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§1 - INTRODUCTION - Let M be a homogeneous space of a Lie group G; 

fo:r an element gEG, let Lg: M +M denote the diffeomorphism de­

fined by G. _ Given two submanif olds s1 , s2 of M. of same dimen­

sion p, it is a classical problem of differential geometry to 

find conditions on s1 and s2 for the existence of gEG such 

that Lg (S1) = s2. When this happens, Sl and s
2 are said to be 

.G-equivalent. 

Given two points a1€S1 and a2€5:2• we say that s1 has G-

contact of order k with s
2 

at the points a
1 and a 2 if there 

exists gEG such that Lg(a1) =a
2 and Lg(S1) has contact of or­

der k with s
2 

-at_ the point a
2 . The equivalence problem of sub­

manif olds of a homogeneous space was extensively treated by E. 

Cartan [1], by his method of the moving frame. One of the un­

derlying ideas in Cartan' s method is that for each homogeneous 

space M there exists an integer k, depending on p, such that 

if there exists a diffeomorphism 4>: s1 -+ s 2 having the property 

that s
1 

has G-contact of order k with s2 at all points xES,and 

t(x)es
2

, then s 1 and s
2 are locally equivalent. Let a 0€M be a 

fixed point and H the isotropy group of a
0

. Using Cartan'smc-
J 

thod of the moving frame, G.R.Jensen (3) proved the existence 

of k, assuming the existence of local sections in the space of 
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orbits of the action of Hin the Grassmann manifold cP(T M) 
ao 

and also assuming regularity conditions on s
1 

and s2 . 

In the method of the moving frame. one defines imhcd-

dings a1 . s1 -+ G and a 2 : s2 -+ G such that, for g6G, Lg(S
1) = 

= s
2 

if and only if o2 (s
2

) is the image of o
1 

(S
1

) by the left 

translation defined by g. This reduces the equivalence problem 

to the case where M =G and G acts on G by left translations. 

In this case, the problem is easely solved by means of Frobe­

nius theorem. Ultimatly, the method of the moving frame redu­

ces the necessary integration to solve the problem to the in­

tegration of a differential system of order 1. In this paper 

we prove the ·e'xistence of the integer k and consequently solve 

the equivalence problem by integrating directly a differential 

system of order k of finite type. This makes easier to state 

the regularity conditions which the manifolds s
1 

and s
2 have 

to satisfy; at the same time the regularity conditions become 

geom~trically more meaningful!. 

Our regularity conditions bear only on contact elements 

of s
1 

a_?d s
2 

6£ -- two consecutive orders R. and R.-1 whereas in 

the method of the moving frame the regularity conditions bear 

on all orders . from 1 up to k. Moreover. the order of regularity 

for which th~ theorem of equivalence 3.3 applies is not fixed 

for all submanifolds of M. If a submanifold does not satisfy 

the regularity conditions at a given order it may satisfy these 

conditions .at higher order. This allows to prove equivalence 

theorems which can not be immediatly derived by the method of 

the moving frame. For instance. theorem 3;3 can be applied to 

curves yin the Euclidean space n3 , in the neighborhood of a 
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point aEy where the curvature p(a) and all derivatives 

vanishe up to some order 1-2 but 

are different from zero, s being the are lenght (see §4) . 

. Usually, equivalence theorems are stated imposing that 
the submanifolds s1 and s2 hav~ same invariants at correspon­
ding pofnts. This type of theorem can be derived from theorem 

3.3 by -taking a complete s ·et of invariant functions for the or­

bits of G in the manifold Ck,p(}.I) of elements of contact of 

order k in theorem 3. 3. Let us remark that the condition 
It is natural to ask how generic are the regularity con­

ditions in theorem 3.3. Let us remark that the condition 
k h
1

(a) = 0 (see §3) 

depends only on __ the contact element s~:: of s
1 

at the point 
a 1€S 1 . Hence, ·this question will be answered (see C~rollary 
3.4) if one proves the existence of an integer k such that the 
set of points X€Ck+l,p(M) for which the isotropy group Gk+l(X) 
of G is discr~ete and hk+l (X) = 0 is dense and open in ck+l,p(M). 

It seems reasonable to conjecture the existence of this inte­
ger for all homogeneous spaces. In the case p = 1, it follows 

k 1 from a theorem of I.Kupka [6] that the set of points of C ' (M) 

for which the isotropy is discreete is dense and open in ck• 1o-,1). 
for all sufficiently heigh k. 

The equivalence problem can be posed for two imcrsions 
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f ,h: S-+ M where S is any differentiable mnnifo]cl. f and h arc 

equivalent if there exists gEG such that h =L 0 f. This fixed g 
parametrization equivalence problem has been solved be means 

of a differential system of finite type of higher order by J. 

A.Verderesi [9], see also [4,10). 

In §2 we state a generalization of Frobenius theorem to 

differential systems defined by contact elements of higher or­

der. This theoiem will be dur main tool in the proof of theo­

rem · 3, 3, §3 is devoted to the proof of · the equi\·alence 

theorem 3.3. In §4 we give a necessary and sufficient condi­

tion for a spbmanifold ScM to be an open set of an orbit of a 

Lie sub-group L of G. This theorem can be generalized to cha­

racterize the submanifol<ls S of M which are locally invariant 

by the action of a Lie sub-group L of G and which are fibered 

by the orbits of L which · meet S. 1\'e end the paper l\'ith some 

simple remarks _ about curves inIR3 . 

§2 - HIGHER ORDER FRO BEN IUS THEOREM 

All differentiable manifolds and maps will be considered 
00 

to be of class C. If Mis a differentiable manifold, we shall 

denote by ck.pM the differentiable manifold of contact elements 
. k k k' of order k and dimension p of M [2]; ,rk': C .pM-+-C ,PM, k'~k. 

will denote the canonical projection. If k = 0, the manifold 

cO,pM 1s idcntifyed with M. If k' =O, we shall use the nota­

tion nk: ck ,PM -M instead of ,r~. The fiber of Ck ,PM over a 

point x€M will be denoted by. ck,pM. 
X 

Let ScM be a submanifold of dimension p. We shall clcnotc by 
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S~€Ck,pM the contact element of Sat the point .xt'.:S :md !)\· sk the 
image of the imbbeding x€S _.. S~€Ck 'PM. GiYen subma-
nifolds s

1 .s
2

cM of sam~ dimension and a point x€S 1ns
2

• br de-
. k k finition, s

1 
and s

2 
have contact order k at x 1£ s

1
. = S.., .· 

X .:.X 
A differential system of order k and dimension p defined 

over M is, by definition, a submanifold ncck,Pr,.1. An integral 
manifold of n is a submanifold ScM of dimension p such that 
sk€n for every xES. X 

An important notion associated to differential systems is 
the notiqn of prolongation. Let ).k+l: · Ck+l,pM-c 1 •Pcck,p>l)be 
the map defined as fallows: If XGCk+ 1 • PM and Sc;-.! is a subma-

. k+ 1 k+ 1 k 1 n1f old such that X =Ca S, aGS, then, ). (X) = (S ) X, Khe re 
X' = nt+ 1 (X)Gsk_It is easy to verify that ).k+l is an imbedd­
ing of Ck+l,pM into c1 •Pcck,pM). Clearly, there is also a na­
tural imbedding of c 1 •Pn intri c 1 •Pcck,lM); we shall identify 
c1 •Pn with its image 1n c 1 •P(ck,lM). The first prolongation of 
n is then defined to be the set pn = Ck+ 1 •PnnC l, Pn [ 8 J. ~ fol­
low~ng generalization of Frobenius theorem is just a ge_omet ric 
formulation of 1J1e existence and uniqueness theorem of solu­
tions of differential systems of finite type [7]. 
THEOREM 2.1 - ~et ncck,pM, k~l. be a differential system such 
that: 1) n~-l: fl -+Ck-l,pM is an imersion. 2) The projection 
'fl'~+l: pS'l -n is surjective. Then. for all X0€n, there exists 

k a solution of n defined in a neighborhood of x
0 = n . (X

0 ) €M .Mo-
reover, if s1 and s

2 
are two such solutions, there exists 

VcS1ns
2 which is an open neighborhood of x 0 in both s1 and s2. 

A differential system sat~sfying conditions 1) and 2) 1S 
called completely integrable. A proof of theorem 2.1 will uppc:.ir 
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§3 - k-ADMI SS IBLE SU BHAN I FOLDS 

Let G be a Lie group and let M be a homogeneous space of 

G. The action of G on M extends naturally to an action of G on 

ck,pM. If XECk,pM, X =S~, x€N,and gEG then. by definition, 

g·X = (g•S)k where g•S =L (S) and g•x =L (x), L being the dif-gx g . g g 
feomorphism of M induced by g. 

Given two submanifolds s
1 

and s
2 of M, we say that they 

are G-equivalent if there exists gEG such that g • s
1 

= s
2

; we 

say that they are locally G-equivalent at the points a 1€s
1 

and 

a
2
es

2 
if there are open neighborhoods V 

1 and V 
2 

of a
1 

and a
2 

in s
1 

and s
2 

which are G-equivalent. Given an element gEG and 

a point a
1
Es 1 ,g makes contact of order k~O between s

1 
and s 2 

at the point x€S 1 if gxES
2 

and g•s1 and s
2 

have contact of or-

d k h . . 1 1 k k er at t e point g•x, or equ1va ent y g•S1x=Szgx· Clearly, 

if g·S
1 = s

2
, then g makes contact of any order k~O between s1 

and s
2 

at any point x€S. 

DEFINITION 3.1 - The submanifold Sisk-admissible if there 

exists a submanifold U of ck,p(M) and a neighborhood A of the 

identity e in G such that: 

1) For all g€A and xES, g•Sk€U. 
X 

2) U is a completely integrable differential system of 

order k. 

THEOREM 3.1 - Given two submanifolds s
1 

and s2 of dimcns:ion p 
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of M. assume th~t 

1) s
2 

is k-admissible for some k~l. 

2) There exists a continous map 4>: s
1 

--+-G such that for 

all x€S 1 ¢(x)•x€S 2 and qi(x)•S~x = st¢(x)•x· 

Then, for any point a 1Es 1 , s 1 and s 2 are locally equiva­

lent at the points a
1 

and a
2 

=¢(a
1
)-a

1
. 

PROOF - Choose U and A as in definition 3.1, with respect to 

s
2 . Since the niap x€S 1 -+¢(-a

1
)qi(x)-

1
€G is continuous, there 

-1 exists an open neighborhood V of a
1 

such that <fl (a
1

) ct, (x) EA 

for all x€V. Hence, 

Ther~fore, ¢(a1)-s1 is an integral manifold of U and 

Since s
2 

is also an integral manifold of U it follows from 

theorem 2.1 that there exists a set v2 which is is open neigh­

borhood of a 2_ •in <P (a1) • s
1 

and in s
2

. Then, the neighborhoods 

V = If> (a ) - l·.v c:S·- and v
2 

are equivalent. I 1 2 1 
We shall now give sufficient conditions for a submanifold 

ScM to be locally k-admissible. For x€S, let gk(x) cG be the 

dimension of Gk (x). Let T~ be the tangent space of Sk at the 

point sk and let T Ok be the tangent space at the point sk of a k x x x 
the orbit O , of the point sksck,PM. Put 

X X 

hk(x) = dim(T~nTxO~). 

k-1 k k 1 k Clearly, g (x) sg (x) and h - (xJsh (x) forallk~l. 

DEFINITION 3.2 - A point 3 €S is k-rcgular,k~l, if the intcgc!s 



k k k k-1 k-1 k-1 d (x) = g (x) + h (x), d (x) = g (x) + h (x) arc constant 
k k-1 and cl (x) = d (x) for x in a neighborhood or a. 

THEOREM 3.2 - Let aSS beak-regular point. Then.there exists 

a neighborhood V of a in S which is k-admissible. 

PROOF - Let 11/: GxSk--.. Ck,p(M) be the map defined by 

1/Jk(g,s!) = g-s~-

Denote by Lk,p_ Ck,p(M) -+C_k.p(M) the diffeomorphisrn defined g . 

b d 1 .dk Sk k b·e the "d . Th y g an et 1 : -+S 1 entity map. en 

Wk 0 (L xidk) = Lk,pol/Jk. 
g g 

Since L ·xidk and Lk,p are diffeomorphisms, it follows that the . g g . 

rank of ipk at the point (g, Sk) €GxSk is equa.1 to the rank · of 
X 

1/Jk at ~he point (e ,Sk)EGxSk, where eEG is the neutral element. 
X 

Clearly, the rank of 1/Jk at the point (e,Sk) is equal to 
X 

k · k . k . 
dimG -g (x) +p -h (x) = dimG +p -d (x). 

Hence, the rank of 1/Jk at the point (e,S~) does not depend on 

x for x in a neighborhood of a. Therefore, the rank of 1/Jk is 

c~nstant in a - ~;~ghborhood of (e,Sk) in Gxsk. Let AxVk be an . a 

open neighborhood of (e,Sk) in Gxsk which is mapped by wk onto a 
a submanif old U of Ck• P (M) and put V = nk (Vk) • \\'e shal 1 show 

that U satisfies both conditions of definition 3.1 with res­

pect to the neighborhood V and the neighborhood A of e. By 

construction of U, condition 1) holds true. To prove condition 

2), consider the following commutative diagram: 

u 

ln~-1 
Ck-1,p(M) 
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k k Denote by ~'* the map i ndu ccd by ~J on t nngcnt 
k k k kernel of ti>* at the point (g,Sa)EA xv • x EV, 

dk(x) =gk(x) +hk(x). Similarly the kernel of 

vc-ctors. The 

has dimension 
k-1 

~* at the 
. ( Sk- l) h d. . dk- l ( ) S. ( . d k ) point g, x as 1mcns1on x . 1nce 1 xuk- l * is an 

isomorphism, it follows that (nt_ 1 1U)* is injective at the 

. k k) . f d 1 . f dk-1 k ( ) point~ (g.Sx 1 an on y 1 · (x) =d x . Hence, U is a 

completely integrable differential system. 

As a consequence from theorems 3.1 and 3.2 we have the 

following 

THEOREM 3.3 - Let s
1

,s
2

cM be two submani{olds of same dimen ­

sion p, and ~et a1Es1 and a 2ss
2 

be two points. Assume that a
2 

is k-regular and that there exists a continuous map ¢:S
1

--+- G 
k k such that• 4>(a 1) =a 2 , ¢,(x)•x€S 2 and ¢(x)•S1x =SZ¢(x)· for all 

x€S1 . Then, s
1 

and s 2 are locally G-equivalent at the points 

a
1 

and a 2 . 

Remark that. under the hypothesis of theorem 3.3,it fol­

lows from the ~~~orem that the point a
1

€s1 is also k-regular. 

Remark also that the map x€S
1 

_.. ¢(x)•x€S
2 

is not necessarely 

a diffeomorphism; in fact, this map may even be constant equal 

to a
2

. 

The follbwing corollary is an important special case of 

theorem 3.3. Assume that for a point a of a submanifold ScM, 

hk (a) = O, that is, the orbit of Sk in ck,p(M) cuts a 
verscly at the point Sk, 

a 
Assume also that gk (a) = O 

isotropy group of sk is <liscrectc. Then, the SaJIIC 
a 

clearly hold in a neighborhood of a in S. Since 

hk+l(a) ~hk(a) and gk+l(a) ~gk(a), 

Sk trans-

that is, the 

concJjt.ions 

it follows that a is k+l-rcgular. Hence, keeping the notations 
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as in theorem 3.3, we have the following corollary. 

COROLLARY 3.4 - Let a
2
€s

2 
bcapoint and kt k~l be an intcgc-r such 

that gk(a) =hk(a) = 0. Assume that there exists a continuous 
2 2 

map 4>: s1 -- G and a point a 1Es1 such that 

cp(a 1)•a1 = a 2 , 4>(x)•xEs
2 · k+l_ k+l 

and cp(x)•Slx -SZ<t>(x)•x for all x€s 1 . Then s1 and s 2 are local-

ly equi~alent at the points a
1
Es

1 
and a

2
Es

2
~ 

'!: 

Assuming stronger regularity conditions on the contact 

elements of s2 , theorem 3.3 can be reformulated in the follo\v­

ing way. 

THEOREM 3.5. Let s1 , s2cM be two submanifolds of same dimen-

sion P and ·1et a1 €S1 and s2€s 2 be two points. Let wk(s 2) be the 
k set of all contact elements g.s 2x for all xES 2 and gEG. Assume 

that there exists k~l such that wk(S 2) is an imbedded subma­

nifold of ck,p(M) (i.e. the topology of Wk(S) is the induced w 

topology) and a 2€s 2 is k-regular. Ass~me also that there exists 

~ S S h th t ~c ) and Sk and Sk a map 'I': 1 - 2 sue a "' a 1 = a 2 Z<t> (x) lx are 

in the same o.rbit of G for all x€S
1

• Then s
1 

and s 2 are locally 

' G-equivalent at the points a 1 and a 2 . 

PROOF. As in the proof of theorem 3.2 let q,k: k GxS 2 -+ \\k(Sz) be 

the map 
k . k k 

"1 Cg • 5 zx) =. g • S 2x · Since wkcs 2) is an imbedded subrnanifold 

1Jik is a differentiable map. Repeating the argument in the proof 

of theorem 3.2, one can show that there exists an open neighbor­

hood U of S~a
2 

in Wk(S 2) which is a completely integrable diffe-

rential system. Let gEG be such that g •Sk1 = sk 
5 . e k a1 2a 2 • inc g-S1 c 

k . k 
cW (S 2) and the topology of W (S 2) is the induced topology, one 

\ 
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can choose an open neighborhood V of a1 in s1 ' such that g·Vk is 

a submanifolf of U. Then g·V is an integral submnnifol<l of U. 

Since there exists a neigJ1borhood .of a 2 in s2 which is also an 
..... 

integral submanifold of U it follows that g·v and s2 coincide in 

a neighborhood of a 2 . 

COROLLARY 3.6. Assume Wk(s 2) is an imbedded subrnanifold and that 

gk(a 2) =hk(a 2) = O. Assume also that there exists a map ¢:S1 - s2 
· . k+l k+l 
such that s 2¢(Z) and s1x are in the same orbit of G for xES, jnd 

$(a1) =a 2 . Then s1 and s 2 are locally G-equivalent at the points 

a 1 and a
2 • 

§it - HOMOGENEOUS SUBMAN I FOLDS OF M 

In this§ we shall characterize the submanifolds of M 

which are open sets of an orbit of a Lie subgroup L of G. If 

Sc~ is an open set of an orbit of L then, hk(x) =p and gk(x) 

is constant for x6S and for all k 2: 0 ~ moreover. for sufficien­

tly high k, every point of Sisk-regular. The following theo­

rem is the converie to the above statement. 

THEOREM 4.1 - Let S be a connected submanifold of dimension p 

of M. Assume that there exists k ~l such that k h (x) = p and 

. every point x6S is k-regular. Then, S is · an open set of an orbit 

of a connected Lie sub-group L of G. 

PROOF - Given a point a€S, we are going to show the existence 

of a neighborhood of skin sk which is contained in the G-or-
a 

b . f sk . ck • p · h . . h 3 2 it o a in M. Keeping t e notations as 1n t corern . , 

the set · A•Sk = {g•skjgGA} is open in the orbit of sk. From the a a a 
hypothcs is hk (x) = p it follows that -A• Sk and U have same di-. a 

mension; hence, A•Sk is open in U. Sir.ce we can assume that 
a 

vk is a submanifold of U with the induced topology.it follows 

that A.SknVk is an open neighborhood of Skin Sk contained in a a 
the orbit of Sk. Since this holds· for every a€S and Sk is con­

a 
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nccted, Skis contained in the 

Consider the map A:g€G--+ 

orbit of s:. 
k k p 

g•SaEC ' ~- and 

N is a submanifold of G and eEN. Let Ebe the invariant dis­

tribution which associates to each point gEG the suh-spacc 

l(&) = (L )*(T N)cT G. Then, N is an integral manifold of r. g e g 

To prove this, let gEN and let b =g•aES. Theorem 3.3 implies 

the existence of a neighborhood v 1 of a and the existence of 

a ne~ghborh~od y 2 of b such that L (V 1) = V 2 . Choose a neighbor-
. k g 

hood W of e in N such that g·SaEV 1 for all g€W. For g
1

El\' we 

have, (gg 1)•S~ =g• (g
1

S~)ELg(V1) =v
2

. Hence, gg 1EN and therefore 

g • W is a· neighborhood . of g in N. Consequently, T gN = (Lg)* (Te{'!) 

= E(g) . . Since the image of N by left translations of Gare al­

so integral manifolds of E, Eis completely integrable. Let 

L be the maximal integral manifold of r which goes trough eEG. 

L is a connected sub-group of G and the L-orbit of Sk in Ck'p()t) 
a 

has same dimension as Sk. Hence, skis an open set of this or-

bit. It follows that Sis contained in the L-orbit of a in~ 

Clearly. the sub::·group of L which leaves a fixed coincides with 

the sub:-group ~o·f_ L which leaves sk fixed. Hence, S is · open in a 

the L-orbit of a in M. 

§5 - REGULA~ POINTS OF CURVES IN IRJ 

We shall characterize, up to order 3, the regular points 

of a curve yin the Euclidean space R3,the group G being the 

group of rigid motions. Let a€y be a point of y, since g
0

(a)= 

= 3 and g1 (a) = 1, x is not regular of order 1. For a to be re-
' ] 2 gular of order 2 it is necessary that g (a) =g (a) =l;thecon-

dition g 2 (a) = 1 is equivalent. to the vanishing of the curva-
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turc at the point a. Hence. it is necessary that the a1rvaturc 
vanishes in a Leighborhood of a. Conversely, if the curvature 
vanishes in an open n~ighborhood V of a, then. for x€V, 

and a is 2-regular. Therefore, a is 2-regular if and only if 
there exists a neighborhood of a in y which is contained in a 

straight line. Let p,s: y --+- lR be respectively the curvature 
and _the are lenght of y meqsured from a (i.e. s (a) = 0). g 2 

(a)= 

= 0 if and only if p (a) ~ 0 and h 2 (a) = O if and only if the de­
rivative.:~ (a) ~o. Hence, if p(a) ~o and ~(a) ~o then, 

· g~(x) = g
3

(x) = h 2
(x) 2 h 3

(x) = 0 

in a ~eighborhood of a and a is 3-regular. If p(a) ~o and 
dp 2 ds (a) = 0 then h (a) :::: 1. Hence, for a to be 3-regular it is ne-
cessary that ~~ (x) = 0 in a neigborhood of a. Con,·ersely, if p(a) 
~ 0 and if pis constant in a nei~hborhood V of a then, g3~)= 
= g 2 (x) =O and h 3 (x) =h 2 (x) = 1 for x€V. Consequently,ifp(a) ~a 

dp and ds (a) = 0 then, a is 3-regular if and only if p is cons-
tant in a neighborhood of a. 

It is weir -know that the classical theorem of congruence 
of curves in JR.

3 may not hold in a neighborhood of a point where 
the curvature vanishes. The following refinement of the clas-
sical theorem is an easy consequence of theorem 3.3. Assume 
that p(a) =O for a point a€y. Then. the derivative:~ may not 
exist but the right derivative 

always exists. Assume that 

l
. p(s) 1m--

s-+-O+ 5 
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and 

neighborhood of a in y and a js a regular point of order 4.from 

the hypothesis (~~)+(a) ;tQ it follows that P(x) ;tO for x in a 

neighborhood V of a and x ;ta; hence the torsion T(x) is defi-
- 3 ned for x6V and x;,: a. Let yclR be a second curve satisfying 

the same conditions at the point a.Sy and denote by p 1 and; 

the curvature, 'the torsion ·and the arc lenght of y. Let 

f: y-+ y be a diffeomorphism such that f(a) =a, y ==y 0 f, 1=pf 

ands =s.of. Then, in a neighborhood of a.£ is the restriction 

toy of a rigid motion in R
3

. This theorem can also be deduced 

f h 1 h f f . ]R3 rom t e usua t eorem o congruence o curves 1n ; Ke state 

it here to give an example of a situation which is covered by 

theorem 3.3 whereas the method of the moving frame can not be 

directly applied. 
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