ELSEVIER

Contents lists available at ScienceDirect

Epilepsy & Behavior

journal homepage: www.elsevier.com/locate/yebeh

The intellectual profile of pediatric patients with posterior cortex epilepsy

Lucas Emmanuel Lopes e Santos ^{a,b,*}, Geisa de Angelis ^{a,b}, Tonicarlo Rodrigues Velasco ^b, Ursula Thome ^b, Marcelo Volpon Santos ^c, Hélio Rubens Machado ^c, Ana Paula Andrade Hamad ^b, Américo Ceiki Sakamoto ^b, Lauro Wichert-Ana ^a

- ^a Department of Radiology, Hematology and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
- ^b Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
- ^c Department of Surgery and Anatomy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil

ARTICLE INFO

Article history: Received 1 September 2021 Revised 27 October 2021 Accepted 12 November 2021

Keywords:
Pediatric epilepsy
Intelligence
Posterior cortex epilepsy
Neuropsychological assessment

ABSTRACT

Background: Cognitive functioning in epileptic syndromes has been widely explored in patients with temporal lobe epilepsy (TLE), but few studies have investigated the neuropsychological profile in posterior cortex epilepsy (PCE). In this study, we investigated the presurgical intellectual profile of children and adolescents with drug-resistant PCE.

Methods: Children and adolescents diagnosed with PCE (n = 25) participated in this study. The data were obtained from medical records, with assessments carried out between the years 2003 and 2019. To compare the intellectual profile, we also included patients diagnosed with frontal (n = 26) and temporal lobe epilepsy (n = 40). The Wechsler Intelligence Scales were used for the assessment of general intelligence. Results: There was an effect of the brain region on the Working Memory Index (p < 0.01), in which patients with TLE had significantly higher scores than groups with FLE (p < 0.01) and PCE (p < 0.05). We also demonstrated that patients with PCE tended to perform worse in the Processing Speed Index than patients with TLE (p = 0.055). The Full-Scale Intelligence Quotient, Verbal Comprehension, and Perceptual Reasoning indexes did not differ among the brain regions.

Conclusions: Children and adolescents with PCE demonstrated significant impairment in working memory and processing speed. The pattern of cognitive dysfunction in PCE was similar to that observed in FLE, which expands the evidence of the involvement of frontoparietal networks on cognitive proficiency.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Posterior cortex epilepsy (PCE) is characterized by recurrent epileptic seizures originating in the occipital, parietal and posterior temporal lobes or even in integrated regions of the posterior cerebral cortex [1,2]. There is no clear anatomical or neurophysiological distinction among these cortical areas, and the epileptogenic zones (EZ) are not always limited to the edges of the occipital, parietal and posterior temporal lobes. The surgical treatment for PCE is less common than for the frontal and temporal regions due to the lower frequency of this type of epilepsy and the difficulty locating the EZ [3].

Although focal or partial seizures in the posterior region are relatively less frequent among epilepsies considered for surgical

treatment, there is a propensity for these seizures to spread to anterior regions of the cortex [3]. In addition, the identification of EZ is particularly complex in PCE due to nonspecific clinical patterns of seizures [4], which require invasive investigation methods in some cases [5].

The posterior cortex is the region that involves some of the main primary sensory areas, which are responsible for the identification, integration, and response to visual, auditory, and tactile stimuli. Different functional systems are associated with the posterior regions of the brain, and impairment resulting from damage to these areas varies according to the extent of the injury [6,7]. In patients with epilepsy, cognitive deficits can arise from the interaction of the underlying pathology, the medical and surgical treatment, and the comorbidities associated with the clinical condition [8].

Cognitive functioning in epileptic syndromes has been widely explored in patients with temporal lobe epilepsy [9–11], but few studies have investigated the neuropsychological profile in PCE,

^{*} Corresponding author at: Seção de Medicina Nuclear, Hospital das Clínicas – FMRP – USP, Av. Bandeirantes, 3900, CEP: 14048-900 Ribeirão Preto, SP, Brazil. E-mail address: lemmanuel@usp.br (LE. Lopes e Santos).

more specifically in the parietal and occipital lobes [9,10,12]. In this study, we investigated the presurgical intellectual profile of children and adolescents with drug-resistant PCE, and compared the pattern of cognitive dysfunction to patients diagnosed with frontal lobe epilepsy (FLE) and temporal lobe epilepsy (TLE).

2. Patients and methods

2.1. Patients

Children and adolescents aged 6–18 years, diagnosed with drug-resistant PCE that underwent surgery at the Epilepsy Surgery Center (CIREP), Hospital das Clínicas, Ribeirão Preto Medical School, University of São Paulo (Brazil) participated in this study. Data were obtained from medical records, with assessments carried out between the years 2003 and 2019. To compare the intellectual profile, we also included patients diagnosed with FLE and TLE.

The clinical investigation included a structured interview, detailed neurological examination, routine EEG, scalp and invasive video-EEG (when necessary), high-resolution MRI (3 Tesla), neuropsychological assessment, and ictal and interictal SPECT. The diagnosis of PCE followed the International League Against Epilepsy (ILAE) criteria for the classification of epileptic syndromes [13]. Engel's classification of postoperative clinical outcome was used as a reliability criterion for the diagnosis of PCE.

Inclusion criteria were: (1) diagnosis of focal epilepsy, based on V-EEG and MRI, agreed in a multi-professional clinical meeting, following ILAE classification; (2) assessment of the intellectual profile carried out using the Wechsler Intelligence Scales, age-appropriate. Neuropsychological assessment was performed during the period of V-EEG monitoring. The presence of secondary generalized tonic-clonic seizures (GTCS) was recorded in order to analyze possible effects on the intellectual profile. We excluded patients with severe cognitive impairment, who did not present minimally adequate receptive and expressive language for neuropsychological assessment through formal instruments, based on predefined protocols by CIREP.

From 286 patients who underwent epilepsy surgery between 2003 and 2019, 86 presented with PCE, 86 with FLE and 114 with TLE. After analyzing the medical records, 195 patients were excluded for being younger than 6 or older than 18 years, for not having the minimum cognitive conditions for a complete neuropsychological assessment, or for not meeting the other inclusion criteria. Ninety-one patients were included in this study, grouped according to the brain region: PCE (n = 25), FLE (n = 26), and TLE (n = 40). The study was approved by the Research Ethics Committee of the Hospital das Clínicas of Ribeirão Preto Medical School (# 3.454.604).

2.2. Assessment of intellectual profile

The assessment of the intellectual profile was carried out as part of CIREP pre-surgical investigation protocol, in a quiet, appropriate room, free from external interference. The examination was conducted by neuropsychologists with experience in the assessment of children and adolescents, in a single session.

Considering the retrospective nature of this study and the time of data collection (2003 to 2019), different versions of the Wechsler Intelligence Scale were used, according to the patient's age and period in which the assessment was performed. WISC-III was used in patients aged between 6 and 16 years evaluated until 2013, when WISC-IV became available in Brazil. WAIS-III remains the choice for individuals aged 16 and over.

In order to compare the intellectual profile between groups, we analyzed the results of the Full Scale Intelligence Quotient (FSIQ), the Verbal Comprehension (VCI), Perceptual Reasoning (PRI), Working Memory (WMI), and Processing Speed (PSI) indexes, as well as the performance in each subtest. Although WISC-III did not include the WMI, the scale presented the Freedom From Distractibility Index (FFD), which aggregates performance in the Digit Span and Arithmetic tasks. Because they are similar in their purpose to assess auditory-verbal attention and verbal working memory [14], the WMI and the FFD were analyzed together in this study.

Complementary analyses were performed using the SCAD profile [15], which aggregates the individual's performance in the Symbol Search (S), Coding (C), Arithmetic (A) and Digit Span (D) subtests.

2.3. Statistical analysis

Statistical analyses were performed using IBM SPSS Statistics 23.0. Shapiro–Wilk was used to test for data distribution and the Levene test for homogeneity of variances. Continuous variables with normal distribution were assessed using a two-way ANOVA, in which the brain region and the presence of secondary GTCS were included as independent variables. In order to verify differences between groups, we used Bonferroni's post hoc. The Kruskal–Wallis test was used for continuous variables without normal distribution, with post hoc analysis by Mann–Whitney. The data are presented as mean (standard deviation) in variables with normal distribution and as median (interquartile range) for variables without normal distribution. Categorical data were analyzed using Fisher's exact test. In all analyses, the results were considered statistically significant at the level of 5% (p < 0.05).

3. Results

3.1. Sociodemographic data and clinical variables

Table 1 presents the sociodemographic and clinical profiles of the sample. The mean age at the assessment was 12.16 (SD = 2.90), 12.61 (SD = 3.61), and 13.30 (2.96) years for patients with PCE, FLE, and TLE, respectively. The median age at onset of epilepsy was 7.0 (IR = 6.50), 5.50 (IR = 5.50), and 4.50 (IR = 8.90) years for patients with PCE, FLE, and TLE, respectively. The lateralization of the EZ was in the left cerebral hemisphere (LH) in 60% of patients with TLE, 56% with PCE, and 46.2% of patients with FLE.

Fisher's exact test revealed an association between the seizure frequency and the brain region ($\chi 2 = 29.835$; p = 0.000), with a higher frequency of daily seizures in patients with FLE and a lower frequency of daily seizures in patients with TLE. We also observed an association between the etiology and the brain region ($\chi 2 = 47.471$; p = 0.000), with a higher frequency of malformations of cortical development (MCD) in patients with FLE, lower frequency of MCD in patients with TLE, and a higher frequency of gliosis in patients with PCE. Likewise, there was an association between the level of agreement of VEEG and MRI and the location of the EZ ($\chi 2 = 19.211$; p = 0.005), with greater agreement observed in patients with TLE, and less agreement in patients with PCE. There was no significant effect of the brain region concerning sex, age at assessment, age at onset of epilepsy, duration of epilepsy, laterality of EZ, and the presence of secondary GTCS.

3.2. Intellectual functioning and cognitive profile by brain region

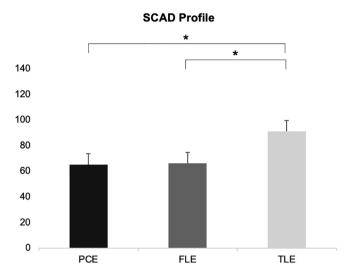
Table 2 describes the results of the neuropsychological domains assessed, intellectual efficiency, and the effect of the brain region

Table 1 Sociodemographic and clinical characteristics of the sample.

	Mean (Standard Deviation)						
	PCE (n = 25)	FLE (n = 26)	TLE (n = 40)	Group Effect; Group Comparison			
Patients Characteristics							
Gender (N Female)	7	10	14	$\chi^2 = 0.649$; $p = 0.723$			
Age at Testing, Year (Mean, SD) [range]	12.16 (2.90) [8.00 - 18.00]	12.61 (3.61) [6.00 - 18.00]	13.30 (2.96) [8.00 - 18.00]	F = 1.068; $p = 0.236$			
Age of Onset, Year (Median, IR)	7.00 (6.50)	5.50 (5.50)	4.50 (8.90)	$\chi^2 = 1.408$; $p = 0.495$			
Duration of epilepsy (years) (Median, IR)	6.00 (5.50)	6.00 (5.00)	8.00 (8.75)	$\chi^2 = 2.582$; $p = 0.275$			
% Left Hemisphere	56.0	46.2	60.0	$\chi^2 = 1.236$; $p = 0.539$			
% Presence of Secondary GTCS	52.0	38.5	25.0	$\chi^2 = 4.928$; $p = 0.089$			
% Seizure Frequency				2			
Daily	52.0	73.1 ⁽⁺⁾	22.5(-)	$\chi^2 = 29.835$; $p = 0.000$ *			
At least once a week	36.0	19.2	30.0				
At least once a month	4.0(-)	3.8 ⁽⁻⁾	32.5 ⁽⁺⁾				
At least once every six months	4.0	0.0	0.0				
Seizure free for over six months	4.0	0.0	0.0				
Irregular	0.0	0.0	5.0				
Status epilepticus	0.0	1.1	1.1				
% Etiology							
MCD	28.0	57.7 ⁽⁺⁾	10.0 ⁽⁻⁾	$\chi^2 = 47.471$; $p = 0.000$ *			
Gliosis	32.0(+)	15.4	10.0				
Tumor	28.0	23.1	17.5				
MTS	4.0(-)	0.0(-)	57.5 ⁽⁺⁾				
CVM	8.0	0.0	2.5				
Rasmussen	0.0	3.8	2.5				
% Agreement MRI × V-EEG							
Agree	48.0(-)	53.8	82.5 ⁽⁺⁾	$\chi^2 = 19.211$; $p = 0.005$ *			
Disagree	16.0(+)	0.0	0.0				
Inconclusive	12.0	11.5	7.5				
Partially agree	24.0	34.6 ⁽⁺⁾	10.0 ⁽⁻⁾				

Abbreviations: PCE = Posterior Cortex Epilepsy; FLE = Frontal Lobe Epilepsy; TLE = Temporal Lobe Epilepsy; SD = Standard Deviation; IR = Interquartile Range; GTCS = Generalized Tonic-Clonic Seizures; MCD = Malformations of Cortical Development; MTS = Mesial Temporal Sclerosis; CVM = Cerebrovascular Malformations. **Note:** (+)Positive Adjusted Residual (>1.96); (-)Negative Adjusted Residual (>-1.96); *Fisher's Exact Test.

Table 2Means, SD, Group effects, Group comparisons, Minimum and Maximum scores across intelligence domains.


	Mean (Standard Deviation)					
	PCE (n = 25)	FLE (n = 26)	TLE (n = 40)	Group Effect; Group Comparison	Min.	Max.
Intellectual Domains (StS)						
Full Scale Intelligence Quotient (FSIQ)	78.40 (21.19)	79.58 (20.88)	86.35 (21.97)	F = 1.541; $p = 0.220$	45.00	135.00
Verbal Comprehension Index (VCI)	85.24 (20.43)	87.04 (21.26)	88.52 (18.75)	F = 0.320; $p = 0.727$	52.00	136.00
Perceptual Reasoning Index (PRI)	81.88 (20.49)	82.92 (18.36)	87.45 (20.93)	F = 1.046; $p = 0.356$	45.00	127.00
Working Memory Index (WMI)	76.40 (17.27)	72.69 (16.57)	88.67 (22.40)	$F = 5.397$; $p = 0.006$; $T > F^{**}$, $T > P^{*}$	45.00	153.00
Processing Speed Index (PSI)	76.88 (17.39)	77.85 (16.18)	88.02 (20.08)	F = 4.152; $p = 0.019$; $T > P$ [#]	45.00	130.00
Clusters (StS)						
Visual Processing (Gv)	86.28 (18.28)	88.69 (20.68)	93.85 (19.15)	F = 2.143; $p = 0.124$	50.00	130.00
General Information (Gc-K0)	86.56 (18.98)	86.54 (20.18)	88.27 (19.19)	F = 0.134; $p = 0.875$	50.00	145.00
Long-Term Memory (Gc-LTM)	86.28 (18.74)	87.92 (18.27)	89.00 (16.65)	F = 0.201; $p = 0.818$	50.00	136.00
SCAD Profile	73.16 (18.50)	72.27 (17.50)	87.97 (22.74)	$F = 5.915$; $p = 0.004$; $T > F^{**}$, $T > P^{*}$	50.00	149.00
Subtests (SS)						
Block Design (Median, IR)	8.00 (5.00)	6.50 (3.50)	9.00 (4.00)	$\chi^2 = 3.402$; $p = 0.183$	1.00	17.00
Similarities	7.28 (3.62)	7.65 (3.95)	7.85 (3.41)	F = 0.190; $p = 0.827$	1.00	18.00
Digit Span	6.04 (2.80)	5.42 (2.83)	8.00 (3.83)	$F = 5.530$; $p = 0.005$; $T > F^{**}$	1.00	19.00
Coding (Median, IR)	4.00 (3.50)	5.50 (3.25)	8.00 (4.75)	$\chi^2 = 9.987$; $p = 0.007$; $T > P^{**}$	1.00	15.00
Vocabulary (Median, IR)	7.00 (4.50)	8.00 (7.25)	9.00 (4.50)	$\chi^2 = 1.245$; $p = 0.537$	1.00	16.00
Comprehension (Median, IR)	8.00 (6.00)	8.00 (7.00)	8.00 (5.00)	$\chi^2 = 0.193$; $p = 0.908$	1.00	19.00
Symbol Search	7.12 (3.77)	6.92 (3.50)	8.85 (4.10)	F = 2.552; $p = 0.084$	1.00	18.00
Picture Completion (Median, IR)	7.00 (6.50)	7.50 (9.00)	9.50 (6.75)	$\chi^2 = 3.065$; $p = 0.216$	1.00	19.00
Information (Median, IR)	6.00 (6.50)	7.00 (6.25)	8.00 (5.75)	$\chi^2 = 0.393$; $p = 0.822$	1.00	17.00
Arithmetic (Median, IR)	6.00 (5.50)	5.00 (6.00)	9.00 (6.00)	$\chi^2 = 10.187$; $p = 0.006$; $T > F^*$, $T > P^*$	1.00	19.00

Abbreviations: PCE = Posterior Cortex Epilepsy; FLE = Frontal Lobe Epilepsy; TLE = Temporal Lobe Epilepsy; StS = Standard Scores; SS = Scaled Scores; IR = Interquartile Range; Min. = Minimum; Max. = Maximum. For group comparison, consider: P = PCE; F = FLE; T = TLE. **Note:** Asterisk indicates group contrasts observed with adjusted Bonferroni correction; *p < 0.05; **p < 0.01; *#p = 0.055.

on the cognitive profile. The standard score (mean = 100, SD = 15) expresses the Verbal Comprehension (VCI), Perceptual Reasoning (PRI), Working Memory (WMI), Processing Speed (PSI) indexes, Visual Processing (Gv), General Information (Gc-KO), Long-Term Memory (Gc-LTM) clusters, SCAD profile, and the Full Scale Intelligence Quotient (FSIQ). The scaled score (mean = 10, SD = 3)

expresses the subtests of the Wechsler Scales. Normative values adjusted for age were used as a reference.

Two-way ANOVA showed an effect of the brain region on the Working Memory Index (WMI) [F (2.85) = 5.397; p < 0.01]. Bonferroni's post hoc showed that the WMI of patients with TLE was significantly higher than that of the groups with FLE (p = 0.005) and

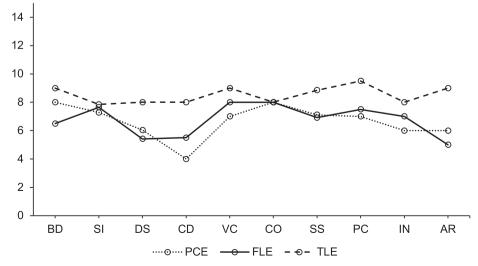
Fig. 1. Performance on the SCAD Profile. Note: PCE = Posterior cortex epilepsy; FLE = Frontal lobe epilepsy; TLE = Temporal lobe epilepsy; SCAD profile integrates the four subtests that compose the Working Memory and Processing Speed indexes (sums of Digit Symbol, Arithmetic, Coding and Symbol Search scaled scores converted to the composite score). Note that patients with FLE and PCE performed worse in the SCAD profile than patients with TLE; *p < 0,05.

PCE (p = 0.048). In addition, patients with FLE (p = 0.008) and PCE (p = 0.015) had lower performance on the SCAD profile compared to patients with TLE (Fig. 1). There was a trend toward significance on the Processing Speed Index (PSI), in which patients with PCE had lower performance compared to patients with TLE (p = 0.055). The Full Scale Intelligence Quotient (FSIQ), Verbal Comprehension (VCI), and Perceptual Reasoning (PRI) indexes did not differ in terms of brain regions.

We also analyzed the patients' performances on the subtests of Wechsler Intelligence Scales (Fig. 2). There was a significant effect of the brain region on the Digit Span, in which patients with TLE performed better than patients with FLE [F (2.88) = 5.530; p = 0.005]. The Kruskal–Wallis also showed worse performance of patients with PCE in the Coding [χ 2 = 9.987; p = 0.007] and Arith-

metic [χ 2 = 10.187; p = 0.006] subtests in relation to the group with TLE. Performance in Arithmetic was also impaired in patients with FLE. There was no effect of the brain region on the other subtests.

4. Discussion


This study analyzed the intellectual profile of children and adolescents with posterior cortex epilepsy, comparing their performance on the Wechsler Intelligence Scale to patients with frontal and temporal lobe epilepsies.

Although not significant, there was a higher prevalence of seizures in the left hemisphere (LH) in patients with TLE (60%) and PCE (56%). Another study described the predominance of EZ in the LH in 63.1% of adult patients with TLE [16]. Still, there is no consensus on a greater propensity for LH or brain lobes specific to epileptogenesis [17].

Seizure frequency is a risk factor for cognitive decline and is associated with brain damage [18]. Our study showed that patients with FLE had a higher frequency of daily seizures than TLE. Frontal injuries have been associated with a higher frequency of epileptic seizures [19]. Regarding the etiology, we found that 57.7% of patients with FLE had malformations of cortical development (MCD), including focal cortical dysplasias (FCD). Other authors have also found a higher prevalence of FCD in the frontal and temporal lobes [20–22]. A higher prevalence of gliosis is described in extratemporal epilepsies, especially in the posterior regions, which corroborates our results [23]. Regarding the degree of agreement between the VEEG and MRI, it was more difficult to locate the EZ in patients with PCE. A previous study found a more diffuse and less EEG-defined ZE in polymicrogyria [24].

Children with epilepsy have impaired working memory (WM) and processing speed (PS), even in patients with low IQ [25]. The brain areas directly involved in WM are the dorsolateral prefrontal cortex, the right parietal cortex, the anterior cingulate gyrus, and the medial occipital cortex [26,27]. Our patients with PCE presented deficits in the WMI similar to those with FLE [28], and this similarity may be due to: (1) ventral (for mesial temporal structures) or dorsal (for parietal and frontal structures) propagation of seizures originating in the posterior regions [29]; or (2) involve-

Performance on the Wechsler Intelligence Scale

Fig. 2. Performance on the Wechsler Intelligence Scale. Note: PCE = Posterior cortex epilepsy; FLE = Frontal lobe epilepsy; TLE = Temporal lobe epilepsy; BD = Block Design^a; SI = Similarities^b; DS = Digit Symbol^b; CD = Coding^a; VC = Vocabulary^a; CO = Comprehension^a; SS = Symbol Search^b; PC = Picture Completion^a; IN = Information^a; AR = Arithmetic^a; a = Median; b = Mean.

ment of parietal regions in cognitive control, as previously demonstrated [30–32]. Our results expand the evidence that posterior cortical areas adjacent to the parietal lobe are also implicated in WM.

We also found that the PSI of children with PCE was lower than that of the TLE group [33]. Our patients with TLE and FLE showed no differences between the Coding and Symbol Search subtests, which compose the PSI. These results suggest that the motor component of the Coding task was not decisive for the losses in the PS, which are better explained by primary deficits in executive functioning [25].

The SCAD profile, initially proposed by Kaufman (1994) [15], is considered an integrative measure of WM and PS. WM has been directly related to acquiring basic academic skills [34,35] and is a better predictor of academic achievement than IQ [36]. Our results showed impairment of SCAD in children with FLE and PCE [37], suggesting that both groups may have worse school performance.

Some limitations of this study must be considered. The heterogeneity of clinical variables and cognitive deficits makes it difficult to understand specific profiles for each group of patients. Performance on some neuropsychological tasks is influenced by social, educational, and cultural factors, which have not been extensively investigated in this study. The difficulty in controlling seizures and the surgical indication for the patients in this study reflect the severity of their clinical condition, making it impossible to generalize our results to the pediatric population with epilepsy.

5. Conclusion

Although we did not evidence an effect of the epileptogenic region on IQ, children and adolescents with PCE demonstrated significant impairment in working memory and processing speed. The pattern of cognitive dysfunction in PCE was similar to that observed in FLE, which expands the evidence of the involvement of frontoparietal networks on cognitive proficiency. The early identification of deficits can guide educational policies that enable the better academic performance of patients with PCE. Future studies should investigate the impact of PCE on specific cognitive domains.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

The authors gratefully acknowledge financial support from (a) Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Provost's Office for Research, University of São Paulo (USP), Grant#2011.1.9333.1.3, and (b) the National Council for Scientific and Technological Development (CNPq, Brazil) by MSc. scholarship (Grant #134105/2019-2), and Postgraduate Program in Internal Medicine (CAPES). Ribeirão Preto Medical School, University of São Paulo, Brazil.

References

- [1] Blume WT, Whiting SE, Girvin JP. Epilepsy surgery in the posterior cortex. Ann Neurol 1991;29(6):638–45.
- [2] Sierra-Marcos A, Fournier-del Castillo MC, Álvarez-Linera J, Budke M, García-Fernández M, Pérez-Jiménez MA. Functional surgery in pediatric drug-resistant posterior cortex epilepsy: Electro-clinical findings, cognitive and seizure outcome. Seizure 2017;52:46–52.
- [3] Grabow JD. special considerations. Int Congr Ser 2002;1247:447-70.
- [4] Boesebeck F, Schulz R, May T, Ebner A. Lateralizing semiology predicts the seizure outcome after epilepsy surgery in the posterior cortex. Brain 2002;125:2320–31.

- [5] Liava A, Mai R, Cardinale F, Tassi L, Casaceli G, Gozzo F, et al. Epilepsy surgery in the posterior part of the brain. Epilepsy Behav 2016;64:273–82.
- [6] The parietal lobe as a sensorimotor interface: a perspective from clinical and neuroimaging data. Neuroimage. 2001;14: S142–S146.
- [7] Lezak MD, Howieson DB, Bigler ED, Tranel D. Neuropsychological assessment. Oxford University Press; 2012.
- [8] Baxendale S, Heaney D, Thompson PJ, Duncan JS. Cognitive consequences of childhood-onset temporal lobe epilepsy across the adult lifespan. Neurology 2010;75(8):705–11. https://doi.org/10.1212/WNL.0b013e3181eee3f0.
- [9] Santangelo G, Trojano L, Vitale C, Improta I, Alineri I, Meo R, et al. Cognitive dysfunctions in occipital lobe epilepsy compared to temporal lobe epilepsy. J Neuropsychol 2017;11(2):277–90. https://doi.org/10.1111/jnp.2017.11.issue-210.1111/jnp.12085.
- [10] Gargaro AC, Sakamoto AC, Bianchin MM, Geraldi CdVL, Scorsi-Rosset S, Coimbra ÉR, et al. Atypical neuropsychological profiles and cognitive outcome in mesial temporal lobe epilepsy. Epilepsy Behav 2013;27 (3):461–9.
- [11] Hermann B, Conant LL, Cook CJ, Hwang G, Garcia-Ramos C, Dabbs K, et al. Network, clinical and sociodemographic features of cognitive phenotypes in temporal lobe epilepsy. NeuroImage: Clin 2020;27:102341. https://doi.org/10.1016/j.nicl.2020.102341.
- [12] Smith ML, Lou Smith M, Billingsley RL. Neuropsychology of Parieto-occipital Epilepsy. Adv Behav Biol 2001:113–20. https://doi.org/10.1007/0-306-47612-6-12
- [13] Fisher RS, Cross JH, French JA, Higurashi N, Hirsch E, Jansen FE, et al. Operational classification of seizure types by the International League Against Epilepsy: position paper of the ILAE Commission for Classification and Terminology. Epilepsia 2017;58(4):522–30.
- [14] Mattfeld AT, Whitfield-Gabrieli S, Biederman J, Spencer T, Brown A, Fried R, et al. Dissociation of working memory impairments and attention-deficit/hyperactivity disorder in the brain. Neuroimage Clin 2016;10:274–82.
- [15] Kaufman AS. Intelligent testing with the WISC-III. Wiley; 1994.
- [16] Seethaler M, Lauseker M, Ernst K, Rémi J, Vollmar C, Noachtar S, et al. Hemispheric differences in the duration of focal onset seizures. Acta Neurol Scand 2021;143(3):248–55.
- [17] Holmes MD, Dodrill CB, Kutsy RL, Ojemann GA, Miller JW. Is the left cerebral hemisphere more prone to epileptogenesis than the right? Epileptic Disord 2001;3:137–41.
- [18] Sutula TP, Hagen J, Pitkänen A. Do epileptic seizures damage the brain? Curr Opin Neurol 2003;16(2):189–95.
- [19] Manford M, Fish DR, Shorvon SD. An analysis of clinical seizure patterns and their localizing value in frontal and temporal lobe epilepsies. Brain 1996;119 (1):17–40.
- [20] Maynard LM, Leach JL, Horn PS, Spaeth CG, Mangano FT, Holland KD, et al. Epilepsy prevalence and severity predictors in MRI-identified focal cortical dysplasia. Epilepsy Res 2017;132:41–9.
- [21] Siedlecka M, Grajkowska W, Galus R, Dembowska-Bagińska B, Jóźwiak J. Focal cortical dysplasia: molecular disturbances and clinicopathological classification (review). Int J Mol Med 2016;38:1327-37.
- [22] Pang T, Atefy R, Sheen V. Malformations of cortical development. Neurologist 2008;14:181–91.
- [23] Dash GK, Rathore C, Jeyaraj MK, Wattamwar P, Sarma SP, Radhakrishnan K. Predictors of seizure outcome following resective surgery for drug-resistant epilepsy associated with focal gliosis. J Neurosurg 2018;1–9.
- [24] Yu T, Wang Y, Zhang G, Cai L, Du W, Li Y. Diagnostic considerations and surgical outcome. Seizure 2009;18(4):288–92.
- [25] Sherman EMS, Brooks BL, Fay-McClymont TB, MacAllister WS. Detecting epilepsy-related cognitive problems in clinically referred children with epilepsy: is the WISC-IV a useful tool? Epilepsia. 2012;53: 1060–1066.
- [26] Gerton BK, Brown TT, Meyer-Lindenberg A, Kohn P, Holt JL, Olsen RK, et al. Shared and distinct neurophysiological components of the digits forward and backward tasks as revealed by functional neuroimaging. Neuropsychologia 2004;42(13):1781–7.
- [27] van Iterson L, de Jong PF. Development of verbal short-term memory and working memory in children with epilepsy: developmental delay and impact of time-related variables. A cross-sectional study. Epilepsy Behav 2018:78:166-74
- [28] van den Berg L, de Weerd Al, Reuvekamp M, van der Meere J. Cognitive control deficits in pediatric frontal lobe epilepsy. Epilepsy Behav 2020;102:106645. https://doi.org/10.1016/j.yebeh.2019.106645.
- [29] Craciun L, Taussig D, Ferrand-Sorbets S, Pasqualini E, Biraben A, Delalande O, et al. Investigation of paediatric occipital epilepsy using stereo-EEG reveals a better surgical outcome than in adults, especially when the supracalcarine area is affected. Epileptic Disord 2018;20: 346–363.
- [30] Owen AM, McMillan KM, Laird AR, Bullmore Ed. N-back working memory paradigm: a meta-analysis of normative functional neuroimaging studies. Hum Brain Mapp 2005;25(1):46–59.
- [31] Berryhill ME, Olson IR. Is the posterior parietal lobe involved in working memory retrieval? Evidence from patients with bilateral parietal lobe damage. Neuropsychologia 2008;46(7):1775–86.
- [32] Maintaining verbal short-term memory representations in non-perceptual parietal regions. Cortex. 2021 [cited 28 Feb 2021]. doi: 10.1016/ j.cortex.2021.01.020.
- [33] Ng R, Hodges E. Neurocognitive profiles of pediatric patients with ESES, generalized epilepsy, or focal epilepsy. Epilepsy Res 2020;167:106351. https://doi.org/10.1016/j.eplepsyres.2020.106351.

- [34] Friso-van den Bos I, van der Ven SHG, Kroesbergen EH, van Luit JEH. Working memory and mathematics in primary school children: a meta-analysis. Educ Res 2013;10:29–44.
- [35] Slattery EJ, Ryan P, Fortune DG, McAvinue LP. Contributions of working memory and sustained attention to children's reading achievement: a commonality analysis approach. Cogn Dev 2021;58:101028. https://doi.org/10.1016/j.cogdev.2021.101028.
- [36] Alloway TP, Alloway RG. Investigating the predictive roles of working memory and IQ in academic attainment. J Exp Child Psychol 2010;106 (1):20-9.
- [37] van den Berg L, de Weerd Al, Reuvekamp M, Hagebeuk E, van der Meere J. Executive and behavioral functioning in pediatric frontal lobe epilepsy. Epilepsy Behav 2018;87:117–22.