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Abstract

Symmetry plays a basic role in variational problems (settled, e.g., in R” or in a more gen-
eral manifold), for example, to deal with the lack of compactness which naturally appears
when the problem is invariant under the action of a noncompact group. In R”, a compact-
ness result for invariant functions with respect to a subgroup G of O(n) has been proved
under the condition that the G action on R” is compatible, see Willem (Minimax theo-
rem. Progress in nonlinear differential equations and their applications, vol 24, Birkhduser
Boston Inc., Boston, 1996). As a first result, we generalize this and show here that the
compactness is recovered for particular subgroups of the isometry group of a Riemannian
manifold. We investigate also isometric action on Hadamard manifold (M, g) proving that
a large class of subgroups of Iso(M, g) is compatible. As an application, we get a com-
pactness result for “invariant” functions which allows us to prove the existence of nonra-
dial solutions for a classical scalar equation and for a nonlocal fractional equation on R”
for n = 3 and n = 5, improving some results known in the literature. Finally, we prove the
existence of nonradial invariant functions such that a compactness result holds for some
symmetric spaces of noncompact type.

Keywords Compactness lemma - Existence of nonradial solutions - Symmetric spaces

Mathematics Subject Classification 35J20 - 35J61 - 22E60

The first author was partially supported by PRIN 2015 “Varieta reali e complesse: geometria,
topologia e analisi armonica” and GNSAGA INdAM. The second author is supported by Capes, CNPq
n.304660/2018-3 and Fapesp n.2018/17264-4 and INdAM.

P4 Leonardo Biliotti
leonardo.biliotti @unipr.it

Gaetano Siciliano
sicilian@ime.usp.br
Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Universita di Parma, Parco Area

delle Scienze 53/A, 43124 Parma, Italy

Departamento de Matematica, Instituto de Matematica e Estatistica, Universidade de Sdo Paulo,
Rua do Matao 1010, Sdo Paulo 05508-090, Brazil

Published online: 20 July 2020 ) Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10231-020-01016-y&domain=pdf

L. Biliotti, G. Siciliano

1 Introduction

It is known that many interesting partial differential equations in R” are invariant under
the orthogonal group O(n) so that it makes sense to find solutions which respect this sym-
metry, i.e., they are radial. These solutions are physically interesting, and indeed, in scalar
field theory they are also called particle-like. Particularly interesting is the case when the
equations are variational, i.e., a smooth functional (called the energy functional) on Banach
or Hilbert space X can be defined in such a way that its critical points give exactly the
solutions of the equations; very often the restriction of this functional to the subspace of
radial functions X, is even “natural,” in the sense of the Palais” Criticality Symmetric
Principle [12]: One roughly speaking says that critical symmetric points are symmetric
critical points. The advantage of working in the subspace X, is that its elements may
have additional properties which enable to recover a compactness condition (as required by
many abstract theorems in Critical Point Theory) that the functional has to satisfy in order
to guarantee the existence of critical symmetric points (see below for a specific problem).
From a functional point of view, this compactness is a consequence of the compact embed-
ding of Sobolev spaces into Lebesgue spaces.

A natural problem that arises is then the search of nonradial solutions for such equa-
tions, and indeed, the main difficulty is exactly to guarantee that the solutions found are
effectively nonradial.

This topic has attracted much attention, and the existence of nonradial solutions has
been intensively investigated by many authors.

Particularly interesting for our purpose is the work by Bartsch and Willem [3] where the
authors consider the following equation

—Au+b(|xDu=f(x],u) inR", n>3 (1.1

under suitable assumptions on b and f and look for nonradial solutions. The approach of
the authors consists in restricting the energy functional, let us say ¢, which is naturally
defined in the Sobolev space H'(R"), to the subspace H é(R”) of fixed points for a suitable
group action G which does not contain radial functions (except of course the null function).
Roughly speaking and without entering in details here, we can say that the group G is gen-
erated by

(i) functions which are “radial in groups of variables,” that is, they are invariant for the
action induced by the subgroup O(m) X O(m) X O(n — 2m) of O(n),
(i) and by functions which are invariant by a “suitable action” induced by

T - (X1, %, X3) = (X5, X1, X3),

where (X, X,,x;) € R" X R™ x R"=2m,
Note that 72 = e, the identity. The success of the method is based on the fact that, as proved
by Lions in [10], the set of functions in H'(R") satisfying (i) has compact embedding
into I? spaces and the same holds for H é([R"), that is, when also the action of 7 is taken
into account. As a consequence, the energy functional restricted to Hé(IR”) satisfies the
Palais—Smale condition: any sequence {u; } C H, é(R”) such that

{@(u,)} is convergent and ¢’ (1) — 0
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has a convergent subsequence. However, in order to consider (ii) and then guarantee that
there is no nontrivial radial function in H 'G([R"), the authors assume that 2 < m < n/2 and
2m # n — 1 which forces n = 4 orn > 6.

Another remarkable paper where nonradial solutions for an elliptic equation are found
by means of a similar strategy is the one by d’Avenia [4]. Here the author is interested in a
so called Schrodinger—Poisson equation in R3 and he restricts the energy functional to the
set of functions in R* which are radial in the first two variables and even in the third one, in
order to guarantee that the solution found is not radial.

Looking at the group theoretic properties used in the previous papers and motivated also
by [13, Definition 1.22 p.16] where Willem gives the definition of compatible group which
permits to have the compact embedding of “invariant” functions into L”, we try here to
generalize and understand when the compact embedding of Sobolev spaces of “nonradial”
functions into Lebesgue spaces holds.

Observe that in particular from [13, Definition 1.22 p.16] it follows that compatible
groups with R” are G = O(n) and G = O(N;) X --- X O(N,), where N; 2 2,j=1,...,kand
zj].‘:l N; = n, and the compact embedding results of Lions [10] are recovered.

1.1 Main results: general statements

Motivated by the cited papers, we generalize here the construction of the group action
G given in [3] and investigate isometric actions on (R”,(-,-)) and on its open G-invari-
ant unbounded subsets (being interested in compact embeddings, we will consider just
unbounded subsets). What we prove is that a large class of subgroups of Iso(R”, (-, -)) is
compatible with R” according to Definition 2.1. See Propositions 2.2, 3.1 and 3.2. Here
(-, -) denotes the canonical scalar product. Actually the more general case of Riemannian
manifold is treated.

As an application, we prove the existence of nonradial solutions for the problem in (1.1)
for n =3 and n = 5, thus extending the result of Bartsch and Willem in [3]. To show the
generality of the method and the range of applicability of our abstract results, we show
two more applications to systems of elliptic equations. The first one is to the existence of
nonradial solutions for a nonlocal fractional equation on R” extending again to the case
n=3and n =5 aresult in [5] that was stated just for the cases n = 4 and n > 6. The sec-
ond one is the existence result of nonradial solutions in [4] to the case of R”,n > 3 (actu-
ally we show a multiplicity result): With our approach, we find nonradial solutions in R
(since they are radial in the first two variables and periodic in the third one) and for n > 4
the compact embedding of our working space into L” permits to have nonradial solutions,
without any periodicity assumption.

However, since the statement of these theorems would imply many preliminary details
and assumptions, we prefer do not state them here but refer the reader directly to Theo-
rems 3.11, 3.12 and 3.13 in Sect. 3.1.

After the Euclidean case, we investigate subgroups of the isometry group of an Had-
amard manifold (M, g). This means (M, g) is a simply connected complete Riemannian
manifold of nonpositive sectional curvature, and so for any p € M, exp, : T,M — M is
a diffeomorphism (see, e.g., [7, 8]). By Cartan Theorem (see, e.g., [8]) a compact group
G acting isometrically on (M, g) has a fixed point: Call it p. Then, exp, : T,M — M
becomes G-equivariant, where the G action on T,M is the isotropy representation. Since by
Rauch Theorem (see [6]) the exponential map increases the distance, we prove that a large
class of subgroups of Iso(M, g) are compatible (Proposition 4.2.)
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As an application of this, we get a compactness result for invariants functions on an
Hadamard manifold. We also point out that if a discrete and closed group G acting isomet-
rically on a Riemannian manifold (M, g) is such that M/G is compact, then it is compatible.
Finally, we prove that the basic tool used in [3] in order to prove the existence of a group
action such that its fixed points have nonradial functions holds for some symmetric spaces
of noncompact type. Roughly speaking, if M = SL(2n, R)/SO(2n), or M is a the dual of
the complg(, real and quaternion projective space (see [8], then), we determine a compact
subgroup H of the isometry group containing a closed subgroup of dimension bigger than
one and of index two. This allows us to define an isometric action of H on H' (M) such that
the invariant functions are not radial unless u = 0 and the embedding of the fixed points set
with respect to H into LP(M) with 2 < p < 2* is compact.

The paper is organized as follows.

In Sect. 2, we recall some facts on isometric actions on Riemannian manifolds and give
the definition of compatible group. The main result here is the general Proposition 2.2.

In Sect. 3, we consider the special case of R” where we give applications of our method
to the existence of nonradial solutions for partial differential equations. A fundamental tool
in order to show the main results, Theorems 3.11, 3.12 and 3.13, is the technical Lemma
3.7.

In Sect. 4, we consider the case of Hadamard manifold and in Sect. 5 the case of sym-
metric spaces of noncompact type.

2 Isometric actions on Riemannian manifolds

Let (M, g) be a connected Riemannian manifold. We may introduce the distance on M via
the notion of length of curves, that we denote by d, and the topology of (M, d) coincides
with the manifold topology, see, e.g., [6]. Let Iso(M, g) the group of isometries of (M, g).
It is well known that any closed subgroup G C Iso(M, g) is a Lie group with respect to the
compact open topology. In particular, Iso(M, g) is a Lie group, and if M is compact, then
Iso(M, g) is compact as well, see [9]. Moreover, the map

GxM—M,  (f,p)~f(p).

is differentiable and so defines a differential action on M which is a proper action. This
means that the map

GXxM—MxM,  (f.p)~ @.f(P)),
is proper. By a well-known results, it follows that for any p € M, the isotropy subgroup
G,={geG:gp=p}CG
is compact, the orbit throughout p, i.e.,
Gp)={gp : g€ G},

is a closed embedded submanifold of M, and the Slice Theorem and The Principal Orbit
theorem hold. For these facts, we refer the reader, e.g., to [1].

Denote B,.(p) = {g € M : d(p,q) < r}, respectively, S,(p) = {¢ € M : d(p,q) = r}, the
open ball of center p and radius r, respectively, the sphere of center p and radius r.

A major role in what follows will be played by the next definition.
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Definition 2.1 Let G C Iso(M, g) be a closed subgroup. For y € M and r > 0, we define
m(y,7,G) =sup{n €N : Ig,...,g, € G : j# k= B.(gy) NB,(gy) =0}

Let Q C M be an open G-invariant unbounded subset. We say that Q is compatible with G

(or that G is compatible with Q) if there exist r > 0 and p € M such that

lim m(y,r,G) = +o0.
d(p,y) »> +o0
dQ,y)<r

Let g € M. Since d(gq,y) — +oo if and only if d(p,y) — +00, the above definition does
not depend on p € M. Moreover, if G C K, then m(y, 7, G) < m(y, r, K). Hence, if Q is
compatible with G, then it is compatible with K.

Proposition 2.2 Let (M, g) be a connected noncompact Riemannian manifold, and let
G C Iso(M, g) be a closed and discrete subgroup with infinite elements. Then, there exist
r > 0 and a G-invariant open unbounded domain Q of (M, g) such that m(z, r, G) = 400 for
any z € Q. Moreover, if M/G is compact, then there exists r > 0 such that m(z, r, G) = +o0
for any z € M and so any open G-invariant unbounded domain of M is compatible with G.

Proof Let p € M be such that G(p) is a principal orbit. We claim that G, = {p}. Indeed,
since the orbit throughout p € M is a discrete set, it follows that the slice representation
coincides with the isotropy representation, i.e.,

p: G, — O(T,M), g~ dg,.

Since G(p) is a principal orbit, we have that p is trivial, and so if g € G, then g(p) = p and
d g, = Id. This implies that g = Id,,, see [6].

Applying the Slice Theorem, there exists a G-invariant neighborhood U of p such that
forany g € U, G, = {e} and

G@nU=6G,(@=gq.

We may assume that U = B.(p) = {g € M : d(p,q) < r} for some r > 0. We claim that for
any ' < r and for any g € B,(p), we have

d(gg,hq) > ',
whenever g # h. Indeed, otherwise there exists g, 2 € G such that
r>r' >d(gp,hp) = d(p,g"" hp).

Hence, g"'h=0 ¢ G, = {ld} and so h = g. A contradiction.
Now, let any p € M. Since G, is compact, it follows that the cardinality of G, is finite.
Applying the Slice Theorem, there exists » > 0 such that for any g € B,(p) we have

G(@) N B,(p) = G,(q).
and Gq C Gp. Therefore, if ng * hGp, we have

d(gq, hqg) > 7',
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for any g € B,(p) and for any 7’ < r. Indeed, as before, assume that there exists g, € G,
such that ¢G, # hG, and d(gq. hq) < r'. Therefore, d(h™'¢q.q) <+’ <randsoh™'g € G,.
A contradiction.

Now, let p € M. Given ¢ >0, we denote by B.={z€T,M :| z|[<e} and by
Se=1{z€T,M || z||= €}, where|| - [|= v/g(P)(-, ), the ball of radius r, respectively, the
sphere of radius r, in 7,M. Let € > 0 such that exp, : B, — B.(p) is a diffeomorphism
onto, see [6]. Let @ < e, and let g € S,(p) = exp(S,). We have proved that there exists
r(q) > 0 such that for any z € Br(q)(q), we have

d(gz, hz) > r(q),

whenever gG, # hG,. Since S,(p) is compact, there exists ¢; ...,q, € S,(p) and
r1(qy)s --- 1, (q) > 0 such that

Sa(r) C Brl(q)(ql) U ot U Brm(q)(qm)

,and for any z € Br](q)(qj) we have
d(gz, hz) > r(q;).

whenever qu/_ # th/ for j=1,...,m. Applying the triangle inequality, we have
Bé (g N B% (hz) = @ for any g,h € G such that gng # hng and so for infinite g,h € G.
Therefore, m(z, /2, G) = +oo. This holds for any z € B, (,,(g) U - U B, (@)

Let Q@ = G(B, ,,(g)U - UB, (,(@,)). Then, Q is a G-invariant unbounded domain
of (M, g),i.e.,d : QxQ — R is not bounded above, and finally, for any z € Q, we have
m(z,7/2,G) = +co.

For the second part, assume that M/G is compact. Let p € M. We have proved that there
exists r(p) > 0 such that for every g € B,(p), we have

G(q) N B, (p) = G,(q),

and d(gq. hq) > r whenever gG,, # hG,,. Therefore, Q, = GB,,(p) is an open G-invariant
unbounded domain of M such that for any z € Q, we have

d(gz,hz) > r,
for infinite g, h € G. Since
M/G=|]Q,/G,
PEM

and M/G is compact, there exist py, ..., p,, € M such that
M=Q, U-uQ,.

Pick r = %min{r(pl), ....r(p,,)}. Then, for every z € M, we have
m(z,r,G) = +o00

which concludes the proof. a
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Remark 2.3 1f (M, g) is compact, then Iso(M, g) is compact and so any closed and discrete
subgroup G C Iso(M, g) is finite. This means that the condition (M, g) is noncompact; it is
not a technical condition.

3 The case of R" and application to PDEs

Now, we investigate isometric action on R"” endowed by the canonical scalar product (-, -).
In the sequel, we continue to denote by d(x,y) =|| x —y ||= /{(x — y,x — y), i.e., the dis-
tance induced by (-, -) and by B,(p) = {z € R" : || z— p ||< r} the Euclidian open ball.

Given Q C R", let H'(Q) be the usual Sobolev space and H(l] (L) be the closure of C° ()
in H'(Q).

Proposition 3.1 Let G be a discrete nonfinite subgroup of Iso(R", (-, -)) = O(n) X R" con-
tained in R". Then, there exists r > 0 such that m(z, r, G) = +oo for any z € R".

Proof Since G C R" is discrete, there exists @ > 0 such that G N B,(0) = {0}. Let g,h € G.
Then, gz = z + #(g) and hz = z + t(h), respectively, and so

d(gz, hz) = 1(g) — 1(h) ||= a.
Pick r = ia. Then, for every z € R" and for every g, € G, we have
B,(gz) N B,(hz) = @,

whenever g # h concluding the proof. a

Now, assume that G is a connected and closed subgroup of Iso(R", (-, -)) of dimension
bigger than one. Let (R") = {p € R" : G(p) = p} be the fixed point set. It is well known
that (R")? is totally geodesic, see [1]. Hence, if it was not empty, then it would be a closed
subspace. In the sequel, we assume that (R")€ is empty or is reduced to {0}. In particular,
for any nonzero vector y € R”, the orbit G(y) has dimension at least one

Lety € R"\ {O}and let 1 € R. Let g € G be such that g & G,. Then, g(q) = Ag + v for
some A € O(n) and some v € R”. Assume firstly that Ay # y. Then,

Jim d(hy, Ay +v)* = 22 | Ay =y P =24(Ay =y, v)+ || v |I*= co.
—+00

Let >0, and let n€N. Let 4,>0 be such that for any 4> 4, we have
d(Ay,Aly +v)> > (2nr)?. Since G(Ay) is a closed submanifold, it follows (G(4y), {-,-)) is a
complete Riemannian manifold. By a Theorem of Hopf—Rinow [6], there exists at least one
minimizing geodesic y : [0, ] — G(Ay) parameterized with the arc length and satisfying
y(0) = Ay, y() = g(Ay) and L(y) = [ = d°™ (g(Ay), Ay) > d(Ay, g(Ay)) > 2nr. Let

f 00,01 — [0,d(Ay, g(Ay)),  f() = d(Ay,y(1)).

Then, f is continuous and surjective since the image is connected and it contains 0 and
d(2y, g(4y)). Pick

t; =sup{t € [0,1] : d(Ay,y(r)) =2r}.
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Then, 0 < ¢, < d(Ay, g(Ay)), and for any ¢ > t,, we have f(r) = d(Ay,y(t)) > 2r. Indeed,
assume that there exists #' > #, such that f(¢') < 2r. Since f(I) = d(1y, g(4y)) > 2r, it fol-
lows that there exists #”/ > ¢/ > t, such that f(¢") = 2r which is a contradiction. Moreover,
since

d(Ay, g(Ay)) < d(Ay,y(t))) + d(y (1)), g(Ay)),
it follows
d(y(t)), g(Ay)) = d(Ay, g(Ay)) — 2r = 2(n — D)r.

Therefore, we are able to iterate this procedure at least n — 1 times, proving that there exists
0=1,<t <..<t, suchthat

d(y(t), y(1)) = 2r,

whenever i # j. This implies, again applying the triangle inequality, B, (y(t,)) N B,(y(t))) = §
for any i # j. Since y is a minimizing geodesic, denoting y(t;,) = g;y for i =0,...,n—1,
it follows y(t,) = g;Ay # y(;) = g;Ay whenever i #j and so g; # g; whenever i # j. This
proves

m(Ay, r, G) > n.
Since it holds for any n € N, we get

lim m(y,r,G) = +oo.

[Iyll+ec0
If Ay =y, then for any A € R, we have
d(Ay,g" () =m | v 1%,
and so

lim d(ly, g"(4y))* = +oo,
m—=+o0o

for any A € R. Hence, the above idea works as well and so

lim m(y,r,G) = +oo.
[Iyll+e0

Summing up, keeping in mind that m(y,r,K) < m(y,r,G) whenever K C G, we have

proved the following result.

Proposition 3.2 Ler G C Iso(R", (-, -)) be a closed subgroup. Let G° be the connected com-
ponent containing e. Assume that G° has dimension bigger than one and (R")®" = {0} or is
empty. Then, for any r > 0 we have

lim m(y,r, G) = +o0.

Iyll—+c0
Therefore, any open G-invariant unbounded subset of R" is compatible with G.
Remark 3.3 If G is connected and (R")C is a closed nontrivial subspace, then the G action

on R" is not compatible. Indeed, if v € (R")C is nonzero, then m(Av, r, G) = 1for any r > 0
and for any nonzero A € R and so G is not compatible.
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Corollary 3.4 Let G, be a closed subgroup of 1so(R", (-, -)), and let G, be a closed subgroup
of Iso(R™, (-, -)). Assume that both G, and G, satisfy the conditions in Proposition 3.2 or in
Proposition 3.1. Then, any open G, X Gy-invariant unbounded subset of R™™ is compat-
ible with respect to G; X G,.

We state now the main result in the case of the Euclidean space.

Let G C Iso(R", (-, -)) and let Q@ C R" any G-invariant open and unbounded subset of R".
Let H'(Q) and Hé (€2) be the usual Sobolev spaces.

The action of G on Hé (Q) is defined by

gu(x) :=u(g”'x), g€G,
and the subspace of fixed point for this action is

Hy Q) 1= {u € Hy(Q) : gu=u, Vg € G}.

Theorem 3.5 Let G C Iso(R", (-, -)) be a closed subgroup. Let Q be an unbounded open
G-invariant subset of R". Assume that one of the following conditions hold:

(1) G has dimension bigger than one and (R")¢" = {0} or is empty;

(2) G is adiscrete nonfinite closed subgroup of the translation group.
3) G =G, xG, CIso(R"™™" (-, -)) where G, C Iso(R",(-,-)), G, C Iso(R™,(-,-)) and G,
and G, satisfy condition 1 or 2.

Then, the following embedding
H&G(Q) S IP(Q), 2 < p < 2%,
is compact.

Proof Applying Proposition 3.2, Proposition 3.1 and Corollary 3.4, the proof follows like
in [13, p.16-17]. O

Remark 3.6 If the condition (R")® ={0} or empty is not satisfied, then

(Q) < [P(Q), 2 < p < 2%, is not compact in general. Indeed, consider in H'(R?) the
actlon of G = O(2) X Z,. The fixed points for this action are the functions which are radial
in the first two variables and odd in the third one, and (R")®" = R. However, they do not
have compact imbedding into I7(R3),2 < p < 6 due to the invariance by translations in the
third variable. A counterexample can be constructed in this way. Let ¢,y € Cg"([R) \ {0}
with y odd and supp y = [-2,—1] U [1, 2]. Define for any n > 1:

d)(x +x2)u/(x —n) ifx; >n,
U, (x), %, X%3) = { 3 1fxi < (0.1,

and let 7, be its oddness extension on x; < 0. Observe that %, — 0 in H'(R?), but

/Iﬁnlpdx=/ |¢(xf+x§)|p|u/(x3)|pdx=:c>0
R3 R3
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(with ¢ independent on n) and so {u, } does not converge to 0 strongly into L” (R3).

Our aim is to apply the previous results to the existence of nonradial solutions for some
partial differential equations in R”. Since these equations are invariant for O(n), the main
difficulty is exactly to exclude that the solutions found are radial. In order to do that, we
need to consider the action of a suitable group in such a way that the subspace of the fixed
point for this action has not radial functions (except of course the zero function). The next
abstract result will be fundamental in order to construct this group.

Let G be a Lie group and let HCG be a closed subgroup and Ilet
NH)={geG: gHg ' =H).

The following lemma is easy to check, but for the sake of completeness we give the
proof.

Lemma~3.7 Assume that there exists T € N(H) such that t ¢ H and 2 = e. Then, the sub-
group H generated by H and t is closed, and so it is a Lie group, and H is a normal sub-
group of index two. In particular, there exists a surjective homomorphism

p. H— Z,,
such that p(H) = 1and p(t) = —1.

F:roof It is easy to check that H= {gr! : g€ H,i=0,1}and so H is a normal subgroup of
H of index 2. In particular, the natural projection

p:H— H/H=Z,, (3.1)

defines an homeomorphism satistfying p(H) = 1 and p(z) = —1. Finally, we prove that His
closed, and so it is a Lie group.

Let {h,} C H be a sequence converging to some h, € G. Up to subsequence, we may
assume that p(h,) = 1 or p(h,) = —1. This means that i, € H or h, =s,7, where s, € H
and so hy € H. O

To extend some results on existence of nonradial solutions for partial differential equa-
tions in R”", especially in the cases n =3 and n = 5 (see the Introduction), the next two
examples will be useful. They can be seen as an application of Lemma 3.7 and Lemma 5.1,
to which the reader is explicitly referred. However, this last lemma will be proved in a more
general situation in Sect. 5.

Example 3.8 Let H = SO(3) x SO(2) € O(5) as follows

(A.B) — (6‘ 2)-

Let 7t : R> — R3 given by
T(X], Xp, X3, Xy, X5) = (=X, =X, —X3, Xy, Xs).

Then, 7 is an isometry satisfying 7> = Id and tHt = H. By Lemma 3.7, the subgroup H
generated by H and 7 is closed and there exists a surjective homomorphism p : H — Z,
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such that p(H) = 1. Note that H= 0(3) x SO(2). By Lemma 5.1 (note that H is compatible
by Theorem 3.5), the action

HxH'R) — H'R), (g, 1) = p(ulg™")
is isometric, the embedding
HI%(RS) o IP(R), 2 < p < 2,
is compact, and finally, HIITI (R3) does not contains radial functions, except the null one.

Example 3.9 Let H = SO(2) x Z C Iso(R3, (-, -)) being
0
(A,n) — <18 (l)> +] 0|
n
Pick 7 : R® — R3 given by

T(-x17x27-x3) = (_xl,xZ,X3).

It is easy to check 72 = Id and tHt = H. Denote by H the subgroup generated by H and 7.
Applying Lemmas 3.7 and 5.1 (note again that H is compatible by Theorem 3.5) the action

HxH'R) — H'®RY),  (gur pl@ulg™")
is isometric, the embedding
H;](R»*) o IP(R), 2 < p <2,

is compact, and finally, H;N] (R3) does not contains radial functions, except of course the null
function. Observe that the functions in H;Nl (R3) are periodic in the third variable.

Remark 3.10 Of course, the examples above are easily generalized to the fractional
Sobolev space H*(R") where n € {3,5} and 2* is replaced by the critical exponent
2;‘ =2n/(n—2s),n > 2s.

3.1 Existence of nonradial solutions for some elliptic PDEs

We show now how our method permits to obtain multiplicity results of nonradial solu-
tions for some scalar field equations which enjoy the radial symmetry. Known result is also
recovered. Just to give an idea of how our method works, as we anticipated in Introduction,
we limit ourselves to a few particular equations. Of course, many other equations can be
treated with the same approach.

3.1.1 Aclassical scalar field equation

In particular, we are able to find nonradial solutions for an elliptic equation in the whole
space R", n > 3. Consider the problem
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—Au+b(|xu =f(|x|,u) inR", n>3 (3.2)

under the assumptions

(1) b e ([0, +o0, R) is bounded from below by a positive constant .
(2) feC(0,+)xR,R) and there are positive constants a;,R and a constant
1<g<@m+2)/(n—2)such that

lf(r,u)| < a;|lul? foranyr >0, |u] >R.

(3) There exists u > 2 such that
u
uF(r,u) := ;4/ f(r,vydv < uf(r,u) foranyr >0, u € R.
0

(4) There exists K > 0 such thatinf, ¢ F(r,u) > 0.
(5) f(@r,u) = o(|u]) foru — O uniformly in » > 0.
(6) fisoddinu : f(r,—u) = —f(r,u)forany r > 0,u € R.

The above problem has been considered in R",n =4 or n > 6, in [3] which proved the
existence of infinitely many solutions in H'(R") which are not radial.

We are now able to achieve the same conclusion in R” for any n > 4, extending [3,
Theorem 2.1].

Theorem 3.11 Under the previous assumptions, problem (3.2) possesses an unbounded
sequence of solutions {+u; };en in R", n > 4 which are nonradial.

It remains only to show the case n = 5. Let

qb(u):l/ |W|2+1/ b(|x|)u2—/ F(lx].u)
2 RS 2 Rns RS

be the energy functional associated with problem (3.2) which is well defined and C! on the

subspace of H'(R>)
X= {u e H'(RY) : / b(|xDu? < +oo}.
R5

This space is continuously embedded into H'(R>), then into L”(R>), but not compactly.
However, for what we have seen before (see ExampNIe 3.8) the closed and infinite-dimen-
sional space of fixed points of X for the group H, Xj, has compact embedding into
LP(R3),p € (2,2%), and then, being the functional ¢ invariant under the action of H (which
is important to apply the Palais’ Principle) the conclusion follows exactly as in [3].

As a consequence of Example 3.9 we have also that the problem in R has infinitely
many solutions which are radially symmetric in the first two variables and periodic in
the third one, hence nonradial in R3.

Of course, the fact that the above equation has infinitely many radial solutions in
R”,n > 3 is well known and obtained by taking advantage of the compact embedding of
the radial functions.
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3.1.2 A nonlocal fractional scalar field equation

The above argument also works for the following system of fractional elliptic equations.
Given w >0, n >4, a € (0,n),s € (0,1) and l + a/n < p < (n+ a)/(n — 2s), consider
the problem

{ (=A)'u+ ou = @lulP~>u, inR” (3.3)

(=D = y(a)|ul’, in R"
7229 (a/2)

I'(n/2—a/2)
fractional Sobolev spaces

where y(a) := , I is the gamma function and the unknowns u, @ are found in the

u€HR", ¢eHPR".

The search of solutions for such a problem is reduced to find critical points u € H*(R") of
the following C! functional

E (u)= [(=A)Y"u)? + @ / u? — € @,lul’, where ¢, = * |ulP.

R~ 2 2p R~

| . |n—a

Then, in the following we will speak also of “solution #” of (3.3) since ¢, is univocally
determined by u in virtue of the second equation. See [5] for the details, where the problem
is addressed and where, among other results, the multiplicity of nonradial solutions has
been proved in the cases n = 4 and n > 6 by using the symmetric Mountain Pass Theorem.

We are able to obtain a similar result also in R>. Recall Remark 3.10 to deal with H*(R?).
Let H as in Example 3.8 and H% (R3) be the closed and infinite-dimensional subspace of fixed
points for this action. It is easy to see that if u € Hf?’ (R3), then also ¢, enjoys the same sym-

metry and that the functional E is invariant for this action (and then the Palais’ Principle
applies). Since H% (R°) has compact embedding into I7(R%),2 < p < 2%, we can prove the
Palais—Smale condition and conclude exactly as in [5, Theorem 5.3] obtaining explicitly the
following result covering the case n = 5.

Theorem 3.12 Under the previous assumptions, problem (3.3) possesses an unbounded
sequence of solutions {+u },n in R", n > 4 which are nonradial.

As before, in the case of R? we can achieve existence of solutions radially symmetric in the
first two variables and periodic in the third one.

Again the existence of infinitely many radial solutions in R”,n > 3 is known and obtained
in a standard way by using the compact embedding of the radial functions.

3.1.3 A Schrodinger-Poisson system
With our approach, we are able to extend a result of d’Avenia [4] in R", n > 4 with a simpler

proof by using the compact embedding of our working space.
Let us start with the case n = 5. Following [4], we consider

—%Au+a)u+q)u= [Py,  in R3,
—Ap =y(2Qu?, in R’
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in the unknowns u, ¢ : R’ — R and @ > 0. The constant y(2) is defined as above. Here
p € (4,6)is given. Then, after rescaling, the above problem is equivalent to find solutions

ue H'(R®, ¢ € D"*(R%) notradial, and 1> 0

for the system

34

—%Au+u+<pu=/1|u|p‘2u, in R’
—Ap = y(2Qu?, in R>.

Equivalently the problem is reduced to find a critical point, which is not radially symmet-
ric, of the functional

J(u) = l/ |Vul? + l/ u? +/ (puuz, where ¢, = L s u’,
4 Jgs 2 Jrs RS |- 3

restricted to the sphere
S = {u e H(RY) : lulP = 1}
RS

and A is the associated Lagrange multiplier. For this reason (as before, since ¢ is uniquely
determined by u), we will speak of “solutions u# and 1” of (3.4).

With our approach, we can restrict the functional to the subspace of fixed points for the
action considered in Example 3.8, i.e., H}% (R3), that we know it has compact embedding

into L”(R3). Then, the set

- 1 5y . P _—
SH—{ueHﬁ(IR). [ _1}

is weakly closed. It is easy to see that if u € H;N[, then also ¢, := # * u” enjoys the same
symmetry (again, important to apply the Palais’s Principle). Moreover, the energy func-
tional restricted to S is bounded below and coercive (as proved in [4]), but also weakly
lower semicontinuous and satisfies the Palais—Smale condition, as it is standard to see by
using the compact embedding just stated.

Then, not only the existence of a minimizer is guaranteed, but also, since the functional

is even, by the Ljusternick—Schnirelmann theory we deduce the following
Theorem 3.13 Problem (3.4) has infinitely many solutions (u,,, A,) with u, nonradial.

The above theorem for the cases n = 4 and n > 6 can be easily obtained by the approach
of [3].

Of course, our methods permits to have solutions in R? which are radial in the first two
variables and periodic in the third one.

Again, also in this case the existence of radially symmetric solutions is well known, for
any n > 3.
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4 The case of Hadamard manifolds

Let (M, g) be an Hadamard manifold of dim M = n. This means (M, g) is a simply con-
nected complete Riemannian manifold of nonpositive sectional curvature, see [7, 8].
Hence, if p € M, then exp, : T,M —> M is a diffeomorphism. Since M is simply con-
nected, it is orientable. Let {U}, ¢,;},; be an orientable atlas. This means that for every
i€l,U;cR"and ¢; : U; — U; C M is a positive diffeomorphism. The Riemannian vol-
ume form v is the smooth n-form such that

;v =VdetGdx, A - Adx,,

i

where G = <g(0i, %)) is the matrix associated with g with respect to the basis
1<ij<n
{%, ey % }. It is easy to check that any isometry T : M — M satisfies T*v =v, i.e,, T
1 n

preserves the Riemannian volume form v.

Let G C Iso(M, g) and let Q C M any G-invariant open and unbounded subset of M. Let
H'(Q) and H(‘) (€2) be the usual Sobolev spaces defined as for the case of R”, see [2].

The action of G on H,(Q) is defined by

gu(x) :=u(g”'x), geG,
and the subspace of fixed point for this action is
Hy o(Q) := {u € H)(Q) : gu=u, Vg € G}.

Applying Proposition 2.2, we have the following result which gives the compactness of the
Sobolev embedding in the case of a Riemannian manifold.

Theorem 4.1 Let (M, g) be an Hadamard manifold, and let G C Iso(M, g) be a closed and
discrete subgroup with infinite elements. If M/G is compact, then the following embedding

Hy (M) = LP(M), 2 <p < 2%,
is compact.

Proof Indeed, having Proposition 2.2 the proof follows as in [13, p.16-17]. O

Let G CIso(M,g) be a compact subgroup. By a Theorem of Cartan, see [8], G
has a fixed point. Let p e M® = {g € M : G(q) =g} be a fixed point. The isotropy
representation

G— O(TpM), k— dkp.
is injective, and it satisfies
k(exp,(v)) = exp(dk,(v)).

Therefore, the exponential map at p is G-equivariant, i.e., it interchanges the G action on
M with the G action on 7,M. In the sequel, we also denote by kv = dk,(v). It is well known
that M is a totally geodesic submanifold of M and T,M° = (T,M)“, see [1]. Hence, if the
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G action satisfies the first condition of Theorem 3.5, keeping in mind that any point can be
joined by a unique minimizing geodesic, then M® = {p}. The vice versa holds as well.

Proposition 4.2 Let (M, g) be an Hadamard manifold, and let G C 1so(M, g) be a compact
connected subgroup of dimension bigger than one. Assume that M® = {p}. Then, for any
r> 0, we have

lim m(z,r,G) = +oo.
d(p,z)—+oo

Therefore, any G-invariant open unbounded subset of M is compatible.

Proof Since (M, g) has negative curvature, applying the Rauch Theorem [6], if v,w € TpM s
then

Il x =y 1< d(exp,(v), exp,(w)).

Letr > 0, and let n € N. By Proposition, 3.2,

lim m(y,r,G) =
Iyll=+o0
Let yeT,M, and let n €N be such that there exists g,...,8, € G such that

Il gy — gy lI> 2r fori # j and so B,(g;y) N B,(g;y) = @ fori # j. Since
d(exp,(g,y), exp,(g;y)) = d(g; exp,(y), g exp,(») 2l gy — gy II> 2r,

it follows B,(g,exp,(y)) N B,(g;exp,(»)) = @ for i#j, and so, keeping in mind
d(p,exp,(y)) =|| y |I, the result follows. O

As an application, we have the following compactness result for an Hadamard manifold.

Theorem 4.3 Let (M, g) be an Hadamard manifold, and let G C Iso(M, g) be a compact
subgroup of dimension bigger or equal than one. Assume that M® = {p}. Let Q be an
unbounded G-invariant open subset of M containing p. Then, the following embedding

H&G(g) S [P(Q), 2 < p < 2%,
is compact.
Proof Tt is similar to [13] p. 16 — 17. O

Let p e M, and let f : M — R be a function. We say that f is a radial function (with
respect to p) if f(z) = f(w) whenever d(p, z) = d(p,w). Since exp, : T,M — M is a dif-
feomorphism, and keeping in mind that d(p,z) =|| expfl(z) ||, see [6], it follows that
f 1 M — Ris aradial function if and only if fo exp TpM — R is a radial function.

LetGCG,={g€lsoM,g): gp=p}bea closed subgroup. Then, H&G(M) contains
the set of radial functions. Indeed, if f : M — R is a radial function, then it is G-invari-
ant due to the fact that for any k € G we have

d(p,kz) = d(kp, kz) = d(p, 7).
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5 Symmetry and compactness for symmetric spaces of noncompact
type

Let (M, g) be an Hadamard manifold. Let p € M, and let H C G, be closed subgroup.
Assume that there exists a closed subgroup Hc G, such that H cHc G, and H/H
has two elements. Then, H is a normal subgroup of H and the natural projection
:H— H/H x7Z,is a surJectlve homomorphism. By Lemma 3.7, this holds if there
ex1sts T € G, such that 7 € H, 72 = e and THt = H. Indeed, the subgroup H generated
by H and 7 is closed and H/H has two elements.
Let © be an unbounded open H-invariant subset of M. Define

HxH'(Q) — H'(Q), (gu)+~ pl@ug") = qu.

It is easy to check that this map defines an isometric action of H on H'(Q). Denote by
H1 (Q) ={ue H‘(Q) gu = u for any g € H}. Since p(h) = 1if h € H, then Héﬁ(Q) is

a closed subspace of H (Q).
Lemma 5.1 Under the above assumption, if
Hy,(Q) = [P(Q), 2 <p <2* (where dimM > 3)
is compact, then the embedding
Héﬁ(g) S IP(Q), 2 < p <2F,
is compact and the set H éﬁ(Q) does not contain radial functions unless u = 0.

Proof Since H é 171(9) is a closed subspace of Hé 5 (€2), it follows that the embedding

H(l)ﬁ(Q) S IP(Q), 2 < p < 2%,

is the restriction of a compact operator on a closed subspace, and so it is compact as well.
Finally, pickt € H. Ifu € HéE(Q), then

Tu(exp,(v)) = —u(exp,(z(v)),
and so u is not radial unless it is zero. a
The aim of this section is to generalize the idea due to Bartch and Willem [3] in

order to show the existence of group actions whose subspace of fixed points has nonra-
dial functions.

5.1 Symmetric spaces of noncompact type of rank one

Let (M, g) be a symmetric space of noncompact type of rank one. Let p € M, and let

= {g € Iso(M, g) : g(p) = p}. It is a well known G, is a compact group acting transi-
tlvely on the unit sphere of (T M, g(p)), see [8]. Hence G satisfies the assumption on
Theorem 4.3. We claim that H1 (M) coincides with the set of radial functions of class
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H 1(M) that we denote by H radp (M). Indeed let u: M — R be a G,-invariant func-
tions. It is enough to prove that u = uoexp, 'is a radial function.

Letve T,M, and let w € T,M be such that || v [|=]| w [|. Then, there exists g € G,
such that g~ 1(v) w. Hence,

(W) = u(exp,(w)) = uexp,1,(g”'v) = gulexp,(v) = (v).

Applying Theorem 4.3, we have proved the following result.

Theorem 5.2 Let (M, g) be a symmetric space of noncompact type of rank one and let
p € M. Then, the following embedding

Oradp(M) < I[P(Q), 2<p < 2" (where dimM > 3)

is compact.

Let H" be the hyperbolic space. H" is a symmetric space of noncompact type of rank
one [8]. One model is given as follows, see [6].

Let R™! = R” @ R endowed by the Minkoswky inner product defined by the quad-
ratic form

qCen) =]l x |I* =
where || - || is the norm with respect to the canonical scalar product on R”. Let
H' = {(x,r) € R™ : g(x,1) = —1}.

It is well known that the Minkowsky inner product induces on H" a com-
plete Riemannian metric (-,-) with constant sectional curvature —1. Moreover,
Iso(H", {-,-)) =0(1,n) = {A € Gl(n + 1,R) : g(A(x,1)) = g(x, 1)} and O(1l,n), = O(n),
where e, = (0,...,0, 1T. Moreover, the slice representation, i.e., the O(n) actlon on
T, H'=R"1is the standard O(n) action on R".

Assume that n>4. Let H=S0(2)XSO(n—2)cC H= 0O(2) x SO(n - 2) C O(n).
Then, both H and H satisfy the condition of Theorem 4.3 and H /H = Z,. Therefore, the
action

Hx H' (H") — H'(H"), (A4, B), u) ~ det(Au((A~!-,B~")).
is an isometric action, the embedding

Héﬁ([l-l]") o IP(HY), 2 < p < 2%,

is compact, and the set H ! (I]-I]”) does not contain radial functions unless u = 0.

Let M =SU(1, n)/S(U(l) X U(n)),n > 2, be the symmetric space of noncompact of
type which is the dual of the complex projective space. It is a symmetric space of non-
compact type of rank one [8]. The isotropy representation is given by the natural action
of U(n) on C".

Let T c SU(n) be a maximal torus. It is easy to check that (C")” = {0}, and so it
satisfies the condition of Theorem 4.3. It is also well known that the Weyl group of
SU(n) is isomorphic to the group of permutations of n — 1 elements, see [11]. Therefore,
there exists 7 € SU(n) \ {T'} such that 7> = Id and 7Tz = T. Denote by H be the closed
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group generated by 7 and 7z and by p : H— H /T = Z, the natural projection. Then,
the action

Hx H' (M) — H'(M), (@ = p(@u(g™").
is an isometric action, the embedding

HéH(M) o IP(M), 2 < p < 2%,

is compact, and the set H ! (M) does not contain radial functions unless u = 0.

Let M = Sp(1,n)/ Sp(l) X Sp(n)) be the symmetric space of noncompact type which is the
dual of the Quaternionic projective space. It is a symmetric space of noncompact type of rank
one, see [8]. The isotropy representation is given by the natural action of Sp(1) - Sp(r) on H".

Let T C Sp(n) be a maximal torus. It is easy to check that (H")" = {0}, and so it satisfies
the condition of Theorem 4.3. It is also well known that the Weyl group of Sp(n) is isomorphic
to S, X Z,, see [11]. Therefore, there exists 7 € Sp(n) \ {T} such that > = Id and 7Tt = T.
Denote by H be the closed group generated by 7 and 7 and by p : H—H /T = Z, the natu-
ral projection. Then, the action

HxH'M)— H'M), ()= p(gu(g™").
is an isometric action, the embedding

HéH(M) o [P(M), 2<p <2,

is compact, and the set Hé FI(M) does not contain radial functions unless u = 0.

5.2 The space M = SL(n, R)/SO(n)

The manifold M = SL(n, R)/SO(n) is a symmetric space of noncompact type. For a sake of
completeness, we briefly recall some well-known facts. The Cartan decomposition of the Lie
algebra of SL(n, R) is given by

8l(n,R) = 30(n) @ Symy(n),

where Symy(n) = {A € gl(n,R) : A =AT, Tr(A) =0} and 8o(n) is the Lie algebra of
SO(n). Therefore, we may identify T{go ;M with Symg(n) and the isotropy representation
of SO(n) is given by

o : SO(n) — SO(T,M), A~ Ad(A),

where Ad(A)(X) = AXAT, i.e., the adjoint action. This action is isometric with respect to
scalar product (X, Y) := Tr(XY) = Tr(XYT) defined on Sym,,. This allows us to define a
Riemannian metric on M, which coincides with (-, -} at [SO(n)] by requesting that the left
translation L, : M —> M, hSO(n)] = ghSO(n)] is an isometry. We also denote by (-,+)
this Riemannian metric, and (M, (-, -)) is a symmetric space of noncompact type of non-
positive sectional curvature [8]. Let SU(n) € SO(2n) being

A+iBw— [—ABf]
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This means that
SUM) = {C € SO(2n) : cJCT = J},

where J = Ig _5d” . We claim that Symy(2n)SU® = {0}. Indeed, let
A € Symy(2n)SY®. Since A is symmetric, it can be diagonalize. Since A is a SU(n) fixed
point, it follows that any eigenspace is preserved by SU(n). Since SU(n) acts irreducibly on
R?", it follows that A must be a multiple of the identity matrix with trace 0 and so A = {0}.
Ig” “1d ] It is easy to see that 72 = Id, 7 ¢ SU(n) and zSU(2n)r = SU(2n).
n

Identifying = with o(z), we define T = exp ot exp~!. Therefore, 7 is an isometry of M, due
to the fact that 7 lies in the image of the isotropy representation, satisfying 72 = 1d,,. More-
over, if we consider H acting on M, we have and 7H7 = H. Indeed, denoting by
p = [SO2n)], for any h € H, we have ThTp = p and so Th7 is completely determine by its
differential. Since zdhz € H, it follows that Tht € H as well.

By Lemma 3.7 the subgroup H generated by H and 7 is closed, and there exists a surjec-
tive homomorphism p : H — Z, such that p(H) = 1. By Lemma 5.1, the action

Letz =

H x H'(SL(2n, R)/SO(2n)) — H'(SL(n, R)/SO(2n)), (g.u) ~ p(Qu(g™")
is isometric, the embedding

Hé FI(SL(Zn, R)/SO(2n)) < LP(SL(2n,R)/SO(2n)), 2 <p <2*,n>2

is compact, and finally, H(‘) ﬁ(SL(Zn, R)/SO(2n)) does not contains radial functions unless
u=0. ’
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