symmetry

Article

Inflation inside Non-Topological Defects and Scalar

Black Holes

Yves Brihaye !, Felipe Console 2 and Betti Hartmann

check for

updates
Citation: Brihaye, Y.; Console, F;
Hartmann, B. Inflation inside Non-
Topological Defects and Scalar Black
Holes.  Symmetry 2021, 13, 2.
https:/ /dx.doi.org/
10.3390/sym13010002

Received: 29 October 2020
Accepted: 25 November 2020
Published: 22 December 2020

Publisher’s Note: MDPI stays neu-
tral with regard to jurisdictional claims
in published maps and institutional

affiliations.

Copyright: © 2020 by the authors. Li-
censee MDPI, Basel, Switzerland. This

article is an open access article distributed

under the terms and conditions of the
Creative Commons Attribution (CC BY)
license (https:/ / creativecommons.org/
licenses /by /4.0/).

2,3,4,%

Département de Mathématique, Université de Mons , Place du Parc, 7000 Mons, Belgium;
yves.brihaye@umons.ac.be

2 Instituto de Fisica de Sao Carlos (IFSC), Universidade de Sao Paulo (USP), CP 369,

Sao Carlos, SP 13560-970, Brazil; felipe.console@usp.br

Institut fiir Physik, Carl-von-Ossietzky Universitdt Oldenburg, 26111 Oldenburg, Germany
Department of Physics and Earth Sciences, Jacobs University Bremen, 28759 Bremen, Germany
*  Correspondence: bhartmann@ifsc.usp.br

Abstract: In this paper, we demonstrate that a phenomenon described as topological inflation, during
which inflation occurs inside the core of topological defects, has a non—topological counterpart.
This appears in a simple set-up containing Einstein gravity coupled minimally to an electromagnetic
field as well as a self-interacting, complex valued scalar field. The U(1) symmetry of the model is
unbroken and leads to the existence of globally regular solutions, so-called boson stars, that develop
a horizon for sufficiently strong gravitational coupling. We also find that the same phenomenon
exists for black holes with scalar hair.
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1. Introduction

The theory of General Relativity (GR) is the best tested theory of gravity developed up
to date. The classical tests, within the solar system, where the deviations from Newtonian
gravity are small, helped to promote GR to one of the fundamental theories of nature.
For strong gravitational fields, i.e., when the deviations from Newtonian gravity become
important, observations and tests have now become available. An excellent laboratory to
consider strong gravitational field effects are black holes (BHs) and neutron stars (NSs).
It is a common belief that BHs are “simpler” to describe than NSs partly due to the lack
of knowledge of the equation of state of the matter making up the NS. BHs, in fact, are
still believed to follow the so-called no-hair conjecture [1], which states that all stationary
asymptotically flat BHs are fully characterized by global charges associated with a Gauss
law. There are numerous counter-examples for the conjecture when considering nonlinear
matter fields. However, the situation for scalar fields is very different. A number of
no-scalar-hair theorems were put forward (see [2] for a recent review) and scalar fields,
apparently, should be trivial around a stationary and asymptotically flat BH spacetime.

One process where a scalar field can become non-trivial in a BH spacetime is through
spontaneous scalarization. It was first discussed in a scalar-tensor theory of gravity around
a NS [3], in which the scalar field couples to the trace of the energy-momentum tensor and
can obtain non-vanishing values even if its asymptotic value is zero. The corresponding
phenomenon has gained considerable attention in black hole physics [4].

The view on no-hair theorems for minimally coupled scalar fields has changed since
the discovery of hairy Kerr BHs in a model where a massive complex scalar field is mini-
mally coupled to gravity [5,6]. To circumvent the no-scalar-hair theorems, it is necessary
to assume a harmonic dependence on the time and azimuth coordinates. Then, the so-
called synchronization condition w/m = Qg must be imposed, where w is the scalar field
frequency, m an integer, and Qg the horizon angular velocity. The configuration of the
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test scalar field outside the event horizon was dubbed “scalar cloud” and when taking
backreaction into account leads to the existence of hairy Kerr BH solutions. As the horizon
radius approaches zero, the solution is reduced to a spinning boson star.

Boson stars (BSs) are regular, stationary, and localized solutions to the Einstein—Klein—
Gordon system of equations, formed by a complex scalar field with a continuous U(1)
symmetry, which gives rise to a globally conserved Noether charge. They are the self-
gravitating counterparts of Q-balls [7].

Their size can range from the atomic scale up to the size of supermassive BHs, de-
pending on the choice of the scalar potential (see [8] for a review), and can be used as
models for dark matter particles [9] and BH mimickers [10], for example. The absence of
an event horizon, however, can lead to significant changes in the propagation of light rays
when compared to the spacetime of a BH [11]. Charged BSs were studied in [12] for a self-
interacting scalar potential whose motivation comes from supersymmetric extensions of
the standard model and, originally, uncharged Q-balls had been discussed [13-15]. A com-
bination of the attractive effects of gravity and the repulsive effects of electromagnetism
can render the charged BS stable. Most work that deals with boson stars is concerned with
infinitely extended boson stars, e.g., also when considering these compact objects as black
hole mimickers. Moreover, the boson stars that are actually compact do need a very specific
potential that is not differentiable at vanishing scalar field value; see, e.g., [16]. In this latter
case, the exterior of the boson star would simply be given by the Schwarzschild solution
with a scalar field identically zero. Thus, in this paper, we consider only the boson stars
with scalar field falling off exponentially at infinity.

Further studies concerning scalar clouds were considered subsequently for Reissner—
Nordstrom (RN) spacetime [17], where, for a non-trivial configuration of the gauged scalar
field, it was shown that it is necessary to add self-interactions in the scalar potential and
the resonance condition to be satisfied, w = gV (r;,), where g is the scalar coupling constant
and V(ry,) the electric potential on the horizon.

Gauged scalar clouds in the Schwarzschild BH were considered in [17,18]. In this case,
the background is fixed by the Schwarzschild metric and the differential equations for the
electric potential and the scalar field are coupled. It was shown that the scalar clouds exist
for some range in the gauge coupling, and it was also found numerically in [18] that two
different solutions exist for the same values of the gauge coupling constant and the electric
potential at infinity. When backreaction is taken into account, the solutions exist up to
a maximal value of the gravitational constant and lead to two distinct situations: (i) an
extremal BH with a diverging derivative of the scalar field at the horizon and (ii) a RN—de
Sitter solution with a screened electric charge.

In this paper, we extend the results of [18] to include globally regular space-times
with the same matter field content. The corresponding solutions are charged Q-balls (in a
Minkowski space-time) and boson stars. In the following, we will demonstrate that the
phenomenon described above doesn’t depend on the details of the scalar self-interaction
or on the fact that the space-time possesses a priori a horizon. Our paper is organized
as follows: in Section 2, we discuss the model and equations of motion, while Section 3
contains our results on black hole and globally regular space-times, respectively. We end
with a discussion in Section 4.

2. Model

Here, we will discuss solutions to the following (3+1)-dimensional model :

R * 1
S = /d4x\/—g£ , L= (DY) DY — L Fu " = U([Y]). 1)

This is the Einstein—Hilbert action with ‘R the Ricci scalar and G Newton’s constant
minimally coupled to a complex valued scalar field ¥ that is charged under a U(1) gauge
field Ay. D, = 9, — iqA,, is the covariant derivative of the scalar field and F,, = 9, Ay —
dy Ay the field strength tensor of the U(1) gauge field. The scalar field potential U(['Y|) will
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turn out to be a crucial ingredient in our construction in the following. We will choose the
potential as follows [13,14] :

u(lel) = wn? [1 - ew(—'jjﬂ , 2

where y corresponds to the mass of the scalar field and # is an energy scale.
In the following, we are interested in spherically symmetric and stationary solutions.
The Ansatz for the metric is:

2m(r)

ds? = —N(r)(c(r))?dt* + N%r)d# +12(d6? +sin®0d¢?) , N(r)=1-— PP ©)
while the matter fields are chosen according to :
¥(r ) = e p(r) , Ao =yV(r) 4)

with @ a real constant. Note that, although the scalar field is time-dependent, the associ-
ated energy-momentum tensor is static and hence likewise the space-time. Defining the
following dimensionless quantities

X=ur, w= ,e:%,azﬁln(}nz 5)

=&

the equations resulting from the variation of the action (1) depend only on ¢ and & and
read (with the prime denoting derivative with respect to x) :

V2 (w—eV)?
_ 2 2 2
w —eV)?2
o = 2axc {IPQ + (Nzgz)wz] )
for the metric functions and
1" 2 ZI 2w — EVNJZ _
|74 (x = N =0 8)
" % M 5/ ! (w—eV)zl/J _Ldiu —
LA <X+N+O' L o7 2N dy ©)

for the matter fields. As is obvious, these equations depend only on the combination
w — eV (x). Note that the Lagrangian density and with it the energy density are now given
in units of 72u2.

The asymptotic behaviour of the metric and matter field functions is:

2M 2
N(x>>1)=1—7+“x%+ ..... L o(x>1) =140, (10)
V(x) = Vw—%+.... , p(x — 00) ~ w+m. , Hefioo = VI—Q2, (1)

where O? := (w — eV )?. M and Q denote the (dimensionless) mass and electric charge
of the solution, respectively. Vo can be understood to be a “chemical potential”, i.e., the
resistance of the system against the addition of extra charges e to the system. Note that the
scalar field possesses an effective mass p¢ smaller than the bare mass of the scalar field,
which—in our dimensionless units—is equal to unity.
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Next to the electric charge, the solutions possess a Noether charge which results from
the unbroken U(1) symmetry of the system. This reads :

_ 2x2evip?
On = / dv (12)

This quantity can be interpreted as the number of scalar bosons that make up the
solution. For globally regular solutions eQn = Q, while, for black holes, Q = eQn —
Ex(xp)x3/0(xy), where Ex(x) = —V’(x) is the radial electric field of the solution. The sec-
ond term in this equality is the horizon electric charge and is the consequences of the
fact that the horizon corresponds to a surface on which boundary conditions have to be
imposed. Finally, the temperature Ty and entropy S of the black hole solutions are given
by

Ty = (47) Lo (xp)N'|xx, , S = 73 . (13)

The energy-density €, radial pressure p,, and tangential pressure py = p,, respectively,

read :

e=-Tl=e+e+e+UW) (14)
pr=T =—e1+e+e—UY) (15)
po=Ty =e1—ert+e—Uy). (16)
with 2 (w— V)22
€1 ﬁ'€2:N¢I2'€3:T' (17)
3. Results

In the following, we will discuss the different types of solutions to the equations
of motions (7)-(9). We will start with the discussion of black holes, for which we have
integrated the equations between x = xj, i.e., the horizon and infinity, respectively. The
solutions correspond to Schwarzschild black holes endowed with charged scalar clouds, so-
called Q-clouds, when neglecting the backreaction of the cloud on the space-time, otherwise
to charged black holes with scalar hair. We will also discuss globally regular solutions that
existon x € [0 : 00). Without and with backreaction, these are charged Q-balls and charged
boson stars, respectively.

3.1. Black Hole Solutions

Here, we will discuss space-times that contain a horizon. We begin by discussing
Q-clouds on Schwarzschild black holes and will demonstrate that the results obtained
in [18] are not specific to the form of the scalar potential and that the existence of two
branches of Q-cloud solutions can also be observed when considering a potential of the
form (2). We will then discuss the backreaction of these two different branches of solutions
onto the space-time.

3.1.1. Solutions without Scalar Fields

Without scalar fields ¢ = 0, the equations of motion have well-known black hole
solutions. These are the uncharged Schwarzschild (Q = 0) and the charged Reissner—
Nordstrom solution, respectively:

N =1-M_2 ooy y=2_

x x2 Xy (18

= O

The horizon(s) of this space-time are x. = M + /M? —aQ?. For the Reissner—
Nordstrom solution, there exists a so-called extremal limit, the limit of maximal possible
charge for the black hole, which is x; = x_ = M = /aQ. Note that we have chosen
V(xy,) = 0 here, such that Voo = Q/ xy,.
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3.1.2. Q-Clouds on Schwarzschild Black Holes

In this section, we consider the equations of the matter fields in the background of a
Schwarzschild black hole, i.e., we set« = 0and letc = 1, N = 1 — x;,/x, where xj, is the
event horizon radius. In order to ensure regularity of the matter fields on the horizon, we
need to impose :

W) = PG W) Vi) =0, plr =) =0, Vx> ) =Vo.  (19)

Note that V(x;) = 0 is a gauge choice implying w = 0 and hence () = eV. This is
the so-called synchronization condition necessary for the scalar field to be non-trivial in
the black hole background.

In Figure 1 (left), we give the value of the scalar field ¢ as well as the radial electric
field Ey on the horizon for x;, = 0.15 and two different values of ¢ dependent on eVe.
We also give the electic charge Q as well as the electric charge contained in Qy charges
e in this figure (right). This demonstrates that charged Q-clouds exist on a finite interval
of O € [OQmin : 1] and that, for each choice of ¢V, two solutions with different mass M,
electric charge Q, and Noether charge Qy exist. On the first branch of solutions, starting
at eVe = 1 (which is the threshold for the electric potential to be able to create scalar
particles of mass unity) and decreasing eV, the scalar field on the horizon (x},) increases
up to a maximal value. With it, the radial electric field on the horizon, Ex(x;,), decreases in
absolute value. Moreover, the electric charge Q and the Noether charge Qy increase. eV
can be decreased to a minimal value that depends on e and increases with the increase of e.
Increasing eV again from this minimal value, a second branch of charged Q-clouds exist
that extends all the way back to eVo = 1. On this second branch, the scalar field on the
horizon decreases and with it the absolute value of the electric field on the horizon when
increasing eVw. Interesting, we observe that on this second branch of solutions nearly all
electric charge seems to be contained in the Qy scalar bosons which each carry charge e,
while the horizon electric charge decreases indicated by the decreasing electric field on the
horizon. Hence, moving along the branches stores increasingly electric charge in the scalar
cloud and moves it away from the black hole horizon. Figure 1 (right) further demonstrates
that eQy is approximately equal to Q on the second branch, while on the first branch we
find eQn < Q.

‘ 10,000 F
5 Y(xp) i
—E, 50 r
7 (wn)/ 1000 |
L 100 3
L 10 3

L 1 , el ) i

L 0.1 I | L L L L
0.4 0.5 0.6 0.7 0.8 0.9 1 0.4 0.5 0.6 0.7 0.8 0.9 1
eVoo eVso

Figure 1. Left: We show the value of the scalar field i (dashed) and the radial electric field Ey (solid) on the horizon
dependent on eV = Q) for x;, = 0.15 and two different values of e. Right: We show the values of the electric charge Q

(solid) and the charge contained in Qp charges e, eQy;, (dashed) dependent on eV, = () for the same solutions.
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In Figure 2 (left), we show the profiles of the scalar field function (x) and the gauge
field function V(x) for the two Q-cloud solutions available for e = 0.08, eV, = () = 0.94
and x;, = 0.15.

When fixing Vo, and varying e, we find that—again—two branches of solutions exist.
These two branches join at a minimal value of the gauge coupling, emin, and exist both up to
emax = 1/ Ve where the effective mass peff oo Of the scalar field becomes zero. The minimal
value of e has to be determined numerically and we find that ey, ~ 0.088 for Ve = 10 and
emin ~ 0.109 for Vo, = 8.8, respectively. In other words, the potential difference between
the horizon and infinity, i.e., the chemical potential, needs to be large enough to support
the scalar cloud.

10 -

branch 1

branch 2

0.1

---------- 8 — ey ‘
T branch 1 ------
i 7 - branch 2 i
6 i
i . |
- 4 -
i 3 i
2 i
i 1 2 U ,_
0
100 100
T T

Figure 2. Left: Profiles of the scalar field ¢(x) and the gauge potential V(x) for the two possible Q-cloud solutions on
Schwarzschild black holes with x;, = 0.15, ¢ = 0.08, and ¢V = ) = 0.94. Right: Profiles of the scalar field ¢(x) and the
gauge potential V(x) for the two possible Q-ball solutions for e = 0.08 and Q) = 0.94.

Another interesting question is to understand how the surface area, i.e., the entropy
of the background Schwarzschild black hole influences the observations we have made.
We have hence fixed e and Vo and studied the solutions for varying event horizon radius
xp. Our results are shown in Figure 3, where we give the electric charge Q as well as the
electric charge contained in the Qp scalar bosons that make up the cloud dependent on the
event horizon radius x;. Again, we obtain two branches of solutions. We find that the black
hole needs to be sufficiently small in order to allow for the scalar clouds to exist. For the
particular choice of parameters here, we find that the maximal possible event horizon
radius is x, ~ 1.2. Remembering the rescaling (5), this means that r;, < 1.2Ac,, where
Acyu = 1/p is the Compton wavelength of the bare scalar field. This implies that we would
need an ultra-light scalar field in order for the phenomenon of Q-cloud formation to be
relevant for astrophysical black holes. e.g., for y = 10710 ¢V, the maximal possible event
horizon radius for Q-clouds to exist would be ~ 2.4 km, the approximate size of a solar
mass black hole. We find that, when varying eV, the maximal radius can double or triple,
However, it stays the same order of magnitude.

As a final remark, let us mention that, in the limit x;, — 0, we find that Q — eQy. This
is not surprising since globally regular counterparts to the solutions discussed above exist.
These are charged Q-balls (without backreaction of the space-time) and charged boson
stars (with backreaction), respectively. Moreover, Figure 3 indicates that, also in the regular
limit, two different types of solutions should exist when fixing ¢ and V. This is what we
will discuss in Section 3.2.
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Figure 3. We show the electric charge Q and the electric charge contained in Qp charges e of Q-clouds
on Schwarschild black holes with x;, = 0.15 and for e = 0.08, Voo = 11.75, i.e., ) = eV = 0.94.

3.1.3. Backreaction of Q-Clouds

For « > 0, the Q-clouds backreact on the space-time and modify the original
Schwarzschild black hole. The result is a charged black hole which carries scalar hair
on its horizon. Note that the existence of these solutions does not contradict no-hair the-
orems due to the specific form of the scalar field potential. In [18], the same model as in
this paper has been discussed, however, for a y°-self-interaction potential. It was noticed
that, when approaching the critical value of the gravitational coupling for solutions on the
second branch of solutions (those with larger values of (x)), the black holes form a second
horizon. This second horizon can be interpreted as the horizon of an extremal RN solution.
Here, we find that this is also true when considering an exponential-type potential for the
scalar field. We show the approach to criticality for the metric and matter field functions in
Figure 4 for () = 0.6 and x;, = 0.15. We find that, at a critical value of @ = «,,, the solution

(ex)

forms a second horizon at x = x; " that agrees with the value of an extremal horizon of the

corresponding RN solution. Our numerical results indicate that x,(fx) ~M=/aQ~121
for our choice of couplings.

The question then remains how these solutions can be interpreted and why they exist.
In fact, this can be understood when considering the energy density components, see
(17). In Figure 5 (left), we plot the different components very close to the critical value of
a = ag ~ 0.000113. Clearly, the scalar field energy U(1) dominates all the other energy
momentum components up to a radius x ~ &, with ¥ on the order of 100 for this particular
choice of « and (). This means that the energy-momentum tensor is approximately of the
form T = diag(e, p, p,p), where € = —p = U(). This is the energy of a perfect fluid
that has the equation of state of a positive cosmological constant. In fact, assuming that
U(y) = Uy dominates the energy density up to x = ¥, we can integrate the equation for m
to get

2
Ne(x) = 1— gleloxz , (20)

while o = 0y # 0. This is a space-time with a positive cosmological constant A = 2aU).
For our choice of potential, Uy = 1. Using a. =~ 0.000113, the cosmological horizon of
this solution would be at x = x, ~ 115 =~ %. This is not equal to the value of the extremal

horizon x,(fx). This is different to what is found in the case of inflating monopoles (see
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e.g., [19,20]) or BH solutions with scalar hair in a scalar-tensor gravity model (see [21] in

(ex)

this issue), where x. = x; . We rather find a “transition zone” between ¥ and the extremal

(ex)

RN solution that is of finite thickness—in our dimensionless coordinates, Ax := x, " — X =
0(10).
1 T T 1.1
o = 0.0001
a=0.00011 — | ] b
0.8 | a = 0.000113 4
0.6 i
B 6
z 5 |
04
a=0.0001 —— 1
0.2 L a=0.00011 ———
a = 0.000113 7
RN ------
0 04 L L L L L
0 0 50 100 150 200 250 300
2 ' R b YT p—
| a=0.0001 ——— a=U.
\ a = 0.00011 =N a=0.00011 —— |
\ o =0.000113 a=0.000113
1.5 F \ RN ------ b 9 RN ------ 4
\ ql |
8 8
S 1+ =
| s 5l |
3 L -
0.5 +
1k N
0 ) ) ) ) _1 | | | | |
0 50 100 150 200 250 300 0 50 100 150 200 250 300
T — Th

xr —Tp

Figure 4. We show the approach to critically for a back hole with charged scalar hair for ) = 0.6 and x;, = 0.15.

1.1
0.9 i
0.7 | i
€6 ———
0.5 - € - , |
. e
U
0.3 - i
o =0.0001 ------ i
o7 \ | P 10103 & R—
‘ o = 0.000113
-0.1 L L —1 1 I I I |
0 50 100 150 0 2 4 6 8 0 12
Tr — Th 1/}

Figure 5. Left: We show the profiles of the energy density components (see (17)) for x;, = 0.15, 3 = 0.6 and close to the
critical value of &, &, /= 0.000113. Right: We show the effective potential Uy = U — %4)2 and the first (dyUeg) and

second derivative (85, U.¢r) with respect to ¢ at the approach to criticality for x;, = 0.15 and Q) = 0.6.
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Figure 5 (right) further demonstrates that the reason for the existence of these solutions
is related to the coupling of the scalar field to the electromagnetic field. The “bare” potential
U(y) does not possess extrema away from ¢ = 0, while the effective potential U =
U(y) — %lpz does. For « close to a and Q) = 0.6, there exists a local minimum for
¢ = O(10). This is the value that ¢ takes on the horizon and up to x ~ x.. Moreover,
the first and second derivative of the effective potential with respect to 1, dy Ueg and 812/] Uege,
respectively, are smaller than the potential itself close to this value of 1. Hence, the effective

potential is sufficiently “flat” to allow for inflation.

3.2. Globally Regular Solutions

For globally regular solutions, we have to impose boundary conditions at the origin
x = 0 which ensure regularity. These are

m0)=0, V(0)=0, Vsg=0, ¢l =0. (21)

The condition V(0) = 0 is, in fact, a gauge choice. At spatial infinity, the boundary
conditions are chosen such that the solution is asymptotically flat and has finite energy.
They read:

P(x - o0) -0, N(x »00) = 1. (22)

Note, in particular, that now w # 0 is necessary for globally regular solutions to exist
and that it cannot be set to zero as in the black hole case. In the following, however, we
will only use the gauge-invariant quantity () = w — eV to describe the solutions.

3.2.1. (Un)Charged Q-Balls

For a = 0, the matter field Equations (8) and (9) decouple from the gravity equations
and the metric functions are m = 0 (i.e.,, N = 1) and ¢ = 1 (or equal to any non-vanishing,
positive constant). The remaining Equations (8) and (9) possess non-trivial solutions, so-
called (charged) Q-balls. For V = 0, the solutions for the specific potential (2) have been
studied in [13-15], while, for V # 0, they were investigated in [12]. Let us remind the
reader of the most important features of these solutions in the following and add details
that are important for the discussion in the following. For e = 0, the solutions exist for
Q € (0: 1], and there is a one-to-one relation between the value of the scalar field i at the
origin, 1(0), and Q. The limit ¢(0) — 0 corresponds to () — 1. In this limit, the solution
becomes ¢(x) = 0, However, neither the mass nor the Noether charge Qy of the solutions
vanish. Increasing the value ¢(0) from zero, () decreases, while the mass M and Noether
charge Qp increase monotonically. The dependence of Qx on ) for ¢ = 0 is given in
Figure 6 (left). This demonstrates that, for (3 — 0, the Noether charge Qy diverges with
(0) tending to infinity. That means that the central density of the uncharged Q-ball is not
restricted and can become arbitrarily large.

When choosing e # 0, charged Q-balls can be constructed. However, there is a very
crucial difference to the uncharged case: the central value of ¢(0) is limited to a finite value.
As such, solutions exist only for Q € [Quin : 1] with Qi > 0 for e # 0. Moreover, two
charged Q-ball solutions—and not one as in the uncharged case—are possible. Figure 6
demonstrates the existence of this second branch of solutions for several values of e. Here,
we give the Noether charge Qp of the (un)charged Q-balls (including the uncharged case
e = 0) (left) as well as the central value of the scalar field, (0), for several values of e
and dependent on (). Note that this is qualitatively similar to the case for Q-clouds on
Schwarzschild black holes, see Figure 1 (left): decreasing () on the first branch of solutions,
the value of (0) increases up to a maximal value at Qp,;, > 0. From there, a second
branch of solutions extends all the way back to (3 = 1. On this second branch, the value
of ¢(0) slightly decreases when increasing (). Moreover, we find hat O, is more or less
equal when considering charged Q-clouds and Q-balls, respectively. The presence of the
horizon in the former case does not seem to influence this value. The Noether charge Qn
of the Q-balls on the second branch is much larger than that of solutions on the first branch.
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1 x 107 :
1X1W;
100,000 ;
10,000 ;
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10 L

Hence, the Q-balls on the second branch are composed of many more scalar bosons than
those on the first branch.

100 |

20
15

S 10t

=
5k

1 | | L ! ! L 0 | | | | | | | | |
0 0102030405060.70809 1 0 0.1 02 03 04 05 06 07 0.8 09 1
Q Q

Figure 6. Left: We show the Noether charge Qy of (un)charged Q-balls dependent on () for four different values of e.

Right: We show the central value of the scalar field, (0), of (un)charged Q-balls dependent on Q) for four different values

of e.

When two solutions exist for the same value of (), we will use the convention in the
following to denote “branch 1” (resp. “branch 2”) the branch of solutions with the lower
(resp. higher) Noether charge Qy. The profiles of the scalar field ¢(x) and the electric
potential V(x) of the two different Q-ball solutions for e = 0.08 and () = 0.94 are shown in
Figure 2 (right). Although some features appear to be similar when comparing Q-clouds
and Q-balls, there is one crucial difference which is apparent from Figure 2: the electric
field. For Q-balls, it vanishes at the origin (as it should), while it is non-zero on the horizon
of the black hole that carries the charged Q-cloud.

3.2.2. Charged Boson Stars

For o # 0, charged boson star solutions exist. We have constructed these solutions
and found that a previously unnoticed phenomenon is present when the U(1) in the model
is gauged, i.e., when the scalar field is charged under the U(1). In fact, this phenomenon
is very similar to that observed for charged black holes with scalar hair (see [18] and
discussion above). Choosing a solution on the second branch of solutions, where (x)
is large at and close to the origin and increasing the gravitational coupling leads to the
appearance of a horizon at a critical value of a. The approach to criticality is shown in
Figure 7 for Q) = 0.6. When increasing «, we find that the minimal value of N(x) tends
to zero, while ¢(0) decreases (but does not reach zero). For « = a.,, we find that, outside
a given value of the radial coordinate x = £, the solution corresponds to the extremally
charged Reissner-Nordstrom solution with ¢ = 1 and ¢ = 0. For QO = 0.6, we find
that(ac), ~ 0.000113. Note that the value of ¥ and the location of the extremal horizon

ex

at x; ’ ~ 121 do not coincide in this case. In agreement with our interpretation of the

limiting solution, we find that the mass at a¢, is M = x}(lex) = y/aQ ~ 121. Comparing this
to the case of charged black holes with scalar hair, we find that fixing () leads to the same
numerical values of &, x. and x}(fx) for both cases. This suggests that the phenomenon of
inflation observed for black holes has a regular limit for x;, — 0. The reason for this is also
connected to the observation that, while for boson stars we always have eQn = Q, this is
not true for black hole. However, for the black hole solutions on the second branch, we
find eQn ~ Q, which means that (essentially) all electric charge is carried by the scalar

field. Hence, these black holes behave very similar to charged boson stars.
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Figure 7. We show the approach for a charged boson star with () = 0.6.

The interpretation of the solutions is, hence, very similar, although we are now dealing
with an a priori globally regular space-time. In particular, for the same choice of () and «,
Figure 5 (left and right) is identical to the corresponding equivalent plots for the boson
stars. Note that, while the component € is zero for the boson stars by construction, it is
zero for the black hole in this particular limit. To re-emphasize this point, only in this
particular limit does the electric field on the horizon of the black hole vanish indicating
that the horizon electric charge is vanishing.

As we have discussed above, the exterior of the black hole is hence inflating with
the scalar field energy dominating the remaining energy-momentum components and
hence driving inflation. We find the interior of the boson star defined by U(¢) = Uy ~ 1
(as compared to the exterior of the boson star, where U () = 0) is inflating. Hence, these
solutions are the non-topological equivalent of the inflating topological defects (such as magnetic
monopoles) that have been discussed in [22,23]. These latter defects contain a core that is
trapped inside the false vacuum of the model and this is exactly what provides the vacuum
energy to drive inflation. Consequently, in these models of topological inflation, topological
defects can “blow up” to sizes of the universe. Here, we find that a similar phenomenon
happens for localized, globally regular solutions made up out of a complex valued scalar
field coupled to an Abelian gauge field.

4. Discussion

In this paper, we have studied black holes and globally regular solutions in a simple
scalar field model with scalar field self-interaction of an exponential type that is motivated
from models of gauge-mediated supersymmetry breaking. The crucial point for the exis-
tence of the solutions presented here is the self-interacting of the scalar field as well as the
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coupling to the electromagnetic field. This latter coupling allows for the effective scalar
field potential to possess a local minimum (the “false vacuum”) in which the scalar field can
become trapped for specific choices of the coupling constants such that the energy density
of these solutions becomes dominated by the scalar field energy of this false vacuum. When
letting these solutions backreact on the space-time, we find that, for sufficiently strong
gravitational coupling, a second horizon starts to form which corresponds to the horizon
of an extremal RN solution.

In order to get an idea of whether these results could be important at cosmological
scale, let us go back to dimensional couplings for a moment. For e = 0.005 (corresponding
to the case () = 0.6 described above), we find that a.r ~ 0.000113. This corresponds to
1 =~ 0.003Mp,, where Mp, = G~1/2, Hence, the energy scale of the scalar field would have
to be on the order of the Grand Unification scale. The remaining details depend very much
on the mass y of the scalar field. e = 0.005 then implies g ~ 1.67(y¢/ Mp;) and a Hubble

constant associated with the expansion of H ~ 4/ 8"(33110 = %” 1\%7)1 ~ 0.0087.

Let us now discuss the new phenomenon observed here compared to the topological
inflation scenario. What we have noticed in the model at hand is a phenomenon not
discussed in the literature so far. It contains an unbroken U(1) symmetry (in contrast to
the model of topological inflation, where a spontaneous symmetry breaking occurs) and
is hence much closer to the scalar field models normally used in inflation. Considering
topological inflation to occur inside the core of magnetic monopoles typically requires
a higher rank gauge group to be broken to U(1) and hence a Higgs field in the adjoint
representation of the group. All of this is not necessary in our case. We are dealing with a
simple set up that does not require any symmetry breaking mechanism, However, only
the coupling to a U(1) gauge field. Certainly, what we have presented is a toy model,
However, we believe that it is quite generic.

5. Materials and Methods
We have used the Black box solver COLSYS.
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