Boletim Técnico da Escola Politécnica da USP
Departamento de Engenharia de Computacido e

Sistemas Digitais

ISSN 1413-215X

BT/PCS/9903

Implementacio Paralela
Distribuida da Dissecacio
Cartesiana Aninhada

Hilton Garcia Fernandes
Liria Matsumoto Sato

Sao Paulo - 1999

O presente trabalho é parte da dissertacdo de mestrado “Estratégias para implementagao Paralela-
Distribuida da Dissecagdo Aninhada Cartesiana”, apresentada em 13/08/98, por Hilton Garcia
Fernandes, sob orientagdo do Profa. Dra. Liria Matsumoto Sato.

A integra da dissertagao encontra-se a disposigao com o autor e na Biblioteca de Engenharia Elétrica
da Escola Politécnica da USP.

FICHA CATALOGRAFICA

Fernandes, Hilton Garcia
Implementacao paralela distribuida da dissecacéo cartesiana ani-
nhada / H.G. Fernandes, L.M. Sato. — Sao Paulo : EPUSP, 1999.
19 p. — (Boletim Técnico da Escola Politécnica da USP, Departa-
mento de Engenharia de Computagéo e Sistemas Digitais,
BT/PCS/9903)

1. Programagao paralela (Computagao) 2. Equacdes lineares 3.
Matrizes esparsas |. Sato, Liria Matsumoto Il. Universidade de Sao
Paulo. Escola Politécnica. Departamento de Engenharia de Computagao
e Sistemas Digitais [ll. Titulo IV. Série

ISSN 1413-215X CDD 005.2
516.252
512.9434

Implementacao Paralela Distribuida da Dissecacao
Cartesiana Aninhada

Hilton Garcia Fernandes
Liria Matsumoto Sato

Resumo

A solugdo de sistemas de equacdes lineares é um problema que surge em varios
algoritmos numéricos; neles a esparsidade das matrizes de coeficientes do sistema
permite que se tratem sistemas de ordem muito elevada. Os métodos iterativos
em geral sdo preferidos devido ao fato de que os métodos diretos, em sua versio
mais simples, tendem a introduzir um nimero inaceitavel de elementos nio nulos na
matriz do sistema, o que é chamado preenchimento, ou fill-in. No entanto, através
de vérias propriedades do grafo associado & matriz de coeficientes do sistema linear,
é possivel se reduzir drasticamente o preenchimento. O método de Cholesky, para a
solugdo de sistemas lineares cuja matriz é simétrica e definida positiva, é sofisticado
com técnicas da teoria dos grafos, em um algoritmo projetado especialmente para
sistemas paralelos distribuidos, a dissecagio cartesiana aninhada. S3o apresentadas
estratégias para a implementagdo deste algoritmo.

Abstract

The solution of systems of linear equations is a problem that occurs within several
numerical algorithms. The sparsity of the systems coefficient matrix allows very
high system orders. Usually iterative numerical methods are chosen for the sys-
tems’s solution because simple direct methods tend to introduce an unacceptable
number of non-zero elements in the system matrix (fill-in). However, using several
properties of the graph associated to the linear system matrix, it is possible to dras-
tically reduce the fill-in. The Cholesky method for the solution of linear systems
whose matrix is symmetric positive definite, is enhanced with graph techniques, in
an algorithm specifically designed for parallel distributed computers, the cartesian
nested dissection. Some strategies for the implementation of this algorithm.

1 ESTRATEGIAS DE IMPLEMENTACAO 2

1 Estratégias de implementacao

Este artigo discute a estratégia de implementacéo paralela distribuida do algoritmo
da dissecagdo aninhadae cartesiana, do ponto de vista das escolhas iniciais desta
dissertacdo, que moldaram sua face antes mesmo que ela fosse iniciada. Comenta-se
também a filosofia de projeto do software, tanto visando sua construcio, quanto do
ponto de vista da depuragio e deteccio de erros.

Considera-se que tanto o projeto formal do software, quanto o projeto antecipado
de suas formas de depuragdo e detec¢do de erros pontos importantes da dissertacao,
pois o algoritmo da dissecagcdo aninhada cartesiana a ser implementado por ela é
relativamente complexo.

Pontos importantes para as bases do projeto sio o hardware disponivel e também
o tipo de paralelismo implicado no algoritmo da dissecacdo aninhada cartesiana [4],
escolhido para esta dissertagdo.

Ainda, neste artigo se oferece uma visdo panoramica da implementacio, quanto &
implementagcio escolhida para o algoritmo, tanto do ponto de vista da interpretacio
de sua especificagdo, como do ponto de vista das poucas alteracdes sugeridas para ele
nesta dissertagéo, tanto do ponto de vista do hardware escolhido, quanto de muito
poucas propostas de alteragio.

Este artigo corresponde a uma apresentagdo resumida de pontos da dissertacdo
de mestrado com mesmo nome [2].

1.1 Bases do projeto

Deseja-se com “bases do projeto” referir as bases sobre as quais todo o projeto se
assentou. Isto significa tanto os “dados”, as premissas iniciais dadas pela conjuntura
académica, como as escolhas feitas quanto & forma de se conduzir o projeto, desde
a filosofia de projetar o software, até a forma de garantir sua execucéo correta, e de
encontrar eventuais erros.

1.1.1 Escolhas prévias do projeto

Por escolhas prévias do projeto entendem-se as escolhas j4 feitas, ou “dadas”, pela
estrutura organizacional da academia: desde a tradi¢do de uso de equipamentos,
linguagens e sistemas operacionais, até os ambientes de apoio disponiveis. Fala-se,
naturalmente, de redes de computadores, executando uma, variante do Uniz, como
0 Linuz; do uso da lingnagem C [7], e dos ambientes de apoio ao paralelismo por
passagem de mensagem, como o PV M [1], e o MPI [9].

Equipamentos e sistemas operacionais Nio é exagero dizer que os mais poderosos
supercomputadores atuais usam arquitetura de meméria distribuida. Essa forma de
se organizar computadores permite que mais facilmente se agreguem processadores

1 ESTRATEGIAS DE IMPLEMENTACAO 3

€ memoria a um computador. Contudo, seus custos sobem proibitivamente 4 faixa
de milhdes de délares, o que torna sua compra um privilégio de apenas umas poucas
entidades de pesquisa.

Deste modo, tem sido a escolha de muitas entidades de pesquisa, nacionais ou
nao, construir metacomputadores que sao, em iltima an4lise, agregados de estacoes
de trabalho dedicadas, colocadas em rede local. Devido ao notével aumento de poder
computacional e & acentuada diminuigdo de custos das méquinas com arquitetura
Intel, baseadas em processadores Pentium, tem sido uma tendéncia construir meta-
computadores com base em equipamentos desse tipo.

Um outro fator se soma a essa tendéncia: a criacdo e o florescimento do sis-
tema operacional Linuz, compativel com varias versoes do Unix e também com o
padrao Posiz de sistemas abertos. Desenvolvido por um grupo de programadores
na Internet, hoje o Linuz é quase que um sindnimo de sistema operacional usado na
academia, por ser capaz de ser executado em estacOes de trabalho com arquitetura
Intel. Outros fatores para o sucesso do Linuz na academia por sua abertura, j4 que
todo seu cédigo-fonte é mantido em dominio piiblico, por sua confiabilidade e ro-
bustez, e pela facilidade com que incorpora inovacoes e a0 mesmo tempo se mantém
compativel com as tradicées do sistema operacional Uniz usado na academia.

A linguagem de programacao C' A linguagem de programcéo C' [7] foi origi-
nalmente criada para o desenvolvimento de sistemas operacionais, como o Uniz. O
C' tem boas caracteristicas de portabilidade, geracdo de cddigo de mdquina eficiente,
Tecursos para programacao estruturada, e modular, e também acesso a caracteristicas
do processador antes disponivel apenas em linguagem assembly.

Por esta razdo, o C' também teve um uso intenso no desenvolvimento de aplica-
tivos. Neste trabalho, sugere-se a linguagem de programacao C por sua facilidade de
criagao de estruturas de dados, titeis para a expressao de um algoritmo relativamente
complexo como o da dissecacdo aninhada cartesiana [4].

Ambientes de passagem de mensagens Sendo o hardware um conjunto de
estacoes de trabalho conectadas em rede local, e sistema operacional Linuz, quase
que simultaneamente esta escolha de estratégias foi levada a um ambiente de pas-
sagem de mensagens, onde diversas estacoes de trabalho executam programas inde-
pendentemente e trocam informacGes de tempo em tempo. Assim, a passagem de
mensagens é tanto uma forma de compartilhar informacgées quanto um modo de sin-
cronizar processos distintos em computadores distintos. Sobre a mesma arquitetura
de redes de computadores usadas como um tnico computador, um metacomputador,
tem sido construidos ambientes de softwares de simulacio de memdria compartilha-
da, chamados distributed shared memory, ou DSM. Apesar destas ambientes serem
muito pesquisados, o algoritmo da dissecagdo aninhada cartesiana foi projetado para
ambientes de meméria distribuida.

1 ESTRATEGIAS DE IMPLEMENTAGCAO 4

Existem vérios ambientes de passagem de mensagem disponiveis. Entre eles os
mais famosos e utilizados recentemente tém sido o PV M [1] e o MPI [9]. Neste
trabalho sugere-se o M PI devido ao fato desse ambiente ter sido criado depois da
experiéncia do uso e implementacdo de muitos outros ambientes do mesmo tipo,
entre eles o proprio PV M: na equipe dos criadores do M PI encontram-se também
os criadores do PV M.

1.1.2 Filosofia de projeto do software

Nestas estratégias para a implementacéo paralela distribuida da dissecagdo aninhada
cartesiana, faz-se o projeto do software segundo a orientacdo ao objeto [10]. Em
muito poucas palavras, a visao cldssica da programacao orientada ao objeto, ou
object-oriented programming (OOP), é baseada nos conceitos de

objeto — um agregado de dados isolados, ou encapsulados, que podem ser acessados
apenas através de funcdes apropriadas, que podem ser usadas para criar o
objeto, consultar seu estado ou alterd-lo;

atributos — sdo os dados de um obijeto, e contém seu estado;
o 7 3

métodos — sdo as funcbes que permitem acessar a um objeto. Fungbes que o
criam sio chamadas construtores, ou constructors; funcdes que o destréem sao
chamadas destruidores, ou destructors; funcdes para consulta de seu estado
sao chamadas funcdes acessadoras, Ou accessors;

classes — sdo os padrdes segundo os quais os objetos sdo criados. Meyer [10] se
refere as classes como fabricas de objetos. Uma classe pode reaproveitar os
recursos definidos em outra; neste caso tem-se o que se chama heranca, ou
inheritance, que é a maior originalidade da programacao orientada ao objeto,
j4 que a maioria de seus conceitos j& estavam — isoladamente — disponiveis
sob outros nomes em outras técnicas; entre elas, notadamente a programacao
modular.

A linguagem C ndo tem recursos especials para a programagdo orientada ao
objeto; em outras palavras, ndo é uma object-oriented programming language, como
a linguagem Eif fel [10], ou o Java [3]; ela também ndo ¢ uma linguagem multi-
paradigmética como o C'++ [11]. Apesar de que com sua reconhecida flexibilidade,
e seu acesso a recursos de baixo nivel do processador, néo é dificil implementar a
prépria heranca em C. Isso é demontrado pelo fato de que os primeiros compiladores
C + + e Eiffel geravam programas C como resultado de compilagdo, em vez do
cédigo-objeto habitual. Além do mais, isso é exemplificado em detalhe em livros
como [6], que propde a programagio orientada ao objeto stricto sensu em C.

1 ESTRATEGIAS DE IMPLEMENTA CAO 5

reuso de software, como nas diversas listas usadas, tais como:

e list(V,C), ou lista de vértices, onde C é ou a coordenada X, ou a coordenada
Y, deve ser implementada através de classe VERTEX_LIST, com a indicac¢ao da
coordenada através de atributo;

e list(E,C), ou lista de arestas, a ser implementada através de classe EDGE_LIST,
e

® count(E,C) e count(V,C), implementadas conjuntamente através de classe
COUNT_LIST.

RET_VAL EDGE_TABcreat (VERTEX_TAB #*this » FILE =*inp_f);
A impressdo deve ser feita pela funcao
RET_VAL EDGE_TABprint (VERTEX_TAB *this, FILE *out_f);

Através da convencao que relembra a linguagem C + +, usa-se 0 nome this para
indicar o objeto sendo manipulado. Ele é passado como

1. um apontador nos casos em que ele é consultado ou seus atributos sao alter-
ados, como em VERTEX_TABprint () acima, ou

2. um endereco de apontador nos casos em que é criado, como em
RET_VAL VERTEX_TABcreat (VERTEX_TAB **this, FILE *inp_f),
ou entado destruido, como o é em
RET_VAL VERTEX_TABdestruct (VERTEX_TAB **this).

O tipo RET_VAL, usado como valor de retorno da maioria das fungbes, também é
uma classe, a ser usada fortemente nas estratégias de deteccdo de eITos, que sao
apresentadas no item 1.1.3.

1 ESTRATEGIAS DE IMPLEMENTACAO 6

1.1.3 Técnicas de depuracdo e detecgao de erros

Abordam-se aqui as estratégias de depuragao e de deteccdo de erros. Um projeto
de software de algum porte, como o da dissecacdo aninhada cartesiana deve prever
essas estratégias desde sua concepgao.

Sobre a deteccdo de erros Sendo relativamente complexo, o algoritmo da dis-
secac@o cartesiana aninhada enseja desde logo o desenvolvimento de técnicas para
a deteccdo de erros. Sugere-se a nogao de pré-condicdes e pds-condigoes de Meyer
[10].

Nessa técnica, garante-se que quando na entrada de uma fungdo, todos seus
parametros atendam a condigoes de consisténcia; caso contrdrio, a fungéo nao é ex-
ecutada e o programa é interrompido; isto é chamado de pré-condi¢c@o. Do mesmo
modo, uma fun¢do deve garantir que a sua saida, os dados por ela gerados ou alter-
ados atendam a certas condigoes de consisténcia; isto é chamado de pds-condigdo.
Em geral, fazem-se execugoes com de teste com todas verificagdes habilitadas. Na-
turalmente, a deteccdo de erros toma tempo de processamento e, por 1sso, tendo-se
detectado os erros mais importantes, e 0 programa se tornado mais estdvel, o mecan-
ismo de deteccdo de erros pode ser desligado mediante uma op¢ao de compilacao,
sem nenhuma alteracdo no texto-fonte do programa.

O nio atendimento a pré ou pés-condigdo é um erro do programa, que gera
uma ezcecdo, que pode ser tratada por mecanismos especificos de linguagens como
o Eif fel, de Meyer [10], ou o C + +, de Stroustrup [11].

Nesta propoe-se o uso da linguagem de programagao C (ver item 1.1.1, na pagina
2), que ndo tem explicitamente um mecanismo para lidar com excecOes, apesar de
possuir funcdes e recursos, como setjmp() e longjmp() [7], que podem ser usados
para implementd-lo.

Preferindo-se sempre que possivel a simplicidade, sugere-se implementar a de-
tecgio de erros através do uso do pré-processador embutido na linguagem C. O
recurso de deteccdo de erros permite apenas que a pilha de chamadas de fungGes
executadas até o momento seja desfeita — o que é chamado de stack unfolding — e
que sejam impressas mensagens descrevendo o erro e a linha do programa onde ele
ocorreu. Este processo chega até a funcao principal e o0 programa € terminado.

Sugere-se implementar esse recurso através de macros de pré-processador, chamadas
de retorno condicional: quando ocorrer uma condicdo de erro, a fungao deve retornar
para a outra que a chamou. Nesta funcdo hd outra macro de retorno condicional,
que verifica que a funcao chamada nio retornou com o valor correto. Isto faz com
que a funcdo chamadora também retorne. E o processo de retorno condicional con-
tinua até que todo o programa seja terminado. Sugere-se que nas macros de retorno
condicional sejam implementados recursos que permitam que cada retorno condi-
cional gere mensagem informando qual o tipo de erro e a linha de programa onde
ele ocorreu.

1 ESTRATEGIAS DE IMPLEMENTACAO 7

RET_VAL VERTEX TABprint (comst VERTEX _TAB *this
" FILE *out_f

)
DECLARE _RET VAL

Cret_INVPARM (this == NUL) ;
Cret_INVPARM (out_f == NULL) ;
Cret_INCONS (feof (out_£));
Cret_INCONS (ferror (out_f));

return (RV_0K);

deteccdo de €ITos, através da macro DECLARE_RET VAL, Verifica-se se nio sio nulos
0s apontadores para o objeto da classe VERTEX_TAB, de nome this, e para o arquivo
de Impressdo, de nome out_f. Se algum desses apontadores for nulo, a funcio que
chama esta recebe como retorno o valor RV_INVPARM, que significa que a funcao
chamada recebey um parametro invilido. Além disso, verifica-se se o arquivo de

1 ESTRATEGIAS DE IMPLEMENTA CAO 8

corretamente.
Por sua vez, na funcdo GRAPHprint (), onde sdo 1Mpressos grafos, deve haver
uma linha da forma:

confe_OK (VERTEX_TABprint (this—>vt, out £));

Neste caso, busca-se a confirmagao de que a funcao chamada terminou corretamente,
retornando RV_OK. A letra e, no prefixo confe_, nio é casual: ela significa que o
parametro da macro deve ser ezxpandido mesmo S€ a detecgdo de erros nao estiver
habilitada. Neste caso, a linha acima se transforma simplesmente em:

VERTEX_TABprint (this—>vt, out_f);

Isto é, em uma impressao normal do objeto VERTEX_TAB.

Caso haja um erro, a funcao chamadora GRAPHprint () retorna a quem a chamonu,
que pode ser um objeto da classe GRAPH_TREE, que implementa O conceito de arvore
de grafos. E neste caso, também a funcdo chamadora, agora da classe GRAPH_TREE
retorna a quem a tenha chamado. Neste caso o programa principal, chamado main()
em C. Neste ponto, 0 programa termina. N&o sem que tenham sido impressas
mensagens informando as linhas onde os retornos condicionais ocorreram. E a
condicao que levou a esse retorno, que no exemplo dado pode ser RV_INVPARM — para
parametros invalidos — ou RV_INCONS, caso um dos parametros seja inconsistente,
apesar de aparentemente valido.

Sobre a depuragdo Na criacdo dos recursos de depuragdo sugere-se 0 USO de
uma técnica similar & da detecgao de erros: sugere-se a Criacao de uma biblioteca
de depuracdo, chamada, por exemplo, dbglib, que conte com funcoes de impressao
de valores e mensagens, € com um nivel de pré-processamento; as mMacros devem
possuir a mesma funcionalidade, o mesmo nome € argumentos das fungoes, mas em
maitisculas. Por exemplo, deve existir uma funcdo chamada dl _print_int (), para
a impressdo de expressoes de tipo int e de uma mensagem definindo-a, e macros
como DL_PRINT_INTQC).

As funcdes ndo devem ser chamadas diretamente, mas através das macros. Por
sua vez, quando a opg¢ao de depuragdo estd habilitada, a macro se expande para a
funcdo de depuracao de nome equivalente. Quando ndo, a Macro gera o texto nulo.
Ou em outras palavras, nao gera nenhuma instrugao.

Assim, uma linha de programa da forma

DL_PRINT_INT ("ind_col", ind_col));
depois do preprocessamento se expande como
dl_print_int ("ind col", ind_col));

se a depuracdo estiver habilitada; e na linha nula, se a depuragdo nao estiver habil-
itada.

1 ESTRATEGIAS DE IMPLEMENTA CAO 9

1.2 O algoritmo paralelo

Neste ponto faz-se uma apresentacao detalhada do algoritmo da dissecagdo ani-
nhada cartesiana [4], adaptado 3s condigdes pré-definidas para a realizacdo destas
estratégias.

1.2.1 Iniciacio

Na Iniciacdo, como sugere o nome, sio efetuados os passos que permitem que o
processamento seja iniciado. Neste caso, isto significa ler os valores dos dados do
problema, distribui-los aos processadores e criar estruturas de dados que permitam o
trabalho coordenado dos processadores para atingir a meta da reordenacgio da matriz

de coeficientes do sistema, segundo o algoritmo da dissecacdo aninhada cartesiana.

1.2.2 Leitura

Fase inteiramente local, como seu nome sugere ... Nesta fase sdo criadas duas listas
com valores de coordenadas em X e Y de cada um dos vértices residentes em cada
processador. A seguir essas listas sio ordenadas independentemente. As regides de
memodria das duas listas sio contiguas, para que os dados locais de um processador
Possa ser enviado em um tnico pacote de dados, através de uma tinica mensagenmn.

1.2.4 Inteirizacio e Atribuicdo das faixas de valores

Processamento hierdrquico, dividido em passos, onde a cada passo, as informacoes
sdo concentradas. Ao final desta fase, os vértices tém suas coordenadas “intei-

rizadas”, ou integerized.

! ESTRATEGIAS DE IMPLEMENTACAO 10

Em vez de se usar uma linguagem semelhante as linguagens de programacao para
descrever o algoritmo, faz-se antes a apresentagdo do algoritmo de modo informal,
para 0s VATios passos.

A titulo de exemplo, usam-se 8 processadores, mas qualquer outro niimero pode-
ria ser usado. No entanto, a exposigao do algoritmo é facilitada com quantidades de
processadores que sejam poténcias inteiras de 2.

Envio para os representantes: O envio para os representantes pode ser entendi-
do como a criagdo de um conjunto de vértices através da unido de seus subconjuntos
de 2 em 2. Num primeiro passo, sdo unidos dois dos subconjuntos destinados a cada
processador.
Por exemplo, o envio de 7 para 7 equivale a se fazer uma unido V(m)U V ().
No Passo 2 a seguir, o envio de 7, para 7y equivale a se fazer a uniao (V(m) U
V(m2)) U (V(m3) UV (). De maneira geral, no Passo 4 sao unidos 2 subconjuntos.

Inteirizacio stricto sensu pelo representante geral: Nesta fase, estando
de posse de todos os valores de coordenadas, o representante geral promove o que
de fato é a inteirizacdo, ou a transformacao posicional de coordenadas em valores
fraciondrios, ou de “ponto-flutuante”, para coordenadas inteiras.

Esta fase é realizada unicamente pelo representante geral, que a realiza de modo
inteiramente sequencial.

Envio para os representados: Nesta fase, é efetuado o envio das listas de coor-
denadas inteirizadas para os processadores. Este também é um processo hierdrquico,
onde no Passo 3 o representante geral passa metade das informac0es para seu repre-
sentado direto e retém para si a outra metade. A seguir as informagoes sdo de novo
repartidas em dois, até que todos processadores recebam suas informacoes.

1.2.5 Identificacdo da coordenada separadora

Nesta grande se¢do do algoritmo paralelo, é identificada a coordenada separadora,
que permitird, na fase seguinte a criagdo do separador.

Listas de contagem locais Nesta etapa, cada n6 calcula, localmente, para cada
coordenada do problema, sua lista de contagem de vértices, e de arestas, esta com
os itens (i, Bi, &, 0:), onde B; é o niimero de arestas iniciadas na coordenada de valor
i: € é o nimero de arestas terminadas no dado valor i; e 0; € 0 niimero de arestas
“atravessadas”, ou straddled, no dado valor 2.

As listas de contagem de arestas e de vértices s3o enviadas conjuntamente. Isto
¢: para cada coordenada envia-se a quintupla ordenada de valores (i, ¢, 3i, €, gi),

1 ESTRATEGIAS DE IMPLEMENTACAO 11

onde f3;, €; e 0; sdo definidos como antes e c; é a contagem de vértices na coordenada
i

Isto permite minimizar o niimero de mensagens enviadas e maximizar a eficiéncia
do envio, minimizando o tempo de overhead no estabelecimento de uma mensagem.

Comunicacgao de listas de contagem locais Neste passo é feita a comunicagdo
das listas de contagem, nos moldes das comunicagoes hierdrquicas anteriores. Depois
deste passo do algoritmo cada processador tem os itens da lista de contagem das
faixas de valores das coordenadas que lhe correspondem.

Transmissao de representados para representantes: Neste ponto a infor-
magao € acumulada nos representantes, até o ponto maximo onde apenas um repre-
sentante geral concentra toda informacao de listas de contagens de vértices e arestas
ao longo dos diferentes valores de cada uma das coordenadas.

Transmissao de representantes para representados: Neste ponto do algorit-
mo, ocorre apenas envio e recepcdo de informacdes. Ndo é feito nenhum céleulo ou
comparacao.

O objetivo é fazer chegar a cada processador as informacdes referentes a conta-
gens de vértices e arestas de seus dois blocos de coordenadas, tanto referentes a X
quanto a Y.

Célculo local da melhor coordenada separadora Com os dados das listas de
contagem, cada processador tem condicoes de avaliar quais valores de cada coorde-
nada satisfazem a equagio de balanco e de, além disso, definir quais desses valores
tém o menor valor possivel da funcio 7.

Comunicagédo de coordenadas separadoras Tendo cada processador estimado
seu candidato a separador, esses valores sdo enviados aos outros, de novo num esque-
ma hierdrquico de comunicagio. As informagdes tém o formato (coord,i,n(i)), onde
coord € o eixo de coordenadas escolhido, ou z, ou y; © € o valor nessa coordenada
que satisfaz a equacdo de balanco e que gera o menor valor da funcdo 7 nos dois
intervalos de coordenadas do processador, seja na coordenada z, seja na y. Para
que possa ser feita a comparacdo com os valores de outros processadores, também é
enviado 7(4), o valor da funcdo 7 calculado para i.

Depois dessas informagdes terem chegado ao representante geral, este tem con-
digoes de decidir por uma dada coordenada, e por um dado valor dela. Isto é entdo
comunicado a todos outros processadores.

1 ESTRATEGIAS DE IMPLEMENTACAO 12

Calculo do conjunto corretor Neste caso, a introducao do paralelismo oferece
uma dificuldade: normalmente seria necessirio que os processadores comunicassem
entre si 0s conjuntos corretores, para minimizar seu tamanho. Isto é, como observam
Heath; Raghavan [4], se duas arestas (u, v) e (u, w) sdo atravessadas pela coordenada
s escolhida, poder-se-ia incluir apenas o vértice % no conjunto corretor, em vez de dois
vértices. Isto, naturalmente, s seria possivel se cada processador 7; comunicasse
com os outros seu conjunto F,(7;), de arestas atravessadas por s.

Neste trabalho, inicialmente se preferird a alternativa de Heath; Raghavan, pois
mesmo na implementagio seqiiencial prefere-se um balanco entre os dois subgrafos
a direita e & esquerda de onde sdo retirados os vértices para o conjunto corretor.
Quando da selecao entre vértices das arestas atravessadas, sorteia-se aleatoriamente
um deles.

Apesar dessa estratégia nao dar origem aos menores separadores possiveis, ela
da origem a subgrafos mais balanceados em termos de tamanho, o que é desejavel
em termos de processamento paralelo.

Uma alternativa a ser considerada para implementagao seria os custos de um
trecho de algoritmo que visasse a criagdo de um conjunto separador. Apesar de
haver um custo de comunicacdo inegavel, talvez seja interessante avaliar qual a
qualidade dos separadores obtidos desse modo. Nao é impossivel que uma melhoria
na qualidade dos separador obtidos compense os custos de obté-la.

Mesmo no caso em que o conjunto corretor é calculado localmente, é necesséa-
ria ainda uma fase de comunicagdo. Depois de calculados os conjuntos corretores,
cada processador 7; deve comunicar a seus vizinhos qual o tamanho de seu conjunto
separador. Isso é necessirio para que a fase de renumerac@o dos vértices possa ser
feita.

Aqui é usada outra decisdo de Heath; Raghavan [4]: como a ordem de renu-
meracdo de vértices é arbitrdria, renumeram-se os vértices seguindo a ordem dos
processadores. Isto é, os vértices atribuidos ao processador m; precedem os vértices
do processador 7;41, que precedem os vértices do processador 7;.2 etc.

Uma vez mais essa decisdo é tomada para minimizar a comunicagdo necessaria.

Célculo de conjunto corretor O céalculo do conjunto corretor C; é relativamente
simples: identificam-se arestas que sdo atravessadas pela coordenada separadora
escolhida s. Isto é, arestas que se iniciam num vértices & direita da coordenada
separadora e terminam & esquerda dela. Supondo que tenha sido escolhido um valor
s da coordenada z, a idéia é localizar arestas (u,v) nas quais seja verdade que
(u.z < s) e (v.z > s).

Nessas arestas, escolhe-se arbitrariamente um dos vértices e ele passa a fazer
parte de Cj.

1 ESTRATEGIAS DE IMPLEMENTACAO 13

Calculo dos conjuntos de vértices corrigidos Neste ponto, busca-se calcular
localmente para cada processador 7; seus conjuntos Vi(m;), Vi(m;) e Va(m;), que se-
rao, respectivamente, o conjunto de vértices do subgrafo & direita G, o conjunto
separador e o conjunto de vértices do subgrafo & direita G,.

Dados os conjuntos Uy, U, e Us, respectivamente os conjuntos de vértices com
coordenadas menores do que s, iguais a s e maiores do que s, a correccdo significa
retirar de U, e U, alguns dos vértices das arestas atravessadas, contidos no conjunto
corretor C,, acrescentando-os a U,. Formalmente,

V1:U1—03
VEZUHUCS
V—2=U2_Cs

Como isso é feito localmente, na verdade em cada processador 7; tem-se os conjuntos
Vi(m;), Vs(m;) e Va(m;), construidos a partir do corretor local Cs(7;).

Comunicacdo do tamanho dos conjuntos separadores locais: Neste item
cada processador 7; comunica aos outros o tamanho da parte do conjunto separador
que lhe cabe, ou seja |V;(m;)|. Conforme comentado, isto é necessario para que cada
processador saiba que niimero usar para renumerar os vértices de seu subconjunto.

A renumeracdo dos vértices do conjunto separador é arbitriria: a heuristica da
dissecacao aninhada ndo especifica uma forma de se renumera-los. Contudo, neste
texto segue-se a mesma estratégia recomendada por [4]: os vértices do subconjunto
separador em ;, chamados V(7), sdo renumerados depois dos vértices em V;(3),
que sao renumerados depois dos vértices de V;(m3), e assim por diante. Isto significa
que os vértices em V;(m) sdo renumerados de

Vel = Va(m)|+1 a [Vi].
Por sua vez, os vértices em V;(m;) serdo renumerados
Vil = Va(m)| = [Ve(ma)| +1 @ [V = [V(m)] -

De maneira geral, os vértices do subconjunto separador contidos no processador ;,
ou Vy(7;), sdo renumerados de

Vsl = 1Vs(m)| = [Va(me)| = ... — [Va(mig)| +1

Vol = [Vs(m)| = [Va(ma) [— ... = [Va(mizz)| — [Vi(miy)| -

Naturalmente, 7 deve estar entre 1 e P, o nimero de processadores disponiveis para
o problema.

1 ESTRATEGIAS DE IMPLEMENTACAO 14

Para que a renumeracio dos vértices em Vi(m1) seja possivel, basta que 7, receba
|Vsl, o tamanho total do conjunto separador. Contudo, além de |V,|, mo deve receber
também |Vy(m)|, 75 deve receber |V,(m)| + |Vi(m2)|. E, de modo geral, 7; deve
receber [Vy| e [Vi(m)| + [Vi(m2)| + ... + |Vi(miz1)).

A seguir, no detalhamento do algoritmo, vé-se como a técnica da comunicagio
hierdrquica pode ser usada para fazer chegar essas informacoes aos processadores.

1. Comunicagdo de representantes a representados

Neste ponto, como de hébito, os processadores representantes acumulam in-
formacdo, selecionam o que deve ser enviado a seus representantes no passo
seguinte e o fazem.

Esses procedimentos sao repetidos até que um tinico processador, o represen-
tante geral acumule toda informacio. A partir dai acontece o processo inverso
€ os representantes passam a fornecer informacées selecionadas a seus repre-
sentados.

2. Comunicagdo de representantes a representados

Neste ponto, os processadores representantes enviam a seus representados o
valor geral |V| e os valores das somas parciais dos subconjuntos anteriores em
cada um dos 3 passos da Comunicagdo de representantes a representados

Antes de se fazer o detalhamento do algoritmo desta etapa, € interessante
tentar definir o que é uma soma parcial dos subconjuntos anteriores de um
dado passo.

Na etapa de concentragdo de informagdes o fluxo de informacdes sempre é feito
de processadores de indice menor, os representados, para aqueles de indice
maior, os representantes. Na fase de dispersdo, o movimento é no sentido in-
verso, dos representantes, com indice maior para os representados, com menor
indice.

Assim, num dado passo, cada representante tem as informcdes dos represen-
tantes de menor indice até o seu préprio. No passo de niimero 1, o processador
representante tem informagdes sobre o processador imediatamente menor; no
Passo 2 o representante tem informagdes sobre 3 processadores menores. De
modo geral, no passo 7 cada representante tem informacdes sobre 2! — 1 pro-
cessadores de indices menores do que os dele.

Deste modo, em um dado passo i, subsoma do passo anterior é o niimero de
2=1 — 1 tamanhos de conjunto separador somados ao tamanho de seu préprio
separador; em outras palavras, o tamamho de 2'~! separadores. Simbolica-
mente, uma subsoma de tamanhos de separadores de um passo n de um pro-
cessador 7; é:

Va(mj—zmsa)| + [Va(mj—znia)| + . .. + [V

1 ESTRATEGIAS DE IMPLEMENTACAO 15

1.2.6 Construcao paralela de um separador

J4 que todos os conjuntos envolvidos na separacdo foram convenientemente torna-
dos locais, e divididos entre cada processador participante na separacdo, o processo
de construcdo de um separador se torna inteiramente paralelo, sem nenhuma neces-
sidade de comunicacdo. Na terminologia de alguns autores, a construcio paralela
de um separador seria um processo embarrassingly parallel, ou “embaracosamente
paralelo”.

1.2.7 Renumeracao dos vértices de um separador

No caso da primeira separagdo de vértices, na qual o grafo inicial Gy d4 origem a
dois subgrafos G, e G3, o conjunto separador V; é renumerado como segue. Em
primeiro lugar,

Vs =Vs(m) UVi(m) U... UV(np)

Deste modo, |V;| — o niimero de elementos de V, — é a soma do niimero de elementos
dos subconjuntos locais em cada processador.

Como, de acordo com a técnica da dissecacio aninhada cartesiana, os vértices do
separador sdo renumerados com os maiores valores de indice disponiveis, tem-se para
0 primeiro separador que o maior valor disponivel é mesmo o niimero de elementos
do conjunto de vértices V, ja que Gy = G = (V, E). Deste modo, os vértices do
separador sdo renumerados de |V| — [V,| + 1 a |[V|. Deste modo, V;(m;), ou os
vértices do separador contido no processador m; sdo renumerados de |V| — |V,| + 1
a [V] = [Vi| + Vi (m)].

Por sua vez, os vértices do separador contidos no processador 7; sao renumerados
de

VI = 1Val + [Va(mi)| + [Va(m2)| + [Va(ms) | + ... + [Ve(mia)| + 1

V] = Vel + [Va(m)| + [Va(ma)| + ... + [Va(mima)| + [Vi(ms)]-

1.2.8 Generalizagao do algoritmo para vérios grafos

Para nao carregar a notacio, toda a apresentagdo do algoritmo foi feita em termos
de apenas um grafo, o grafo inicial, G = Gy = (V, E) = (Vo, Ep). Na verdade, o
interessante do algoritmo é a completa dissecacao do grafo, o que s6é é conseguido
apos varios passos de separacao.

Assim, no passo seguinte de separacdo haverd dois grafos que se deverd consid-
erar: G, e Gy, resultados da separacdo de Gy. Como G, usa os vértices & direita da

1 ESTRATEGIAS DE IMPLEMENTACAO 16

coordenada separadora s escolhida no primeiro passo de separacao, G, = (V}, Ey).
Do mesmo modo, Gy = (Vy, Es).

A separacdo de G, através de uma coordenada separadora e seu valor ¢, dard
origem a um conjunto separador Vi;. A coordenada separadora de G em geral serd,
outra, de valor r. Assim, a separacdo de G dar4 origem a um outro separador Vi, .

Como as duas separacdes estdo sendo feitas simultaneamente, neste caso é ne-
cessdrio é informar nas trocas de mensagem a que grafo se referem as contagens e
os valores de separacao que estdo sendo enviados.

A seguir é feita uma reapresentaco do algoritmo para generaliza-lo para vérios
subgrafos sendo simultaneamente separados. Como os passos do algoritmo jé foram
apresentados em suficiente detalhe para a separacio de apenas um grafo, agora
apenas informaremos as alteragGes necessarias para tratar com multiplos grafos si-
multaneamente nas estruturas de dados enviados e nos passos do algoritmo.

1.3 Enumeracao das modificacdes sugeridas

Nesta parte do texto sdo apresentadas modificacdes efetuadas nesta dissertacao em
relagao a especificacao do algoritmo da dissecacdo aninhada cartesiana [4]. Elas
se dividem em duas partes: modificacdes devidas ao hardware diferente utilizado e
modificacGes experimentais, onde pontos do algoritmo original da dissecacdo aninha-
da cartesiana sdo alterados e os resultados obtidos sdo comparados com o original.

1.3.1 Modificacoes devido ao hardware distinto

Aqui se comentam as alteracdes efetuadas no algoritmo devidas ao uso de equipa-
mento distinto. Por exemplo, em [4] os autores propdem um algoritmo para a trans-
missao de informacdes que usa a riqueza de caminhos alternativas de comunicacoa
disponivel na arquitetura hipercubo. Essa mesma riqueza nao estando disponivel nas
maquinas usadas, € preferivel desenvolver algoritmos que levem em conta a limitacao
das comunicagbes em uma rede Ethernet.

Em termos muito simplificados, uma rede Ethernet pode ser descrita como sendo
um canal seqiiencial de informagdes, um “fio” onde apenas uma informagao pode
trafegar a cada vez [12]. Recursos como switches e hubs sofisticados podem mudar
esse panorama, mas nao estao ainda amplamente disponiveis. Ademais, seu resulta-
do pratico certamente ndo leva a riquezas de recursos de comunicagao comparaveis
aquelas de arquiteturas como a malha, ou mesh, e o hipercubo, uma vez que essas
arquiteturas sio altamente otimizadas e dimensionadas para alto desempenho, sem
limitagGes de custo. Ao passo que acessérios para redes locais tém pelo menos a
limitacdo de custo.

Assim, buscou-se algoritmos que minimizassem o niimero de mensagens que tem
de ser enviadas a cada passo. Mesmo que a um custo maior do tamanho dessas
mensagens. Contudo, mesmo assim foi possivel obter eficiéncia maior do que aquela

1 ESTRATEGIAS DE IMPLEMENTACAO 17

do envio linear puro e simples: todos processadores enviam informagées para todos
os outros. Esse tipo de comunicagdo entre todos os processadores de um conjunto
é chamado all-to-all broadcast na literatura de processamento paralelo [8], mas de
gossiping na literatura de redes [5].

A titulo de comparacdo, para a troca de informacées entre P processadores, onde
P = 2% ¢ uma poténcia inteira de 2, pela técnica de envio linear, cada processador
envia aos P — 1 outros uma mensagem de, digamos, comprimento n bytes. Deste
modo, sdo enviadas P x (P — 1) mensagens, num total de P X (P — 1) x n bytes
comunicados. A operacdo pela qual um processador envia informagoes para um
grupo de outros é chamada broadcast.

Teoricamente seria possivel otimizar o desempenho para redes Ethernet, nas
quais existe uma primitiva de comunicacao que permite o envio de apenas uma
mensagem, na qual um header especial informa quais processadores devem recebé-la.
Portanto, uma tinica mensagem pode ser recebida pelos P — 1 processadores. Assim,
seria possivel fazer o all-to-all broadcast com apenas P—1 mensagens, transmitindo-
se um total de n x (P — 1) bytes.

Contudo, os ambientes de passagem de mensagens, como o MPI [9] e o PVM
[1], ndo costumam ser otimizados para o uso de redes locais. Assim, seu broadcast
acaba correspondendo ao envio de n — 1 mensagens.

Projetou-se um algoritmo, chamado concentragdo - dispersio, que foi exposto
em varios itens da se¢do 1.2. Basicamente ele corresponde a se agrupar informacoes
em grupos de 2 processadores, depois em grupos de 4, depois de 8 etc. Supondo
que P, o niimero de processadores seja uma poténcia inteira de dois, na etapa de
concentragdo sao necessdrios logoP = k passos para que um tunico processador,
chamado representante geral, concatene informacoes de todos outros processadores.

A partir dai, comeca a etapa de dispersdo: os representatnte geral envia metade
das informagGes com outro processador; no passo seguinte esses dois processadores
dividem metade das informacoes com mais dois outros processadores. E assim,
depois de k passos, toda informacio estd distribuida pelos P processadores.

Como as duas partes do algoritmo sdo simétricas, pode-se fazer andlise apenas da
fase de concentragao. No primeiro passo da concentracao, sdo enviadas -{; mensagens
com comprimento n cada uma. No segundo passo, sdo enviadas % mensagens, com
comprimento 2n. E assim por diante, até o passo k, quando é enviada apenas uma
mensagem, com comprimento £ x n. Isto significa um total de P — 1 mensagens,
com um volume transferido de %ﬂ};ﬂ bytes.

Deste modo, para o algoritmo como um todo, sdo 2(P — 1) mensagens, com um
volume de k x P X n bytes.

Para fixar idéias, supondo P = 2° = 8, o volume no caso dos broadcasts esta
em P x (P — 1) =8 x 7 = 56 mensagens, com 56n bytes transmitidos. No caso da
concentracao - dispersdo, esse niimero é de 2(P — 1) = 2 x 7 = 14 mensagens, com
um total de 3 X 8 X n = 24n bytes transferidos.

REFERENCIAS 18

1.3.2 Modificagbes experimentais

Em alguns trechos do algoritmo, parece ser interessante alterar as ab ordagens seguidas.
Por exemplo, Heath; Raghavan (4] sugerem uma forma muito peculiar de funcao n
para estimar o tamanho do conjunto corretor. Essa forma de funcdo depende da co-
municac8o de dois valores de contagem para cada valor s de uma dada coordenada,
chamados S; e ¢,.

A tnica vantagem dessa forma da funcio parece ser minorar levemente a quan-
tidade de informacio transmitida entre processadores. Ora, uma andlise simples
mostra que a economia é muito pequena. E que além disso, a cada passo de comu-
nicagao € necessario transmitir e receber dois valores, 3, e €.

Assim, parece ser interessante avaliar o uso de um dnico parametro, que foi
chamado oy, correspondente ao tamanho do conjunto Fy de arestas atravessadas
pela coordenada s. Qual o custo em termos do algoritmo dessa alternativa? Qual o
impacto na qualidade dos separadores?

Referéncias

[1] Anonymous: An Introduction to PVM Programminyg.
http://www.epm.ornl.gov/pvm/intro.html. 1996;

[2] Estratégias para implementacio paralela-distribuida da dissecacdo aninhada
cartesiana. Sdo Paulo, Depto. Engenharia da Computacéo e Sistemas Digitais,
Escola Politécnica da Universidade de Sdo Paulo, 184 + 11 pp. 1998:;

[3] J. Gosling; B. Joy; G. L. Steele: The Java language specifica-
tion; ftp://ftp. javasoft.com/docs/specs/langspec-1 .0.pdf; zzv + 825;
1996;

[4] M. T. Heath; P. Raghavan: A cartesian parallel nested dissection algorithm.
University of Illinois at Urbana-Champaign. Technical Report UIUDCS-92-
1772, 18 pp. 1992;

(5] S. M.Hedetniemi; S. T. Hedetniemi: A survey of Gossiping and Broadcasting
in Communication Networks. Networks, 18(4), pp. 319 — 349; 1988;

[6] A. Holub: C + C + +: Programming with objects in C and C + +. New York,
McGraw-Hill; ziv + 427 pp.; 1992;

[7] B. W. Kernighan; D. M. Ritchie: The C programming language, 2nd ed. Mur-
ray Hill, Prentice-Hall; zii + 272 pp.; 1988;

(8] V. Kumar; A. Grama; A. Gupta; Ge. Karypis: Introduction to parallel comput-
ing: design and analysis of algorithms. Redwood City, Benjamin-Cummings,
zv + 599; 1996;

REFERENCIAS 19

[9] Message Passing Interface Forum: MPI: A Message-Passing Interface Stan-
dard. £tp://netlib.org/tennessee/ut-cs-94-230. ps; 1994;

[10] B. Meyer: Object-oriented software construction; Hemel-Hempstead; Prentice-
Hall; zviii 4+ 534 pp.; 1988;

[11] B. Stroustrup: The C++ programming language, 2nd ed. Reading, Addison-
Wesley, zi + 699. 1991

[12] A. S. Tanenbaum: Computer Networks, 2nd. ed. New Jersey, Prentice-Hall,
v + 658 pp., 199;

Indice
Heath, 2, 12
Holub, 4

Java, 4

Meyer, 4,6, 7
MPI, 2

PVM, 2
Raghavan, 2, 12
Stroustrup, 4, 6

Tanenbaum, 16

BOLETINS TECNICOS - TEXTOS PUBLICADOS

BT/PCS/9301 - Interligagdo de Processadores através de Chaves Omicron - GERALDO LINO DE CAMPOS, DEMI
GETSCHKO

BT/PCS/9302 - Implementagdo de Transparéncia em Sistema Distribuido - LUISA YUMIKO AKAQ, JOAO JOSE NETO
BT/PCS/9303 - Desenvolvimento de Sistemas Especificados em SDL - SIDNEI H. TANO, SELMA S. S. MELNIKOFF

BT/PCS/9304 - Um Modelo Formal para Sistemas Digitais a Nivel de Transferéncia de Registradores - JOSE EDUARDO
MOREIRA, WILSON VICENTE RUGGIERO

BT/PCS/9305 - Uma Ferramenta para o Desenvolvimento de Prototipos de Programas Concorrentes - JORGE KINOSHITA,
JOAO JOSE NETO

BT/PCS/9306 - Uma Ferramenta de Monitoragao para um Niicleo de Resolugéo Distribuida de Problemas Orientado a
Objetos - JAIME SIMAO SICHMAN, ELERI CARDOSO

BT/PCS/8307 - Uma Analise das Técnicas Reversiveis de Compressao de Dados - MARIO CESAR GOMES SEGURA, EDIT
GRASSIANI LINO DE CAMPOS

BT/PCS/9308 - Proposta de Rede Digital de Sistemas Integrados para Navio - CESAR DE ALVARENGA JACOBY, MOACYR
MARTUCCI JR.

BT/PCS/9309 - Sistemas UNIX para Tempo Real - PAULO CESAR CORIGLIANO, JOAQ JOSE NETO

BT/PCS/9310 - Projeto de uma Unidade de Matching Store baseada em Memoria Paginada para uma Maquina Fluxo de
Dados Distribuido - EDUARDO MARQUES, CLAUDIO KIRNER

BT/PCS/2401 - Implementago de Arquiteturas Abertas: Uma Aplicagao na Automagio da Manufatura - JORGE LUIS RISCO
BECERRA, MOACYR MARTUCC! JR.

BT/PCS/9402 - Modelamento Geométrico usando do Operadores Topoldgicos de Euler - GERALDO MAGIEL DA FONSECA,
MARIA ALICE GRIGAS VARELLA FERREIRA

BT/PCS/9403 - Segmentacao de Imagens aplicada a Reconhecimento Automatico de Alvos - LEONCIO CLARO DE BARROS
NETO, ANTONIO MARCOS DE AGUIRRA MASSOLA

BT/PCS/9404 - Metodologia e Ambiente para Reutilizacdo de Software Baseado em Composigao - LEONARDO PUJATTI,
MARIA ALICE GRIGAS VARELLA FERREIRA

BT/PCS/9405 - Desenvolvimento de uma Solugdo para a Supervisdo e Integragédo de Células de Manufatura Discreta - JOSE
BENEDITO DE ALMEIDA, JOSE SIDNEI COLOMBO MARTINI

BT/PCS/9406 - Método de Teste de Sincronizagdo para Programas em ADA - EDUARDO T. MATSUDA, SELMA SHIN
SHIMIZU MELNIKOFF

BT/PCS/9407 - Um Compilador Paralelizante com Detecgdo de Paralelismo na Linguagem Intermediaria - HSUEH TSUNG
HSIANG, LIRIA MATSUMOTO SAITO

BT/PCS/9408 - Modelamento de Sistemas com Redes de Petri Interpretadas - CARLOS ALBERTO SANGIORGIO, WILSON
V. RUGGIERO

BT/PCS/9501 - Sintese de Voz com Qualidade - EVANDRO BACCI GOUVEA, GERALDO LINO DE CAMPOS

BT/PCS/9502 - Um Simulador de Arquiteturas de Computadores “A Computer Architecture Simulator” - CLAUDIO A. PRADO,
WILSON V. RUGGIERO

BT/PCS/9503 - Simulador para Avaliagio da Confiabilidade de Sistemas Redundantes com Reparo - ANDREA LUCIA
BRAGA, FRANCISCO JOSE DE OLIVEIRA DIAS

BT/PCS/9504 - Projeto Conceitual e Projeto Basico do Nivel de Coordenagéo de um Sistema Aberto de Automagao,
Utilizando Conceitos de Orientagdo a Objetos - NELSON TANOMARU, MOACYR MARTUCCI JUNIOR

BT/PCS/9505 - Uma Experiéncia no Gerenciamento da Producao de Software - RICARDO LUIS DE AZEVEDO DA ROCHA,
JOAO JOSE NETO

BT/PCS/9506 - MétodOO - Método de Desenvolvimento de Sistemas Orientado a Objetos: Uma Abordagem Integrada a
Analise Estruturada e Redes de Petri - KECHI HIRAMA, SELMA SHIN SHIMIZU MELNIKOFF

BT/PCS/9601 - MOOPP: Uma Metodologia Orientada a Objetos para Desenvolvimento de Software para Processamento
Paralelo - ELISA HATSUE MORIYA HUZITA, LIRIA MATSUMOTO SATO

BT/PCS/9602 - Estudo do Espalhamento Brillouin Estimulado em Fibras Opticas Monomodo - LUIS MEREGE SANCHES,
CHARLES ARTUR SANTOS DE OLIVEIRA

BT/PCS/9803 - Programagao Paralela com Variaveis Compartilhadas para Sistemas Distribuidos - LUCIANA BEZERRA
ARANTES, LIRIA MATSUMOTO SATO

BT/PCS/9604 - Uma Metodologia de Projeto de Redes Locais - TEREZA CRISTINA MELO DE BRITO CARVALHO, WILSON
VICENTE RUGGIERO

BT/PCS/9805 - Desenvolvimento de Sistema para Convers3o de Textos em Fonemas no Idioma Portugués - DIMAS
TREVIZAN CHBANE, GERALDO LINO DE CAMPOS

BT/PCS/9606 - Sincronizagao de Fluxos Multimidia em um Sistema de Videoconferéncia - EDUARDO S. C. TAKAHASHI,
STEFANIA STIUBIENER

BT/PCS/9607 - A importancia da Completeza na Especificagao de Sistemas de Seguranga - JOAD BATISTA CAMARGO
JUNIOR, BENICIO JOSE DE SOUZA

BT/PCS/9608 - Uma Abordagem Paraconsistente Baseada em Logica Evidencial para Tratar Excecbes em Sistemas de
Frames com Multipla Heranga - BRAULIO COELHO AVILA, MARCIO RILLO

BT/PCS/9609 - Implementacdo de Engenharia Simultanea - MARCIO MOREIRA DA SILVA, MOACYR MARTUCCI JUNIOR

BT/PCS/9610 - Statecharts Adaptativos - Um Exemplo de Aplicagio do STAD - JORGE RADY DE ALMEIDA JUNIOR. JOAQ
JOSE NETO

BT/PCS/9611 - Um Meta-Editor Dirigido por Sintaxe - MARGARETE KEIKO IWAI, JOAQ JOSE NETO

BT/PCS/9612 - Reutilizagdo em Software Orientado a Objetos: Um Estudo Empirico para Analisar a Dificuldade de
Localizagdo e Entendimento de Classes - SELMA SHIN SHIMIZU MELNIKOFF, PEDRO ALEXANDRE DE
OLIVEIRA GIOVANI

BT/PCS/9613 - Representagao de Estruturas de Conhecimento em Sistemas de Banco de Dados - JUDITH PAVON
MENDONZA, EDIT GRASSIANI LINO DE CAMPOS

BT/PCS/8701 - Uma Experiéncia na Construgdo de um Tradutor Inglés - Portugués - JORGE KINOSHITA, JOAO JOSE
NETO

BT/PCS/9702 - Combinando Analise de "Wavelet" e Analise Entropica para Avaliar os Fenémenos de Difusdo e Correlagao -
RUI CHUO HUEI CHIOU, MARIA ALICE G. V. FERREIRA

BT/PCS/9703 - Um Método para Desenvolvimento de Sistemas de Computacionais de Apoio a Projetos de Engenharia -
JOSE EDUARDO ZINDEL DEBONI, JOSE SIDNEI COLOMBO MARTINI

BT/PCS/8704 - O Sistema de Posicionamento Global (GPS) e suas Aplicagoes - SERGIO MIRANDA PAZ, CARLOS
EDUARDO CUGNASCA

BT/PCS/9705 - METAMBI-0O0 - Um Ambiente de Apoio ao Aprendizado da Técnica Orientada a Objetos - JOAO UMBERTO
FURQUIM DE SOUZA, SELMA S. S. MELNIKOFF

BT/PCS/9706 - Um Ambiente Interativo para Visualizaco do Comportamento Dinamico de Algoritmos - IZAURA CRISTINA
ARAUJO, JOAO JOSE NETO

BT/PCS/8707 - Metodologia Orientada a Objetos e sua Aplicagdo em Sistemas de CAD Baseado em "Features” - CARLOS
CESAR TANAKA, MARIA ALICE GRIGAS VARELLA FERREIRA

BT/PCS/9708 - Um Tutor Inteligente para Analise Orientada a Objetos - MARIA EMILIA GOMES SOBRAL, MARIA ALICE
GRIGAS VARELLA FERREIRA

BT/PCS/9709 - Metodologia para Selecio de Solucao de Sistema de Aquisi¢ao de Dados para Aplicagdes de Pequeno Porte -
MARCELO FINGUERMAN, JOSE SIDNE! COLOMBO MARTINI

BT/PCS/9801 - Conexdes Virtuais em Redes ATM e Escalabilidade de Sistemas de Transmissio de Dados sem Conexao -
WAGNER LUIZ ZUCCHI, WILSON VICENTE RUGGIERO

BT/PCS/9802 - Estudo Comparativo dos Sistemas da Qualidade - EDISON SPINA, MOACYR MARTUCCI JR.

BT/PCS/8803 — The VIBRA Multi-Agent Architecture: Integrating Purposive Vision With Deliberative and Reactive Planning —
ANNA H. REALI C. RILLO, REINALDO A. C. BIANCHI, LELIANE N. BARROS

BT/PCS/9901 — Metodologia ODP para o Desenvolvimento de Sistemas Abertos de Automagio — JORGE LUIS RISCO
BECCERRA, MOACYR MARTUCCI JUNIOR

BT/PCS/8902 - Especificagao de Um Modelo de Dados Bitemporal Orientado a Objetos — SOLANGE NICE ALVES DE
SOUZA, EDIT GRASSIANI LINO DE CAMPOS

