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INTRODUGCAO

Apresenta-se, neste trabalho, a‘sequéncia de operagoes que per-
mitem a andlise de cascas cilindricas pelo método dos elementos £1,
nitos, quando se consideram deformagoes pequenas, mas que conduzem
a plastificagéd do material. Admite-se, porém, que seja valida a
adogao de relagbes deformacoes-deslocamentos lineares.

Os casos de plasticidade com encruamento podem ser analisados

com uma formulagao andloga & que aqui se desenvolve.

1. Aplicacao do método dos elementos finitos

Considere-se a casca cilindrica da fig. (l1.1), discretizada em
um nimero finito de elementos planos. Em cada vértice i de um de-
terminado elemento, o vetor deslocamento € caracterizado, no siste

ma global x, y, z, pelas componentes ui, Vi’ wi e o0 vetor rotagéo

pelas componentes exi' Byi' Bzi' enquanto que, no sistema local

x', y's 2', o vetor deslocamento & caracterizado pelas componentes

uj, vij, w; e o vetor rotagao pelas componentes B sen-
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do validas as sequintes relacoes:
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de modo que:

onde

zi J

O e O fer

sena’
e

COSsa
e

-
xi

L

0

xi

‘Lﬂ'

‘xi

yi

zi

(1s1)

(1.2)

(L <3)







‘Figura (1.1)

Os deslocamentos nodais a2, relacionam-se ao conjunto dos deslo-

camentos nodais a da casca, da seguinte maneira:
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de

2 _ “ (1.4)
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forma que, considerando a equacao (1.2), tem-se:

al o= PUpIt o o Mg (1.5)
e —eZe = —e—e

No sistema local, o deslocamento de um ponto P € caracterizado,
acordo com a teoria cldssica, pelas componentes:
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onde ué, vb, w) s3o as componentes segundo os eixos x', y', z' do

0

deslocamento do ponto Pyr projegao de P na superficie média,

da-

das, em fungéo dos deslocamentos nodais no sistema local, por meio

de fungoes de interpolacido, ou seja:
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Em notagao matricial, tem-se:
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de modo que:

_UG(X'.y')
N 0 a'
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u=| volxtyy') | = (1.13)
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ou, alternativamente:
u =N Eé = N Ee a (1.14)
onde
r¢i' 0 0 0 0 0
Hi =1|0 ¢4 0 0 0 0 o (128)
0 0 wi &4 ny 0

O campo de deformagoes & dado, considerando sucessivamente as

equagoes (1.6), (1.9) e (1.11), por:
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ou, alternativamente:
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A uma variagdo 6u corresponde uma variagdo 6eg, de modo que o
trabalho virtual dos esforgos externos é dado por:
sty = & Suf hdS + I| 6us s h ds (1.21)
Se Se
onde, de acordo com a fig. (1.1),
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M l" ]
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enquanto gue o trabalho virtual dos esforcos internos & dado por:
sty = I e’ o av (1.23)
Ve
-onde
cx(x',y') _
g=| o, (x',y") . (1.24)
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As componentes o, 6 , t__, correspondem os esforgos solicitan-

X Y Xy
tes:

h/2 ) h/2 h/2

Nx = ax dz Ny = Uy dz ny = Txy dz
~-h/2 ~h/2 ~-h/2

(1.25)

h/2 | h/2 . h/2

Mx = Oy 2 dz My = °y z dz Mxy = - TXY z dz
-h/2 -h/2 : -h/2

Considerando, na situacao de equilibrio, a igualdade dos traba-

lhos virtuais externo e interno, pode-se escrever:

zJ GETEdV-l:E[ agT;hds.+zJ 61_1:§hds]=0 (1.26)
A% S S

Considerando; na expressao acima, as eguagdes (1.19) e (1.22),

obtém-se:
r| ea 7.TB ocav- |z| sa"z TN" £has+
v S
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ou seja:
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+ 1T NI shas| |=sa” v(a) = 0 (1.28)
S
e
onde )
_lg(g).=z_T_g _B_T_EGVH z__z Jf NTgh_ds+
v, s,
+ o7 J[ N® s h ds
se
=5 T B g av - p (1.29)
Ve

Havendo esforgos externos concentrados nos nds, deve-se adicio-
na-los aos termos entre colchetes da expressao acima.

A solucao das equagoes de equilibrio (1.29) & obtida com o pro-
cedimento descrito na referéncia R.3. Deve-se notar, entretanto,
que nos nds situados em bordas livres ocorre uma Nipustaticidade
local no sentido de ser impossivel a absorgao de eventual momento
externo, caracterizado por vetor normal & casca. Adiciona-se, en-
tao, uma molé resistente a rotacaoc, que de resto ndo é solicitada.
A mesma providéncia deve ser adotada quando todos os elementos con

vergentes em um determinado nd sao complanares.
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2. Exemplo
No exemplo que segue, a discretizagao da estrutura &€ feita com

elementos retangulares, descritos na referéncia R1l, nos quais, con

siderando, de acordo com a fig. (2.1), as seguintes transformacgoes:

r=— ¢ g = —C £t =2 (2.1)

as fungSes'de interpolaqao, correspondentes ao nd i, s3o dadas por:

_ &
¢i,(r,5) =7 (ro + 1) (s0 + 1)
vy (x,8) %— (rg + D (sy + 1) (2 + ry + 5o - r2 = 5%
(2,8) = & b e # MiE. + 1208, + 29
&4 1%y 8 i'To 0 0
(r s}=lar(r +l}2{r - 1)(s., + 1) (2%2)
s R 8 .0 0 0 3
onde E
r0 = r ri e Sg = S si ' (2:3)
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Figura (2.1)
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Adota-se o critério de Von Mises, em gque a fungao de plastifica

¢cao € dada por:

j =02 + 0% -60 + 312 - o2 (2.4)

F(Ox'cy'rxy X y Xy Xy e

onde % € a tensao de escoamento do material.
Com esses elementos, examina-se a casca cilindrica da fig.(2.2)
de material elasto-plastico, -de modulo de elasticidade

E = 2.100 tf/cm2

, . coeficiente de Poisson v = 0,30 e tensao de es-
coamento Gg = 2,4 tf/cmz, submetida & carga kg, segundo a di;egao

Z, onde q = 0,0030 tf/cm>.
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Figura (2.2)
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DESLOCAMENTO VERTICAL
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