1964 0.8218
n 0.7082
m 0.1463

Collins n (low) 0.1540 0.8929
b (low) 0.6495
n (high) 0.3977 0.8774
b (high) 1.4961
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Large standard deviations were observed in the test 
results, making it challenging to perform repeated disinfec-
tion trials with sewage. The variability in sample quality, 

which is influenced by numerous factors, affects both the 
chemical oxidation process and the physical action of ultra-
violet radiation [6]. Despite this variability, a reduction in 
the percentage of Giardia cysts exhibiting standard fluores-
cence was noted after disinfection with ultraviolet radiation 
and varying chlorine doses. Ultraviolet radiation primarily 
targets cellular DNA, leading to observable changes in cyst 
viability [52]. In contrast, chlorine affects the cyst cell wall 
[53, 54], as evidenced by an increase in the percentage of 
cysts showing altered fluorescence. Sequential disinfection 
appears to amplify fluorescence alterations and enhance cyst 
inactivation, suggesting a synergistic effect between the two 
disinfection methods.

3.4 � Sequential disinfection (Ozone‑UV)

The results for physical and chemical parameters of ozone 
applied as a primary disinfectant followed by UV radia-
tion are presented in Table S6. The temperature remained 
unchanged after ozonation and subsequent ultraviolet 

Fig. 5   Inactivation of indicator bacteria by different doses of UV radiation

Table 4   Chick and Collins inactivation kinetics modeling parameters 
for UV irradiation

Data in bold indicate the best fit.

Target organism Model Constants/
coefficients

Values R2

Total coliforms Chick k 0.6196 0.8878
Collins n 1.6870 0.9660

b 0.4232
E. coli Chick k 0.7660 0.8903

Collins n 1.9387 0.9373
b 0.3555

Clostridium sp. Chick k 0.1845 0.9927
Collins n 0.6885 0.9554

b 0.9318

Table 5   Inactivation, in 
logarithmic units, of the 
indicator microorganisms 
(mean ± standard deviation) 
subjected to chlorination 
followed by ultraviolet radiation

Treatment Inactivation (log10)

E. coli Total coliforms C. perfringens

UV disinfection [2.5 Wh m− 3] 1.70 ± 0.33 1.47 ± 0.32 0.12 ± 0.04
Chlorination [5 mg L− 1; 5 min] 2.46 ± 0.77 1.94 ± 0.97 0.77 ± 0.48
Chlorine [5 mg L− 1; 5 min] + UV [2.5 Wh m− 3] 3.62 ± 0.61 2.78 ± 0.32 1.15 ± 0.76
Chlorination [10 mg L− 1; 10 min] 3.59 ± 0.39 3.15 ± 0.38 1.06 ± 0.57
Chlorine [10 mg L− 1; 10 min] + UV [2.5 Wh m− 3] 4.04 ± 0.43 3.50 ± 0.45 1.61 ± 0.77
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radiation treatment, while pH increased significantly (t-test, 
p < 0.05) following both ozonation and sequential disinfec-
tion. At a CT of 23 mg min L− 1, average removals of 20.2% 
for turbidity and 10.6% for COD were achieved. When the 
CT was increased to 83 mg min L− 1, the removal rates 
improved to 51% for turbidity and 22.4% for COD. The UV 
radiation dose following ozone did not influence turbidity or 
COD removal. The results for the inactivation of indicator 
microorganisms are shown in Table 7.

No statistical differences were observed in the resistance 
of microorganisms—E. coli, total coliforms, and Clostrid-
ium perfringens—to individual ozonation. However, in the 
sequential tests involving ozone followed by UV radiation, 
the resistance order for both ozone CT values was as follows: 
E. coli = total coliforms < Clostridium perfringens (t-test, 

p < 0.05), which was consistent with the results from the 
sequential chlorine and UV radiation treatments.

Inactivation results for the three microorganisms, when 
ozonation was applied alone at 11 mg L−1 for 7 min, were 
statistically equivalent to those achieved with sequential 
disinfection (3.3 mg L−1 for 5 min of ozone followed by 
UV radiation). The application of ozone before UV radia-
tion can reduce the cost of the UV disinfection system by 
decreasing the effluent’s absorbance in the spectrum range 
of 200–700 nm, as shown in Supplementary Fig. S1 (Sup-
plementary Material), particularly at 254 nm. This reduc-
tion allows for fewer UV lamps and smaller channels, in 
accordance with White [44]. Therefore, both the costs and 
benefits of sequential disinfection should be carefully con-
sidered. One potential explanation for this cost-effectiveness 

Table 6   Synergistic effects in 
sequential disinfection chlorine–
UV disinfection

*Synergism = Observed Si–(Σ Ii) (USEPA, 1999). The inactivation values and synergism values are given 
as log values.
[5;5]: chlorination with 5 mg L− 1 and 5 min; [10;10]: chlorination with mg L− 1 and 10 min; UV of 2.5 Wh 
m− 3. 1;2;3;4: assay numbers.

Microorganism Assay Σ Individual inacti-
vation (Ii)

Sequential inacti-
vation (Si)

Synergism

E. coli [5;5]-UV4 3.38 3.56 0.18
Total coliforms [5;5]-UV4 2.54 2.67 0.13
Clostridium perfringens [5;5]-UV1 1.33 1.71 0.38

[10;10]-UV1 1.54 1.80 0.26
[5;5]-UV2 1.48 2.08 0.60
[10;10]-UV2 1.96 2.78 0.82
[10;10]-UV3 0.86 1.06 0.20
[5;5]-UV4 0.33 0.40 0.07
[10;10]-UV4 0.36 0.78 0.42

Fig. 6   Assessment of morphological damage to Giardia spp. cysts 
following individual and sequential disinfection treatments with chlo-
rine and UV radiation. The central bars indicate the standard devia-

tion. Chlorine doses applied: 5 mg L− 1 for 5 min, and 5 mg L− 1 for 
10 min. UV dose: 2.5 Wh m− 3
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is that ozone pretreatment reduces bacterial agglomeration 
and microbial attachment to particulate matter surfaces [55]. 
The synergistic effects of sequential disinfection (ozone-UV) 
are shown in Table 8.

Synergistic effects of ozone and UV disinfection were 
observed, particularly in the inactivation of total coliforms, 
with reductions of up to 1.28 log. For E. coli, synergism was 
more pronounced with ozone as the primary disinfectant 
than with chlorine, resulting in up to 0.60 log inactivation. 
For C. perfringens, the sequential application of ozone at 
CTs of 23 mg min L− 1 and 83 mg min L− 1, followed by UV 
radiation, resulted in average log inactivation values of 0.06 
and 0.10, respectively. These values were lower than those 
achieved with sequential chlorine and UV disinfection.

Jung et al. [56] also reported synergistic effects with the 
sequential application of ozone and UV radiation, reporting 
an average of 0.5 log inactivation for Bacillus subtilis spores. 
However, no synergy was observed when UV radiation was 
applied before ozone, indicating that ozone applied first dis-
rupts the spore wall, facilitating UV penetration and allow-
ing the radiation to more effectively target cellular DNA 
and RNA.

Unlike sodium hypochlorite, ozone effectively reduced 
the concentration of Giardia cysts and Cryptosporidium 
oocysts in both individual and sequential disinfection tests. 
With a CT of 23 mg min L− 1, an average inactivation of 
0.24 log (± 33%) of Giardia cysts was observed, similar 

to the inactivation rates for E. coli, total coliforms, and 
Clostridium perfringens (t-test, p > 0.05). Increasing the 
CT to 83 mg min L− 1significantly enhanced Giardia cysts 
inactivation, with an average of 1.65 log (± 0.68), which was 
also comparable to the inactivation of the three fecal indica-
tor bacteria (t-test, p > 0.05). However, the addition of UV 
radiation in sequential treatments did not further improve 
Giardia cyst inactivation.

Cryptosporidium oocysts were detected in only 31% of 
the ozonated samples (5/16), with 80% of them being viable 
on the basis of viability assessment via the vital dye pro-
pidium iodide. In the remaining samples, Cryptosporidium 
oocysts were below the detection limit of the method. Mor-
phological damage to Giardia cysts was evaluated by assess-
ing cyst blooming, whereas viability was inferred via the use 
of propidium iodide, as shown in Fig. 7.

High standard deviation values were once again observed 
in the results, which made statistical comparisons challeng-
ing. Nevertheless, a reduction in the percentage of Giardia 
cysts with standard fluorescence was noted after ozonation, 
suggesting that oxidative damage rendered the cysts nonvi-
able, as indicated by propidium iodide staining.

Ozone treatment alone resulted in Giardia cyst inacti-
vation ranging from 0.72 log (at the lowest ozone dose) 
to 1.80 log (at the highest dose); whereas, sequential 
treatments with ozone achieved up to 1.50 log reduction. 
Interestingly, a more pronounced correlation was observed 

Table 7   Synergistic effect of 
sequential disinfection chlorine–
UV disinfection

Treatment Inactivation (log10)

E. coli Total coliforms C. perfringens

UV disinfection [2.5 Wh m− 3] 1.70 ± 0.33 1.47 ± 0.32 0.12 ± 0.04
Ozonation [3.3 mg L− 1; 7 min] 0.04 ± 0.05 0.29 ± 0.35 0.21 ± 0.18
Ozone [3.3 mg L− 1; 7 min] + UV [2.5 Wh m− 3] 1.92 ± 0.26 1.78 ± 0.29 0.31 ± 0.19
Ozonation [11.9 mg L− 1; 7 min] 1.40 ± 0.90 1.24 ± 0.48 0.68 ± 0.34
Ozone [11.9 mg L− 1; 7 min] + UV [2.5 Wh m− 3] 2.44 ± 0.39 2.02 ± 0.38 0.84 ± 0.31

Table 8   Synergistic effects in 
sequential disinfection ozone–
UV disinfection

[23]: CT of 23 mg min L− 1; [83]: CT of 83 mg min L− 1; UV of 2.5 Wh m− 3; 1;2;3;4: assay number.

Microorganism Assay Σ Individual inacti-
vation (Ii)

Sequential inactiva-
tion (Si)

Synergism

E. coli [23]-UV2 1.23 1.54 0.31
[83]-UV2 1.53 1.94 0.41
[23]-UV3 1.64 2.24 0.60
[23]-UV4 1.78 2.04 0.26

Total coliforms [23]-UV2 0.98 2.26 1.28
Clostridium perfringens [23]-UV1 0.36 0.46 0.10

[83]-UV1 0.39 0.51 0.12
[83]-UV3 1.22 1.30 0.08
[23]-UV4 0.06 0.08 0.02
[83]-UV4 0.54 0.63 0.09
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between the mass of ozone consumed and cysts inactiva-
tion than between the mass of ozone consumed and the 
applied CT. Ozone disinfection not only reduced Giardia 
cysts concentrations but also decreased cysts fluorescence 
in sequential treatments (ozone–UV), likely due to oxida-
tive damage to the cyst walls.

Cho et al. [57] highlighted that ozone, as a strong oxi-
dant, reacts with multiple components of the cell wall 
when it penetrates the cell, subsequently targeting the 
cytoplasm. The synergistic effects of ozone and UV radia-
tion are particularly advantageous for addressing resistant 
pathogens and emerging challenges, such as the treatment 
of endocrine-disrupting compounds. These compounds, 
which are commonly found in personal hygiene products 
and pharmaceuticals, have been shown to reduce the estro-
genic activity of municipal effluents [44].

Koivunen and Heinonen-Tanski [34] further explained 
the mechanism behind synergistic disinfection, noting that 
the use of two distinct disinfectants can inflict different 
types of damage on microorganisms. This multifaceted 
approach leads to more effective inactivation by targeting 
multiple vulnerabilities within pathogens.

Ozonation improved the physicochemical quality of 
the effluent and enhanced the effectiveness of subsequent 
ultraviolet disinfection. As a result, sequential disinfec-
tion significantly reduces the microbiological risk posed 
by resistant agents, protozoan (oo)cysts, and Clostridium 
sp., potentially driving the growing adoption of water 
reuse projects.

4 � Conclusion

This study details the disinfection potential of chlorine, 
ozone, and UV radiation, both individually and in sequen-
tial applications, for secondary effluent contaminated with 
various microorganisms. The findings highlight the ben-
efits and limitations of these methods, focusing on indica-
tor bacteria, protozoan cysts, and implications for effluent 
quality.

The resistance of microorganisms followed the order E. 
coli = total coliforms < Clostridium perfringens, which was 
consistent across all disinfection methods, including chlo-
rination, ozonation, UV disinfection, and sequential disin-
fection. The greater resistance of C. perfringens than that 
of E. coli or total coliforms raises concerns about the suit-
ability of using low-resistance indicators in regulations and 
microbiological risk assessments. These indicators may not 
accurately reflect the effectiveness of disinfection processes 
against more resistant pathogens, potentially underestimat-
ing risks.

Synergistic effects were observed for sequential dis-
infection using chlorine or ozone as primary disinfect-
ants followed by UV radiation. These effects were sig-
nificant across all studied microorganisms, with the most 
pronounced results for Clostridium sp. For ozone-UV 
treatments, synergistic effects ranged from 0.02 to 1.28 
log inactivation, whereas the chlorine-UV combinations 
ranged from 0.07 to 0.82 log inactivation. This suggests 
that lower ozone CT (concentration vs. contact time) 

Fig. 7   Assessment of morphological damage to Giardia spp. cysts 
following individual and sequential disinfection treatments with 
ozone and UV radiation. The central bars represent the standard devi-

ation. Ozone CT was applied at 23 mg.min.L− 1 and 83 mg.min.L− 1. 
UV dose: 2.5 Wh.m.− 3
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values for primary disinfectants may suffice, reducing the 
potential for DBP formation while maintaining high dis-
infection efficiency.

Standalone chlorine-based treatments, including 
sequential chlorine–UV, did not significantly reduce 
Giardia cysts. In contrast, ozone alone achieved up to 
1.80 log inactivation, and ozone–UV sequential treatments 
resulted in up to 1.50 log. Both ozone and sequential treat-
ments reduced cyst fluorescence, indicating oxidative 
damage to cyst walls and increased disinfection potential. 
However, Cryptosporidium oocysts remained highly viable 
after disinfection tests, posing a public health concern.

The application of ozone before UV treatment also 
improved effluent quality by reducing the absorbance at 
254 nm, which in turn allowed for a shorter UV detention 
time. This improvement in oxidative activity prior to UV 
exposure is particularly advantageous, as it reduces the 
oxidation demand and can minimize the required size and 
number of UV lamps in the system. However, the cost and 
benefit of installing an additional disinfection unit, such as 
ozone, should be carefully evaluated.

Kinetic models, particularly those proposed by Chick 
and Collins, provide valuable parameters for the design 
and optimization of disinfection units. These models dem-
onstrate the best fit for the various microorganisms and 
disinfectants applied to the studied effluent, further sup-
porting the development of efficient and effective disinfec-
tion strategies.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s43630-​025-​00787-8.
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