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Abstract 

Let A = Ao EB A1 EB A1 EB ·· · be a graded K-algebra such that Ao is a 
finite product of copies of the field K, A is generated in degrees O and 1, 

and dimx A1 < oo. We study those graded algebras A with the property 

that Ao, viewed as a graded A-module, has a graded projective resolution, 
. .. ➔ pt ➔ ... ➔ P 1 ➔ po ➔ Ao ➔ 0, such that each pi can be generated 

in a single degree. The paper describes necessa.ry and sufficient conditions for 

the Ext-algebra of A, EBn>O Ext'.4_ (Ao, Ao), to be finitely generated. We also 

investigate classes of modules over such algebras and Veronese subrings of the 

Ext-algebra. 

1 Introduction 

Throughout this paper, K will denote a field. Let A = Ao EB A1 EB A2 EB • • • be a 

graded K-algebra such that Ao is isomorphic to a finite product of copies of K, 
TI~1 K, A is generated in degrees O and 1, and <limKAo < oo. Since A is generated 

in degrees O and 1, it follows that A is isomorphic to a quotient of the tensor algebra 

TAo(A1) = Ao EB A1 EB (A1 ®Ao A1} EB (®~Ai) EB···. There is a quiver Q such that 

TA0 (A1) is isomorphic to the path algebra KQ [5]. Thus, A~ KQ/1 for some ideal 

•The fiI1lt author wM partially support by a grant from the National Security Agency 
tThe second author wants to thank CNPq (Brazil), for financial support, in form of a produc­

tivity scholarship. 
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I in KQ. Since A is graded, I can be generated by length homogeneous elements. 
Conversely, if A is isomorphic to KQ/1 for some quiver Q and ideal /, with / 
generated by length homogeneous elements, then giving A the grading induced from 
the length grading on KQ, Ao is isomorphic to a finite product of copies of K, A is 
generated in degrees O and 1, and dimKAo < oo. 

Viewing Ao as a graded A-module supported in degree 0, let 

'P : ... ➔ pt ~ pt-1 ➔ ... ➔ pl ~ p0 ➔ Ao ➔ 0 

be a graded resolution. Let r denote the graded Jacobson radical of A, namely, 
r = A1 EB A2 EB•••. The resolution Pis minimal if, for each t ~ l, cf(Pt) c rPt-I_ 
The assumptions about the structure of A imply that minimal graded projective 
resolutions exist for graded A-modules. We study the class of graded rings A with • 
the property that, for each i ~ O, pi can be generated in exactly one degree, i5(i). 
Included in this class are the Koszul algebras, where o(i) = i [7, 3]. Also included in 
this class are the D-Koszul algebras introduced by R. Berger [4] and later studied 
by Green, Marcos, Martinez, and Zhang (6]. For D-Koszul algebras, there is some . 
d such that · 

for n even, 

for n odd. 

Note that a Koszul algebra is a D-Koszul algebra for d = 2. 
We will be interested in the Ext-algebra, E(A) = EBn>o ExtA(A0 , A0), of~graded 

algebra A. The multiplicative structure of E(A) is given by the Yoneda product. 
From the definition of E(A), we see that E(A) is a graded algebra. One of the 
fundamental results concerning Koszul algebras, is that a graded algebra A is a 
Koszul algebra if and only if E(A) can be generated in degrees O and 1 [7]. For 
D-Koszul algebras, we have the following result. If A = KQ/ I is a graded algebra 
with I generated by homogenous elements of degree d, then A is a D-Koszul algebra 
if and only if E(A) can be generated in degrees 0, 1, and 2. 

The main goal of this paper is to study graded algebras A of the form KQ/1 
with the following two conditions: 

1) If 'P : · · · ➔ pt !+ · · · ~ P 1 ~ p0 ➔ Ao ➔ 0 is a minimal graded resolution 
then, for each i, pi can be generated in exactly one degree, o(i). 

2) The Ext-algebra, E(A) = EBn~o ExtA.(A0, Ao), is finitely generated. 
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We call such algebras '5-Koszul algebras. The main result of the paper is Theorem 

3.6 which provides necessary and sufficient conditions on i5 for A to be a '5-Koszul 

algebra. At the end of this section we provide an example of a graded algebra that 

satisfies condition 1) but not condition 2). 
The paper begins with the study of a special class of bigraded algebras in Section 

2. When A is a graded algebra, then E(A) is naturally bigraded. That is, each 

Extn(Ao, Ao) is a direct sum of graded pieces. If A satisfies condition 1) above 

then, for each n ~ 0, Extn(Ao,Ao), as a graded module, is supported in degree 

c5(n)~ T~is _motiv~tes the study of_ bigra~ed algebras, B = ~ 9=1 Bi.; such that 
Bi.; - 0 1f J =J 6(i), for some function c5. N-+ N, where N - tO, 1, 2, .. . }. Such 

bigraded algebras are called 6-detennined bigraded algebras. We introduce a new 

condition, which we call condition SG, on cS-determined bigraded algebras; namely 

whenever c5(i) + 6(j) = 6(i + j), B;,6(i) · B;,5(i) = B,+;,6(i+j)· The main result of 
Section 2 is Theorem 2.2 which provides necessary and sufficient conditions on cS, 
for a 6-determined bigraded algebra satifying condition SG to be finitely generated. 

In Section 3 we return to our study of graded algebras satisfying condition 1). If 
A is such an algebra, we show that, as a bigraded algebra, E(A) satisfies condition 

SG. This leads to Theorem 3.6 which gives necessary and sufficient conditions on 6 

for an algebra satisfying condition (1) to satisfy condition (2). In Section 4, we study 

a special class of cS-Koszul algebras and their modules which include Koszul algebras 

and D-Koszul algebras. We show that a subalgebra C of E(A) can be regraded so 
that C is a Koszul algebra in this regrading. As a consequence of this result, if A is 

a Koszul algebra and a is a nonnegative integer, then C = EBn>o Ext~4°(Ao, Ao) is a 

Koszul algebra. -
Section 5 investigates a class of algebras which satisfy condition (1) and there is 

some n such that cS(kn) = kc5(n) for all k ~ 1. Let A be such an algebra. We show 

that the Veronese subring E(A)lnJ = ffiA:>o Extr(Ao, Ao) is a Koszul algebra. We 

also investigate Backelin's rate of such algebras. 
The paper ends with the consideration of algebras satisfying condition 1) with 

different restrictions on cS. We obtain subalgebras of E(A) which, after regrading, 

are Koszul algebras. 
We end this section with an example of a graded algebra A which satisfies con­

dition 1) but E(A) is not finitely generated. Let K(x, y} denote the free associative 

algebra on two noncommuting indeterminates x and y and write I = (a, b, c) for 

the ideal generated by a, b, c. We note that K(x, y} is isomorphic to the path al­

gebra with quiver consisting of one vertex and two loops. Let J = (x2y, y2x) and 

A= K(x,y)/1. We note that A is a monomial algebra and the ring structure of 
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E(A) is determined in [10]. If 'P : • • • ➔ pt ~ • • • ~ P 1 ~ P 0 ➔ Ao ➔ 0 is a 
minimal graded resolution then pn is isomorphic to AEBA for n ~ 1, P 0 is generated 
in degree 0, and P" is generated in 2n - 1 for n ~ 1. It is not hard to show that 
ExtA(Ao, Ao)· ExtA(A0 , Ao)= 0 for all r, s ~ 1 {see [10, 6)). It follows that E(A) is 
not :finitely generated. 

2 Graded algebras and £>-determined bigraded al­
gebras 

. Let B = ffii,i~D BiJ be a bigraded algebra; that is, if bi,i E BiJ ba,t E Ba,t 'then 
b,.; • ba,t. E B,+a.;+t· Associated to a bigraded algebra B is a graded algebra A(B) = 
A(B)0 EB A{B)1 EB•·· where A(B)n = EB;'=o B,..;. We assume throughout this section 
that if B is a bigraded K-algebra then, for each n, dimK(A(B)n) < oo. 

If B is a bigraded K-algebra and 6 : N ➔ N, we say B is 6-determined from 
m if, for i ~ m, B,.; = 0 whenever j =/. 6(i). If m = 0 we simply say that B is 
8-determined and if we do not need to explicitly mention m we will say that B is 
eventually o-determined. Clearly, if B'is a-determined then A(B) = EB:>o Bn,6(n)· 

We note that if A= AoEBA1 EBA2EB· ··is a .graded K-algebra then the Ext-algebra 
E(A) inherits a natural bigradihg. Furthermore, if A satisfies condition 1) of Section 
1, then E(A) is a-determined. This observation motiviates studying a-determined 
algebras. 

In this paper a graded algebra A is called strongly graded if, for each i and j, if 
A,A; =/. 0 then A,A; = Ai+i. We .say A is strongly graded from m if, for all i, j ~ m, 
if A,A; =/. 0 then A,A; = A.+;. We say A is eventually strongly graded if it is strongly 
graded from m for some m. 

We begin with an elementary result about graded algebras whose proof we include 
for completeness. 

Proposition 2.1 Let A = Ao EB A1 EB••• be an eventually strongly graded algebra 
with dimKA. < oo. The following statements are equivalent. 

i) A is finitely generated. 

ii) There is an integer t, such that, for all k > t, there exists i, 0 < i < k, such 
that At= A.At-•· 

Proof. We are assuming that dimK(A,) < oo for all i ~ 0. Thus, Ao EB A1 EB••• EB A, 
is a finite dimensional vector space. It is clear that if ii) holds, A can be generated 
by a K-basis of Ao EB A1 EB··· EB A,. Thus, ii) implies i). 
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We now show i) implies ii). Assume i) holds and suppose that A is generated by 

Ao EB· · · A. for some integer s. Suppose that A is strongly graded from m. Without 

loss of generality, we may assume that s 2: m. 
Lett= 3s. Suppose that a E Ak with a-/= 0 and k > t. Then we may write a as 

a sum of terms of the form 0.1 • • • as. where each O.; E A..;;, each O < !Li; :5 s, and 
a., · · · a.. -/= 0 is an element in Ak. Consider one of these terms, say a1 • • • a,. with 

a, E Au, and O < u, :5 s. We take j such that u1 + · · · + u;-i is less than s but 
u1 + · · · + u; is greater than s. Hence, if d is the degree of a.1 • • • Cli;, then s > d and 

d < k - s. Now a;1 • ··a,. is degree k - d 2: s and s 2: m. Since a1 •••a;, a;+i •••a,. 

and a1 · • • a,. are all nonzero, we conclude that AdA1c-d = Ak and the result follows. 

□ 

A condition similar to being strongly graded for a 8-deterrnined algebra B is the 

following. 

Condition SG: For all i,j 2: 0 such that 8(i) + 8(j) = 8(i + j), B,,a(i)B;,o(i) = 
Bi+J,o(i+il· 

The importance of 8-deterrnimed bigraded algebras satisfying condition SG will 

be shown in the next section. We will prove that if a graded algebra A satisfies 
condition 1) of the previous section, then E(A) is a 8-determined K-algebra which 

satisfies condition SG. 
Note that if B satisfies condition SG, then A(B) is strongly graded, but, in 

general, the converse fails. Furthermore note that if B is a 8-deterrnined bigraded 

algebra and if 8(i) + 8(j) -/= 8(i + j) then B,,a(i) · Bj,a(i) = 0. 
The next result is the main result of this section which classifies when A(B) is 

finitely generated for a bigraded algebra that satisfies condition SG. 

Theorem 2.2 Let B = ffi:2:o B,.; be a 8-determined bigraded algebra such that 

dimKB,,a(i) < oo. Assume that B satisfies condition SG. Then the following state­

ments are equivalent. 

i) B is finitely generated. 

ii) A(B) is finitely generated. 

iii) There is an integer t such that, for all k > t, there exits i, 0 < i < t such that 

8(k) = 8(i) + 8(k - i). 
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Proof. The equivalence of i) and ii) is clear since we are assuming that dimK(A(B);) < 
oo for all i ~ 0. 

By Proposition 2.1, ii) is equivalent to 

ii') there is an integer t, such that, for all k > t, there exists i, 0 < i < k, such 
that A(B)k = A(B);A(B)k-i· 

Since we are assuming that B satisfies condition SG, it follows that B is 6-
. determined and that, for each i ~ 0, A(B) = B;,6(i)· Thus, if A(B);A(B)j i= 0 then 
6(i) + 6(j) = 6(i + j). But by condition SG, it follows that A(B);A(B); i= 0 implies 
A(B);A(B); = A(B)i+;• From these remarks, it is easy to see that ii') and iii) are 
equivalent. This completes the proof. 0 

The following example shows that the above result is not valid if one replaces 
that B satisfies condition SG with B eventually satisfies condition SG. Let 6(i) = i 
for i = 0 and 1, and 6(i) = i+ 1 for i > 1. Let B = EB;>o B;,o(i), where B;,o(i) = K for 
all i. For i,j ~ 1, we require B; • B; = O. Then Bis <>-determined. We note that B 
satisfies condition SG from 2 vacuously. But fort= 2, if k > 1, 6(k) = 6(1)+6(k-l). 
Hence condition iii) of Theorem 2.2 holds but Bis not finitely generated. 

We end this section with another result about finite generation of graded alge­
bras. 

Proposition 2.3 Let A = Ao EB A1 EB ·, · be a graded K -algebra with each A; finite 
dimensional over K. Let d be a positive integer and consider the subalgebra C = 
Ao EB Ad EB Ad+l EB Ad+2 EB · · · of A. Then A is finitely generated if and only if C is 
finitely generated. 

Proof. Since each A; is finite dimensional, it is clear that if C is finitely generated 
then so is A. 

Assume that A is finitely generated by homogeneous elements a1 , •.. , 11t such 
that, for 1 :5 i :5 t, deg( a;) $ m. We may assume that m > d. We show that C can 
be generated by elements from Ao EB Ad EB· · · A2m+d• Since Ao EB Ad EB ~+1 • • • A2m+d 
is finite dimensional, the result will follow. 

Let x be homogeneous element in A of degree t > 2m+d. We will show it is a sum 
products of elements of smaller degree in C. Since we are assuming that A can be 
finitely generated by a1, ..• , llt, we may write x as a sum of terms of the form kb1 • • • br 
where k E K and each b; E { a1, ... , llt}. It suffice to show that each term bi · · · br 
can be written as a product elements from Ad EB Ad+i · · · A2m+d· Choose j such that 
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b1 · · · b;-1 < m and b1 · · · b; ~ m. It follows that m ~ b1 · · · b; < 2m - 1. Thus the 

degree of b;+i · · · br is t - deg(bi · .. b;) > t - (2m - 1) ;::: 2m + d - (2m - 1) = d + 1. 

Thus, both b1 · · · bi and bi+1 · · · br are in C and b1 · · · b; E Ao EB Ad EB A2m+d• If 
bj+1 · · • br E Ao EB Ad EB A2m+d we are done. If not, bi+I · · · br has degree > 2m + d 
and we use the argument above replacing x by bi+t · · · br. Eventually we get x as a 
product of elements of Ao EB Ad EB A2m+d and the proof is complete. 0 

3 8-Koszul algebras 

In this section we introduce a class of algebras which generalize both Koszul and 

D-Koszul algebras. Let A= A0 EB A1 EB··• be a graded K-algebra such that Ao = 
n:=l K, A can be generated in degrees O and 1, and dimKA1 < 00. As mentioned 
in the introduction, A is isomorphic to KQ/ I, where Q is a finite quiver, I is a 
length homogeneous ideal in the path algebra KQ contained in square of the ideal 

generated by the arrows of Q. The grading of A is induced from the length grading 

of KQ. We keep these assumptions on A throughout this section. 
Let 'P : · · • ➔ pn ➔ · · · ➔ P 1 ➔ pO ➔ A0 ➔ 0 be a minimal graded projective 

resolution of Ao (viewed as a graded A-module living in degree 0). We say that 

A is 8-resolution determined if there is a function 8 : N ➔ N such that, for each 
n ~ 0, pn can be generated in degree 8(n). This is the same as condition 1) of the 
introduction. We note that A is a Koszul algebra if and only if A is 6-resolution 
determined for 8 given by 8(n) = n. Furthermore, A is a D-Koszul algebra if and 
only if A is 8-resolution determined for 8 given by 

for n even, 

for n odd. 

In the general graded case, the grading on A induces a bigrading on the Ext­

algebra E(A) = EBn>OExtA(Ao,Ao) as follows. We note that ExtA(Ao,Ao) = 
HomA(pn, A0). Now P" can be written as ffi;pn[i] where pn[ij is a graded pro­
jective A-module generated in degree j. Then E(A),.; = HomA(P'fj], Ao). 

Viewed as a bigraded algebra, E(A) is 5-determined if and only if A is 5-resolution 

determined. 
We begin with some elementary observations. Suppose, as usual, that 

... ➔ pn ➔ . . . ➔ P 1 ➔ p0 ➔ Ao ➔ 0 is a minimal graded projective resolu­

tion of A0• Then we always have that pO can be generated in degree O and P 1 can 

be generated in degree 1. It is easy to show (see [71) that P2 is generated in degree 

7 



d if and only if J can be generated by homogeneous elements of degree d. There 
are 6-resolution determined algebras with 6(2) a positive integer greater than 2; for 
example D-Koszul algebras [6]. On the other hand, there are restrictions on 6; for 
example the generalized triangle inequality given in the next proposition. 

Proposition 3.1 Let A be a c5-resolution detennined algebra and suppose that n = 
n1 + n2 + · · · + n,: is a partition of n. Then c5(n) ~ c5(n1) + c5(n2) + · · · + 6(n,:). 

Proof. We use Corollary 3.3 of [6] which states that if M is a graded module 
generated in degree O which has a graded resolution • • • ➔ Q1 ➔ Q0 ➔ M ➔ 0 with 
Qn generated in exactly one degree t, then t 2: c5(n). 

Observe that nn(Ao) = fr1 (nn- n, (Ao)). We also have that nn-n, (Ao) is gener­
ated in degree 6(n - n1)- Using the result above and also the fact that 
nn-ni (Ao) shifted :-c5(n - n1) is generated in degree 0, we get that nn(Ao) is gen­
erated in degree bigger or equal c5(n1) + c5(n - n1), Hence o(n) ~ 6(n1) + 6(n - n1), 
and the result follows by induction. 0 

This result has some interesting consequences. 

Corollary 3.2 Keeping the hypothesis of Proposition 3.1, 6 is strictly increasing. 

Proof. By Proposition 3.1, c5(n + 1) 2: c5(n) + c5(1) = c5(n) + l. 0 

Corollary 3.3 Keeping the hypothesis of Proposition 3.1, if d = 6(2), then, for 
n 2: 0, 

for n even, 

for n odd. 

Proof. The result follows by an easy induction argument from Proposition 3.1. 0 

We now state an important result from [6] which will imply that if A is a c5-
resolution determined algebra, then E(A) satisfies condition SG. 

Proposition 3.4 {6} Let A be a graded algebra and . • . ➔ P 2 ➔ P 1 ➔ Ao ➔ 
0 a minimal graded resolution of Ao- Suppose that pi is finitely generated with 
generators in degree cl;,, for i = o:, {3, o: + {3. Assume that 

da+/J = da + dp. 

Then the Yoneda map E~(Ao, Ao)®K E~(Ao,Ao)-+ E~+/J(Ao,Ao) is surjeetive. 
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D 

Thus, 
Ext~+.B(Ao,Ao} = E~(Ao,Ao} · E~(A0,A0 } 

= E~(Ao,Ao) · E~(Ao,Ao), 

As an immediate application of the proposition, we have the following result. 

Proposition 3.5 If A is a t5-resolution determined graded algebra then E(A) is a 
t5-detennined bigraded algebra that satisfies condition SG. 

Proof. We have seen that if A is a 8-resolution determined graded algebra then 
E(A) is a t5-determined bigraded algebra. Proposition 3.4 directly implies that 
E(A) satisfies condition SG. 0 

Recalling that both Koszul algebras and D-Koszul algebras have Ext-algebras 
that are finitely generated, we are led to the following definition. We say a t5-
resolution determined algebra A is a t5-Koszu.l algebra if E(A) = EBn>o Ex(HAo, Ao) 
is finitely generated. -

The following example shows that not all t5-resolution determined algebras are 
6-Koszul. Let A= K(x, y, z, w)/(xyz, zwx). Then A is a monomial algebra and the 
minimal graded projective resolution of Ao = K is given in [9]. It is immediate to 
check that t5(0) = 0, 6(1) = 1, and, for n ~ 2, 6(n) = 2n - 1. The multiplicative 
structure of the Ext-algebra of a monomial algebra is given in [10). Vsing the 
bigrading, one sees that Ext~(A0,A0)Ext~(A0,A0 ) = 0 for i,j ~ 1. It follows that 
A is a 6-resolution determined algebra but E(A) is not finitely generated. We note 
that the algebra given in the example at the end of Section 1 also has the property 
that A is t5-resolution determined and E(A) is not finitely generated. 

The next result is the main result of this section. 

Theorem 3.6 Let A= Ao EB A1 EB···= KQ/I be a graded algebra where I is an 
ideal generated by length homogeneous elements in KQ and the grading is induced 
from the length grading in KQ. Assume that A is t5-resolution determined. Then 
A is a t5-Koszul algebra if and only if there is some positive integer t, such that, if 
k > t, then there exists i, with O < i < k, such that 6(i) + t5(k - i) = 6(k). 

9 



Proof. By Proposition 3.5 that E(A) is a o-determined bigraded algebra that sat­
isfies condition SG. The result follows from Theorem 2.2. 0 

Note that if A is a Koszul algebra then, for each k and each i < k then o(k) = 
o(i) + o(k - i). On the other hand, if A is a D-Koszul algebra with D > 2 then, for 
each i, k and O < i < k, o(k) = o(i) + o(k - i) if and only if i or k - i is even. This 
shows that, in general, if there is some positive integer t, such that, if k > t, then 
there exists i, with O < i < k, such that o(i) + o(k - i) = o(k} one must be careful 
how i is chosen. 

4 <5-Koszul modules and applications 

We keep the same assumptions on a graded K-algebra A as in the previous sections. 
In this section, we study 8-Koszul algebras and 8-Koszul modules. If A is a 8-Koszul 
algebra and M is a graded A-module, we say Mis a 8-Koszul module if there is a 
graded projective resolution of M, • • • ➔ Qn ➔ • • • ➔ Q1 ➔ Q0 ➔ M ➔ 0 such 
that, for each n 2: O, Q" can be generated in degree o(n). 

In [6], the authors prove that if A is a D-Koszul algebra, D ~ 2, then, after 
regrading, Ee11(A) = EBn>o Ext!n(A0, Ao) is a Koszul algebra. They also prove that 
if M is D-Koszul module, then EBn>o Extt(M, Ao) is a Koszul Eev(A)-module. In 
this section, we extend and generalize these results. 

If A = Ao EB A1 EB A2 EB··· then we let r = A1 EB A2 EB · • •• Given our assumptions 
on A, r is the graded Jacobson radical of A. If M is a graded A-module, we let 
nn(M) denote the nth-syzygy of M of a minimal graded projective resolution of M. 
If M = EBnez M,. is a graded A-module, M[k] is the graded module EBnez Nn where 
N,. = M,._,.. 

From the remarks at the end of the previous section, we see that for a D-Koszul 
algebra, if n even, o(k + n) = o(k) + o(n) for all k E N. The next proposition gives 
a generalization of a known result, for the even part of the Ext-algebra,[6]. 

Proposition 4.1 Let A be a 8-Koszul algebra and assume there is an integer n 
such that o(k + n) = J(k) + o(n) for all k EN. Let M be a J-Koszul module. Then 
nn(M)[-J(n)] and nn-1 (rM)[-8(n)] are 8-Koszul modules. 

Proof. Since M is a J-Koszul module, nn(M)[-J(n)] is generated in degree 0. 
If . . . ➔ Q1 ➔ Q0 ➔ M ➔ O is a minimal graded projective resolution of 
M then · · · ➔ Qn+l[-J(n)] ➔ Qn[-o(n)] ➔ nn(M)[-o(n)] ➔ 0 is a minimal 
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graded projective resolution of nn(M)[-6(n)] and Qn+k[-6(n)] is generated in de­
gree 
o(n + k) - o(n) = 8(n) + o(k) - o(n) = <>(k). Hence we have that nn(M)[-<>(n)] is 
<>-koszul. 

Applying Proposition 5.1 of [6] we get an exact sequence 

(*) 0 ➔ nt(M) ➔ nt(M/rM) ➔ nt-1(rM) ➔ 0, 

where each module is generated in degree <>(t). Thus n"-1 (rM) is generated in degree 
<>(n). Moreover, nt(nn-1 (rM))[-<>(n)] is generated in degree <>(t+ n) = <>(t) +<>(n). 
The proof now follows exactly like the proposition 5.2 of [6]. 0 

If C = C0 EB C1 EB··· is a graded K-algebra, we let C[n] denote the graded K­
algebra Co EB Cn EB C2n EB C3n EB· · · regraded by viewing Ckn as the homogeneous part 
of C[n] of degree k. c[n] is called the nth - Veronese subring of C. If X = ffi;ez X; 
is graded C-module, we let x[n] = EB;Ezl'i where Y; = Xin· Then x[n] is a graded 
c[nLmodule. 

If A is a graded algebra and M is a graded A-module, we let 
t'(M) = EBn>O Ext~(M, A0 ). We now prove the main result of the section which 
extends Theorem 6.2 of [6]. The result is similar in flavor to Backelin and Froberg's 
result [1] that the n th-Veronese subring of a Koszul algebra is Koszul except that 
the algebra in question, E(A) is not in general generated in degrees 0, 1 as required 
in Backelin's work. 

Theorem 4.2 Let A be a <>-koszul algebra and assume there is an integer n such 
that <>(n + k) = <>(n) + o(k) for all k E N. Let M be a 6-Koszul module. Then 
£(M)[n] = ffikENExf'k(M, Ao) (regraded} is a Koszul module, over the algebra 
E(A)[n] = EE)k>O Exfi(A0 , A0), regraded. In particular, E(A)[n] is a Koszul alge­
bra, after regrading. 

Proof. From the short exact sequence (*), for each t, we obtain a short exact 
sequence 

0 ➔ Extt-1(rM,A0 ) ➔ Extt(M/rM,A0) ➔ Extt(M,A0 ) ➔ 0. 

Thus, we have an epimorphism of E(A)lnLmodules, £(M/rM)ln) ➔ £(M)ln] ➔ 0 
whose kernel is 

EBExt~k-l(rM,Ao) = llExtnk-n(n"-1(rM),Ao) = £(nn-1(rM)[-o(n)])[n)_ 

k~l k~O 
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By Proposition 4.1, nn-1(rM)[-6(n)] is a 6-Koszul module. Using the hypothesis 
that o(n + k) = 5(n) + 5(k) for all k EN and induction, we conclude that E(M)[n] 
is a E(A)[nLKoszul module. Taking M = Ao, we see that,after regrading, E{A)ln] is 

a Koszul algebra. 0 

We apply the theorem to a Koszul algebra and obtain another proof of a reult 

of Backelin and Froberg [l]. 

Corollary 4.3 Let A be a Koszul algebra. Then A[n] and E(A)[n] are both Koszul 

algebras. 

Proof. For a Koszul algebra, o(n) = n and hence, for all k, n E N, i5(n + k) = 
5(n) + o(k). By Theorem 4.2, since Ao is a 5-KoszuJ A-module, E{A)ln] is a Koszul 
algebra. Since A is isomorphic to E(E(A)) and E(A) is a KoszuJ algebra, we see 
that 'A[n] is a Koszul algebra. 0 

5 Veronese subrings 

In this section we fix a positive integer n and a o-resolution determined algebra A. 
We say that A satisfies the nth - Veronese property, or the n- V property, if 6(nk) = 
H(n) for all k ~ 0. A A-module Mis called an n-V module if nnk(M) is generated 
in degree ko{n) = 6(kn) for all k ~ 0. 

Observe that a Koszul algebra satisfies the 1-V property and a D-Koszul algebra 
satisfies the 2-V property. In general, if A satisfies property n-V then A is 6-Koszul 
and, after regrading, the n th-Veronese subring of E(A), E{A)fnl, is Koszul. 

Proposition 5.1 Let A be a 6-resolution determined algebra which satisfies the n-V 
property. Let M be a A-module that satisfies then- V property. Then nn(M)[-6(n)] 
and nn-1 (rM)[-o(n)] are Koszul modules which satisfy the n-V property. 

Proof. Apply the proof of Proposition 4.1.0 

As in Section 4, we can apply this result to obtain the following two results. 

Theorem 5.2 Let A be a o-resolution determined algebra which satisfies the n th -

Veronese property and let M be a A-module which satisfies the n th - Veronese property. 

Let E(A)lnl be the n th - Veronese subring of E(A) and E(M)lnl = ffik>o ExfJ...k(Ao, Ao)-
Then E(M)[n] is a Koszul E(A)[nLmodule after regrading. 

0 
-
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Corollary 5.3 Keeping the notation of Theorem 5.2, E(A)ln] is a Koszul algebm.O 

The next result shows that an algebra that satisfies the n-V property is a 8-Koszul 
algebra. 

Proposition 5.4 If A is a 8-resolution determined algebra that satisfies the n- V 
property then E(A) is finitely generated. 

Proof. We have seen that 8 is strictly increasing. Fix i with 0 < i < n. Consider 
A; = {r : 0 < r < 8(n) and there is t such that 8(tn + i) = r(mod(8(n))}. Note 
that for each i, A; is a finite set. Hence, for each i, there an integer o:(i) such 
that for each t > a(i), there is an integer s, with s < t, such that 8(tn + i) = 
8(sn+i){mod(8(n)). Since A satisfies the n-V property and since 8 is increasing, we 
see that tt5(n) < o(tn + i) < (t + l)t5(n), and st5(n) < t5(sn + i} < (s + l}t5(n). Now 
8(tn + i) - 8(sn + i) is a multiple of 8(n). The above two inequalities imply that 

to(n) - (s + l}t5(n) < t5(tn + i) - 6(sn + i) < (t + 1)8(n) - s8(n). 

Thus we conclude that 8(tn + i) = 8((t - s)n) + 8(sn + i). 
Setting o: = max{n, o:(1), ... , o:(n-1)} we see that if if u > o:, writing u = tn+i, 

there iB some integer s < t such that 8(u) = 8(tn + i) = 8((t - s)n) + 8(sn + i). By 
Theorem 3.6, we conclude that E(A) is finitely generated. 0 

We end this section with some remarks about the growth of algebras that satisfy 
the n-V property. We refer the reader to [4] for both definitions and further details. 
Assume that A does not have finite global dimension. Define 

8(m) -1 
rate(A) = supm>l 

1 
. 

m-

Ifm = kn then 
8(m) - 1 k8(n) - 1 8(n) - 1 --- = ----''-'--- < .....;_'----, 
m-1 kn-1 - n-1 

where the last equality can be shown to true by considering the derivative of the 
function xcf(n)-l. 

:,;n-1 
Next, consider m = nt + i, with O < i < n. Then 

8(m) - 1 < 8(n(t + 1} = t + 18(n) < 28(n). 
m-1 - nt t n - n 
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Since n ~ 2, we have that 26in) ~ 6
~~~

1
• It follows that rate(A) ~ 26i"l. By 

Backelin's theorem [4], we conclude that the Veronese subring A' = EBA:>o A1ct is 

Koszul if t ~ 26i"l. -
If A is a 6-resolution determined algebra, then A has finite rate if and only if 

{
6
~~~

1 ~ 2} is bounded. In this case, if t ~ sup{ 6
~~~

1
} then A[n] is Koszul. In our 

example A= K(x, y, z, w)/(xyz, zwz), we have 6(n) = 2n -1 for n ~ 1. Therefore, 

rate{A) = sup{2~_=-2
1
)} = 2. Hence the Veronese subalgebras, A[dJ = $1c~aA1:d are 

always Koszul algebras for d ~ 2. 

6 Examples and questions 

We begin by presenting a class of 6-Koszul algebras which are neither a Koszul 
algebra nor a D-Koszul algebra 

Let A = KQ / I where J is an ideal generated by a set of paths oflength 2N such 
that all overlaps are length 3N and there is at least one overlap occurs among the 
elements of I. Recall that we say path p overlaps path q if there is a path r such 
that r = qq' = 'PP for some paths p' and q' and length q > length '[I. For example, 
if KQ = K(x, y, u, v), the free algebra on 4 noncommuting indeterminants, and 
I= (xyuv, uvxy). For this example, N = 2. 

For an algebra A in this general class of algebras, A is o-resolution determined 
where o(O) = 0, o(l) = 1, and, for k ~ 2, o(k) = kN. This can be seen using the 
results in [9]. For such a o, for i,j ~ 2, o(i + j) = o(i) + o(j). By Theorem 3.6, A 
is is a 6-Koszul algebra. Applying the results of [10], it can be shown that A can be 
generated in degrees 0,1,2, and 3 but not in degrees 0, 1, and 2. Thus, A is not a 
Koszul nor a D-Koszul algebra. We also can obtain this from Theorem 3.6, noting 
that kN = {k - 2)N + 2N and, in this case, k - 2 ~ 2. 

We end the paper with some open questions. 

Question 1: For which functions o : N ➔ N is there a 6-resolution determined 
algebra? 

Question 2: For which functions 6: N ➔ N is there a 6-Koszul algebra? 

Question 3: Is there a bound N such that if A is a 8-Koszul algebra, then the 
Ext-algebra, E(A), is generated in degrees Oto N. 
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