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Abstract

We present the spectrum of cosmic rays with energies above 2.5 EeV measured at the Pierre Auger
Observatory after 19 years of operation, covering the period before the AugerPrime upgrade. Two
independent event sets from the surface array of 1500-m spaced detectors are combined, yielding a total
exposure of 104 900 km? sr yr. The first set includes events with zenith angles less than 60°, while the
second consists of events between 60° and 80°, for which azimuthal asymmetries must be accounted for
in the energy estimator. The threshold energy is chosen to ensure a trigger efficiency of the surface
detector greater than 97%, thus minimizing composition biases. The energy scale is determined using
high-quality fluorescence measurements, providing calorimetric estimates without reliance on
simulations.

A statistically successful combination is achieved within the uncorrelated systematic uncertainties of the
individual spectra. All spectra are consistent when analyzing potential declination dependences, except
for a mild modulation expected from the previously reported dipolar anisotropy. In particular, this
statement applies to the northernmost declination band [+24.8° ,+44.8°], where

only events with zenith angles between 60° and 80° contribute. Beyond the firmly established ankle and
suppression spectral features, the combined spectrum across declinations -90° to +45° provides a
measurement of the instep feature with more than 50 confidence.
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We present the spectrum of cosmic rays with energies above 2.5 EeV measured at the Pierre Auger
Observatory after 19 years of operation, covering the period before the AugerPrime upgrade. Two
independent event sets from the surface array of 1500 m-spaced detectors are combined, yielding
a total exposure of 104900 km? sryr. The first set includes events with zenith angles less than
60°, while the second consists of events between 60° and 80°, for which azimuthal asymmetries
must be accounted for in the energy estimator. The threshold energy is chosen to ensure a trigger
efficiency of the surface detector greater than 97%, thus minimizing composition biases. The
energy scale is determined using high-quality fluorescence measurements, providing calorimetric
estimates without reliance on simulations.

A statistically successful combination is achieved within the uncorrelated systematic uncertainties
of the individual spectra. All spectra are consistent when analyzing potential declination depen-
dences, except for a mild modulation expected from the previously reported dipolar anisotropy.
In particular, this statement applies to the northernmost declination band [+24.8°,+44.8°], where
only events with zenith angles between 60° and 80° contribute. Beyond the firmly established
ankle and suppression spectral features, the combined spectrum across declinations -90° to +45°
provides a measurement of the instep feature with more than 5o confidence.
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1. Introduction

The Pierre Auger Observatory [1] has accumulated, since its beginning in 2004, the largest
dataset of ultra-high-energy cosmic rays currently available. The volume and quality of the acquired
data allowed us to measure a dipolar modulation of ~ 6% of an otherwise isotropic distribution
of the arrival directions of cosmic rays with a significance greater than 5o [2]. Motivated by the
observed dipole, we previously searched for a modulation of the spectrum with declination [3, 4].
We recently conducted a more comprehensive search exploiting a ~ 66% larger exposure with a
dataset that also includes events arriving with a zenith angle between 60° and 80° thus extending
the declination reach from +24.8° to +44.8° [5] that is also reported here.

We present an energy spectrum using events observed by the water-Cherenkov detectors of the
Surface Detector Array spaced at 1500 m during the 19 years of the Phase I data taken between
January 1, 2004 and January 1, 2023. After this successful operation, the Observatory was
upgraded, within a project named AugerPrime, with the goal of improving the measurement of
the mass composition of ultra-high energy cosmic rays [6]. The upgrade includes new scintillator
and radio detectors added in each position of the Surface Detector Array. We also upgraded the
detector electronics to improve the timing and signal resolution of water-Cherenkov detectors and
extended their dynamic range by adding a new PMT, smaller than the previous ones. We installed
underground muon detectors at the positions of the 433 m and 750 m Surface Detector Arrays.
Phase II data-taking started on April 1, 2023. We show a preliminary spectrum built with events
acquired during the first two years of Phase II.

2. Vertical and inclined spectra

The depth of the water-Cherenkov detectors grants them the geometric acceptance needed to
measure particles arriving at large zenith angles. However, the structure of the shower changes
significantly for more vertical and inclined events. While the more vertical showers are symmetric
around their axis and have a significant contribution at ground level of photons and electrons, the
more inclined showers are composed predominantly of muons, and their axial symmetry is broken
due to the geomagnetic field and other effects. Due to these reasons, we reconstruct the events
arriving with a zenith angle up to 60°, denominated here as vertical events, with a different method
than those arriving between 60° and 80°, the inclined events.

We reconstruct vertical events using a function that describes the fall-off of detector signals
with the distance to the shower axis [7]. The value of this function at a distance of 1000 m (S(1000))
provides a measure of the shower size. We estimated a shower size independent of the zenith angle
(S3g), equivalent to the size the shower would have had if it had arrived at a zenith angle of 38°, via
an attenuation function, S3g = S(1000)/ fa, calculated with the Constant Intensity Cut method [8].
The attenuation function f, depends on the zenith angle through a variable x = sin? 6 — sin® 38°
and on S3g through a variable y = log,,(S33/S0), with So = 40 VEM, and

3 2
fuelr,y) = 14+ 7 agx'y, (1

i=1 j=0

with parameters a;; in the Table 1.
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Table 1: Coefficients of the attenuation function used to correct the shower size of vertical events.

1 y y?
x -0936 -0.005 04
X2 -1.62 =051 -0.13
X092 -054 -1.75

The shower size S33 is calibrated with the energy measured with the telescopes of the Fluores-
cence Detector (Erp) using high-quality events observed in coincidence with the Surface Detector
Array. From calibration data, we establish the relationship between the cosmic ray energy and the
shower size, E = ASfS, with A = (186 = 3) PeV, B = 1.021 + 0.004, and a correlation coeflicient
between A and B, p = —0.98.

We reconstruct inclined events by fitting a function that describes the signal pattern [9, 10].
This map is scaled with the ratio of the measured and simulated shower size at 10 EeV (N19). The
parameter N9 attenuates with the zenith angle in a slightly model-dependent way, in particular,
due to the residual contribution of photons and electrons. This attenuation is corrected using the
Constant Intensity Cut method as in the case of vertical events to derive an equivalent shower size
at 68°, Ngg = N9/ far- The attenuation function is described as a simplified model of Eq. 1, with
x = sin® @ — sin® 68°, y = 10g;o(N19), and fuq = 1+ (0.292 — 0.468 y) x + (=4.96 +0.79 y) x. The
shower size Ngg is calibrated in energy using events observed in coincidence with the Fluorescence
Detector as with vertical events. The energy of inclined events is calculated from E = AN %, with
A =(5.29 £0.06) EeV, B = 1.046 + 0.014, and a correlation coefficient p45 = —0.66.

We calibrated the events using a Fluorescence Detector reconstruction updated with an im-
proved estimation of aerosol attenuation and parametrization of the longitudinal profile of light
emission [11]. We calibrated the vertical and inclined events with the same fluorescence recon-
struction so that both datasets share the same energy scale. The systematic uncertainty of the
energy of vertical and inclined events is driven by the absolute energy scale of fluorescence de-
tection (14%) [12] that is correlated between both data sets. In addition, the uncertainty of the
calibration parameters propagates as another source of systematic uncertainty in the energy but is
not correlated between vertical and inclined events. Although the number of events available in the
vertical calibration renders this source of systematic uncertainty negligible, inclined energies with
fewer calibration events have a systematic uncertainty of about 2%.

For the spectrum based on vertical events, we selected events that have the detector with the
highest signal surrounded by six working detectors to ensure the energy is well reconstructed.
We applied a similar condition for inclined events, requiring the reconstructed core to be contained
within a hexagon of six working detectors. We choose the energy thresholds of the vertical spectrum
at log,o(E/eV) = 18.4 (E ~ 2.5EeV), and of the inclined spectrum at log;,(E/eV) = 18.6
(E ~ 4EeV), limits at which the trigger efficiency exceeds 97% [13]. Above the energy threshold,
the exposure is constant and is calculated by monitoring the status of the detectors every 1s. From
this thorough monitoring, we identified periods of unstable acquisition that accounted for less than
3% of the observation time. We excluded the events observed during these periods and penalized
the exposure accordingly. We computed an exposure of (81 100 + 700) km? sryr for the vertical
spectrum and (23 800 + 400) km? sr yr for the inclined spectrum.
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Figure 1: Vertical spectrum using events arriving  Figure 2: Vertical and inclined spectra in their com-
with a zenith angle less than 60°, and inclined spec-  mon declination band [-84.8°, +24.8°]. The inclined
trum from events with a zenith angle between 60°  spectrum is shifted according to the recalibrated
and 80°. The spectrum data corrected for the detec-  event energies calculated in the spectra combina-
tor response and the fitted flux are shown. No cut tion. The resulting combined spectrum is shown.

in the declination of the arrival direction has been

applied.

We fitted the spectrum data with a flux of cosmic rays modeled as a power-law function with
smooth transitions,

-1
3 E\“i
—yo Loy |14 (E_)

i

-1

Ep\“i
(%) |
with the reference energy Ej set at 10%° ~ 3.16 EeV and the three transitions widths fixed at
w; = 0.05. We fitted the flux normalization Jy, the ankle energy E;, the instep energy E;, the

] (¥i—vi+1) Wi

E

J(E) = Jo (E—O)

2

(Yi—vis1) @i’

3
[Tie

fall-off energy E3, and the four spectral indexes ;. The spectral index vy, corresponds to the region
before the ankle, y, between the ankle and the instep, and likewise for the other spectral indexes.

The observed number of events in each energy bin is affected, besides the prediction arising
from the cosmic ray flux, by the effect of the detector response that includes the trigger efficiency,
and the bias and finite resolution of the reconstructed energy [3]. We incorporated these effects
in the spectrum fitting. We correspondingly corrected the observed flux in each bin by factors
ci ~[09—1],J] = ¢; J;, with J; = N; /(e AE;), with N; the observed number of events, and AE;
the energy difference between the bin limits. The vertical and inclined spectra corrected by the
detector response and the corresponding fitted fluxes are shown in Fig. 1.

3. Dependency of the flux with declination

The latitude of the Observatory at 35.2° S permits the observation of cosmic rays arriving
with a declination from the south celestial pole up to +24.8° with vertical events, and the range
[—84.8°,+44.8°] with inclined events. We exploited the cumulative exposure of the vertical and
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Figure 3: Left panel: Spectra in five declination bands combining vertical and inclined events. The flux
fitted in the common declination band [—84.8°, +24.8°] is shown in red, and the flux modulated by the dipole
of the arrival direction distribution is shown in green. Right panel: Residuals of the combined spectra and
the fitted flux in each declination band clipped to [-0.25, 0.25].

inclined spectra by combining them into a single spectrum. To guarantee the observation of the same
sky, we combined them in their common field of view given by the declination band [—84.8°, +24.8°]
using the method in reference [14]. We fitted the vertical and inclined data simultaneously with the
flux model (2).

During the fit, we included the effect of the uncorrelated systematics on the energy of the
vertical and inclined events. We fixed the energies resulting from the calibration for the vertical
events as they have negligible systematics. However, we fluctuated the energy of inclined events by
varying the parameters A and B around the calibration estimates. We use different B deviations for
energies below and above 10 EeV, and denominated them 6B and 6C, respectively, to account for
possible deviations of the inclined calibration from a pure power-law model originated, for example,
by the evolution of the primary composition. The combination maximizes a Poisson likelihood
that contains contributions predicting the expected number of events in each bin of the vertical
and inclined spectra. In addition, during the fit, we penalized the deviations from the calibration
estimates (0 A, 6B, and 6C).

We fitted simultaneously the eight spectral parameters and the three calibration parameters.
The fitted deviations are §A = (160 + 39)PeV , 6B = 0.003 = 0.016, and 6C = —0.02 + 0.02.
The recalibration of inclined events increases the energy by 2.9% at 4 EeV, 3.1% at 10 EeV, and
decreases it 1% at 100 EeV. For the combination we obtained a deviance D = 40.5, for which we
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Table 2: Spectral parameters of Phase I spectrum including the energy of the ankle (E1), the instep (E3),
and the flux suppression (E3), and the spectral indexes .

Parameter Value Ogat  Ogys Parameter Value Oyt Oy
Jo (km~2sr~lyr~lev™!) 1269 0.003 0.40 Y1 326 001 0.10
E; (EeV) 5.1 0.1 1.1 Y2 2,51 0.03 0.5
E;> (EeV) 13 1 2 Y3 299 0.03 0.10
E3 (EeV) 48 2 5 Va4 54 02 0.1

estimated a p-value ~ 0.12. We show in Fig. 2 the fitted flux and the combined spectrum calculated
in each bin as,

cin+cin;
T Gren Ak *
with the unprimed and primed symbols corresponding to the vertical and inclined spectra.

We searched for a dependence of the spectrum with declination by dividing the sky into five
declination bands. We divided the range observed with vertical events [—90°, +24.8°] in four bands
of similar exposure. In addition, we considered a northern band [+24.8°, +44.8°] observed only
with inclined events. We compared the spectra in each declination band with the flux in the common
declination range [—84.8°, +24.8°]. We calculated the combined spectrum in each band as per Eq. 3
using the number of events and exposures of each band. We show the spectra in declination bands
and the flux in the left panel of Fig. 3. We also show the flux expected in each band when the
modulations given by the dipole in the arrival directions observed by Auger are considered. We
show in the right panel of Fig. 3 the residuals of the spectra in declination bands with respect to the
fitted flux and the deviations of the flux modulated by the dipole. The residuals follow the trend
imprinted by the dipole between 4 EeV and 32 EeV, and statistical uncertainties dominate beyond
32 EeV. The agreement of the dipole modulation with the spectra in each band is expected since
the anisotropy and spectrum data sets overlap considerably.

4. Phase I spectrum

Given that the spectra in the different declination bands agree with the flux fitted in the common
declination band within statistical uncertainties, we combine the vertical and inclined into a single
spectrum. While in section 3 we restricted the vertical and inclined spectra to their common
declination band [—84.8°,+24.8°], we now combine them at all observed declinations, reaching a
total exposure of 104900 km? sryr corresponding to the sum of the exposure of the vertical and
inclined datasets. The combined spectrum is calculated using Eq. 3 after shifting the inclined
spectrum with the parameters calculated in section 3. We show the combined spectrum and the
corresponding fit in Fig. 4, and the spectrum data are provided in [5]. The shaded band represents
the systematic uncertainty of the flux, which is dominated by the systematic uncertainty of the
energy scale. The flux exhibits the firmly established features of the ankle and suppression, as well
as the instep, which we unveiled with a significance of 3.9¢ in 2020 [3]. Table 2 contains the fitted
spectral parameters and their statistical and systematic uncertainties.
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Figure 5: Preliminary spectrum using events arriv-
ing with zenith angle up to 60° observed during the
second phase of Auger. The spectrum of Phase I is
shown for comparison.

Figure 4: Combined spectrum using events arriving
with zenith angle up to 80° observed at declinations
from the south celestial pole up to +44.8°. The
systematic flux uncertainty is shown as a shaded
band.

To assess the significance of the instep with the larger dataset currently available, we sampled
energies from a reference model, which contained a slow suppression instead of the instep. We
fitted the sampled data with the reference model and alternative one containing the instep and built
a test statistic as the ratio of their respective likelihoods. The estimated significance is based on the
number of times the sampled test statistic is greater than the one calculated by fitting the observed
data. The test statistic was larger than the observed value (¢,ps ~ 35) in only two out of 108
simulations, corresponding to a significance of 5.50.

5. Preliminary Phase II spectrum

In this section, we present a preliminary spectrum built from vertical events observed during
the second Phase of the Auger Observatory, using data recorded from April 1, 2023, to March 1,
2025. To provide this first view of the Phase II spectrum, we reconstructed the events using the
Phase I setup. For example, we applied the same lateral distribution function, attenuation with
zenith angle, energy calibration, and detector response model used to unfold the spectrum. We
also use the same method as in Phase I to select spectrum events, excluding periods of unstable
data-taking, and to calculate the exposure. The exposure during the data-taking considered was
(9200 + 300) km? sryr, about 10% of the Phase I spectrum. Reusing the Phase I analysis was
possible because the upgrade of the Observatory was designed so that water-Cherenkov detectors
were backwards compatible.

We show in Fig. 5 the spectra of Phase I and II. We evaluated the consistency of Phase I and
Phase II spectra with a Fisher’s test that combines chi-square tests for bins with many events with
exact binomial tests for bins with few events [15]. We assumed a systematic uncertainty of 1%
uncorrelated between the two spectra, a conservative estimate given the 3% exposure uncertainty.
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The observed Fisher’s test statistic was ¢ = 38.0 for 36 degrees of freedom, corresponding to a
p-value p = 0.30 estimated numerically with Monte Carlo simulations.

We fitted the Phase II spectrum with the Phase I model, and obtained spectral parameters that
are in agreement with the values in Table 2 within the statistical uncertainties. We will customize the
event reconstruction to accommodate the improvements of the water-Cherenkov detectors in Phase
I1, but this early analysis already shows that minor changes to the existing setup will be required. In
the future, we will use Phase I and II events to build a single spectrum with the combined exposure
achieved during the complete lifetime of the Pierre Auger Observatory.

6. Conclusions

We presented an updated spectrum measured with the 1500 m Surface Detector Array of the
Pierre Auger Observatory using events arriving with zenith angles up to 80°. The data set comprises
19 years of Phase I data taken from 2004 to 2023 with an exposure of (104900 + 3000) km? sryr,
enabling the discovery-level observation of the spectrum instep at (13 + 1 +2) EeV with the spectral
index increasing from 2.51 + 0.03%% + 0.05%* to 2.99 + 0.03%4" + 0.10%®. We did not find any
statistically significant dependence of the flux with declination from the south celestial pole up
to a +44.8°, bar a small trend consistent with the well-established dipolar anisotropy in arrival
directions. Finally, we presented for the first time a spectrum obtained with events measured during
Phase II of the Auger Observatory, showing its consistency with the Phase I spectrum.
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