
Boletim Técnico da Escola Politécnica da USP

Departamento de Engenharia de Computação e

Sistemas Digitais

ISSN 141 3-215X

BT/PCS/9903

Implementação Paralela
Distribuída da Dissecação

Cartesiana Aninhada

Hilton Garcia Fernandes
Liria Matsumoto Sato

São Paulo - 1999

O presente trabalho é parte da dissertação de mestrado “Estratégias para implementação Paralela-
Distribuída da Dissecação Aninhada Cartesiana“, apresentada em 13/08/98, por Hilton Garcia
Fernandes, sob orientação do Profa. Dra. Liria Matsumoto Sato,

A íntegra da dissertação encontra-se à disposição com o autor e na Biblioteca de Engenharia Elétrica
da Escola Politécnica da USP.

FICHA CATALOGRÁFICA

Fernandes. Hilton Garcia

Implementação paralela distribuída da dissecação cartesiana ani-
nhada / H.G. Fernandes, L.M. Sato. – São Paulo : EPUSP. 1999.

19 p. – (Boletim Técnico da Escola Politécnica da USP, Departa-
mento de Engenharia de Computação e Sistemas Digitais,
BT/PCS/9903)

1. Programação paralela (Computação) 2. Equações lineares 3
Matrizes esparsas l. Sato, Liria Matsumoto II. Universidade de São
Paulo. Escola Politécnica. Departamento de Engenharia de Computação
e Sistemas Digitais III. Título IV. Série

ISSN 1413-215X CDD 005.2
515,252
512.9434

Implementação Paralela Distribuída da Dissecação
Cartesiana Aninhada

Hilton Garcia Fernandes
Liria Matsumoto Sato

Resumo
A solução de sistemas de equações lineares é um problema que surge em vários
algoritmos numéricos; neles a esparsidade das matrizes de coeíicientes do sistema
permite que se tratem sistemas de ordem muito elevada. Os métodos iterativos
em gera11 são preferidos devido ao fato de que os métodos diretos, em sua versão
mais simples, tendem a introduzir um número inaceitável de elementos não nulos na
matriz do sistema, o que é chamado preenchimento, ou 7l1/-in. No entanto, através
de várias propriedades do gra:fo associado à matriz de coeâcientes do sistema linear,
é possível se reduzir drasticamente o preenchimento. o método de Cholesky, para a
solução de sistemas lineares cuja matriz é simétrica e definida positiva, é sofisticado
com técnicas da teoria dos grafos, em um algoritmo projetado especialmente para
sistemas paralelos distribuídos, a dissecação cartesiana aninhada. São apresentadas
estratégias para a implementação deste algoritmo.

Abstract
The solution of systems of linear equations is a problem that occurs within several
numerical algorithms. The sparsity of the systems coefficient matrix allows very
high system orders. Usually iterative numerical methods are chosen for the sys-
tems’s solution because simple direct methods tend to introduce an unacceptable
number of non-zero elements in the system matrix (611–in). However, using several
properties of the graph associated to the linear system matrix, it is possible to dras-
tically reduce the 611-in. The Cholesky method for the solution of linear systems
whose matrix is symmetric positive de6nite, is enhanced with graph techniques, in
an algorithm speciâcally designed for parallel distributed computers, the cartesian
nested dissection. Some strategies for the implementation of this algorithm.

1 ESTRATÉGIAS DE IMPLEMENTAÇÃO 2

1 Estratégias de implementação
Este artigo discute a estratégia de implementação paralela distribuída do algoritmo
da (lissecüÇão ÜTtiTbhüdü cartesiana, do ponto de vista das escolhas iniciais desta
dissertação, que moldararn sua face antes mesmo que ela fosse iniciada. Comenta-se
também a âlosofia de projeto do software, tanto visando sua construção, quanto do
ponto de vista da depuração e detecção de erros.

Considera-se que tanto o projeto formal do softtDaTe, quanto o projeto antecipado
de suas formas de depuração e detecção de erros pontos importantes da dissertação,
pois o algoritmo da dissecação arriTrhada cartesáana a ser implementado por ela é
relativamente complexo.

Pontos importantes para as bases do projeto são o hardware disponível e também
o tipo de paralelismo implicado no algoritmo da dissecação an,iTbtlada cartesiaTra [4] ,
escolhido para esta dissertação.

Ainda, neste artigo se oferece uma visão panorâmica da implementação, quanto à
implementação escolhida para o algoritmo, tanto do ponto de vista da interpretação
de sua especiâcação, como do ponto de vista das poucas alterações sugeridas para ele
nesta dissertação, tanto do ponto de vista do haTdtDare escolhido, quanto de muito
poucas propostas de alteração.

Este artigo corresponde a uma apresentação resumida de pontos da dissertação
de mestrado com mesmo nome [21.

1.1 Bases do projeto
Deseja-se com “bases do projeto” referir às bases sobre as quais todo o projeto se
assentou. Isto significa tanto os “dados”, as premissas iniciais dadas pela conjuntura
acadêmica, como as escolhas feitas quanto à forma de se conduzir o projeto, desde
a filosofia de projetar o software, até a forma de garantir sua execução correta, e de
encontrar eventuais erros.

1.1.1 Escolhas prévias do projeto

Por escolhas prévias do projeto entendem-se as escolhas já feitas, ou “dadas” , pela
estrutura organizacional da academia: desde a tradição de uso de equipamentos,
linguagens e sistemas operacionais, até os ambientes de apoio disponíveis. Fala-se,
naturalmente, de redes de computadores, executando uma variante do Unãz , como
o Limas; do uso da linguagem (; [7], e dos ambientes de apoio ao paralelismo por
passagem de mensagem, como o PV M [1], e o MPI [9].

Equipamentos e sistemas operacionais Não é exagero dizer que os mais poderosos
supercomputadores atuais usam arquitetura de memória distribuída. Essa forma de
se organizar computadores permite que mais facilmente se agreguem processadores

1 ESTRATÉGIAS DE IMPLEMENTAÇÃO 3

e memória a um computador. Contudo, seus custos sobem proibitivamente à faixa
de milhões de dólares, o que torna sua compra um privilégio de apenas umas poucas
entidades de pesquisa.

Deste modo, tem sido a escolha de muitas entidades de pesquisa, nacionais ou
não, construir metücompqtaclOTes que são, em Última análise, agregados de estações
de trabalho dedicadas, colocadas em rede local. Devido ao notável aumento de poder
computacional e à acentuada diminuição de custos das máquinas com arquitetura
Intel , baseadas em processadores Pentium, tem sido uma tendência construir meta-
computadores com base em equipamentos desse tipo.

Um outro fator se soma a essa tendência: a criação e o üorescimento do sis-
terna operacional 13ir&uz, compatível com várias versões do Unix e também com o
padrão Posi3 de sistemas abertos. Desenvolvido por um grupo de programadores
na Internet, hoje o Limas é quase que um sinônimo de sistema operacional usado na
academia, por ser capaz de ser executado em estações de trabalho com arquitetura
Intel . Outros fatores para o sucesso do Linz13 na academia por sua abertura, já que
todo seu códig@fonte é mantido em domínio público, por sua confiabilidade e rn
bustez, e pela facilidade com que incorpora inovações e ao mesmo tempo se mantém
compatível com as tradições do sistema operacional Uni= usado na academia.

A linguagem de programação a A linguagem de programção C [7] foi origi-
nalmente criada para o desenvolvimento de sistemas operacionais, como o U nis . O
C tem boas características de portabilidade, geração de código de máquina e6ciente,
recursos para programação estruturada e modular, e também acesso a características
do processador antes disponÍvel apenas em linguagem assembly .

Por esta razão, o O também teve um uso intenso no desenvolvimento de aplica-
tivos. Neste trabalho, sugere-se a linguagem de programação O por sua facilidade de
criação de estruturas de dados, úteis para a expressão de um algoritmo relativamente
complexo como o da dissecaÇão arLintlada cürtesiana [4].

Ambientes de passagem de mensagens Sendo o hardware um conjunto de
estações de trabalho conectadas em rede local, e sistema operacional Lin,un , quase
que simultaneamente esta escolha de estratégias foi levada a um ambiente de pas-
sagem de mensagens, onde diversas estações de trabalho executam programas inde
pendentemente e trocam informações de tempo em tempo. Assim, a passagem de
mensagens é tanto uma forma de compartilhar informações quanto um modo de sin-
cronizar processos distintos em computadores distintos. Sobre a mesma arquitetura
de redes de computadores usadas como um único computador, um metacomputador,
tem sido construídos ambientes de softwares de simulação de memória compartilha-
da, chamados distributed straTed memory, ou DSM . Apesar destas ambientes serem
muito pesquisados, o algoritmo da dissecaÇão aniTthada cartesiana foi projetado para
ambientes de memória distribuída.

1 ESTRATÉGIAS DE IMPLEMENTAÇÃO 4

Existem vários ambientes de passagem de mensagem disponíveis. Entre eles os
mais famosos e utilizados recentemente têm sido o PVM [1] e o MPI [9] . Neste
trabalho sugere-se o MPI devido ao fato desse ambiente ter sido criado depois da
experiência do uso e implementação de muitos outros ambientes do mesmo tipo,
entre eles o próprio PV Ml na equipe dos criadores do M Pl encontram-se tarnbém
os criadores do PVM.

1.1.2 Filosofia de projeto do softroüTe

Nestas estratégias para a implementação paralela distribuída da (lissecação arrinhada
cartesiana, faz-se o projeto do software segundo a orientação ao objeto [10]. Em
muito poucas palavras, a visão clássica da programação orientada ao objeto, ou
object-oriented programming (OOP), é baseada nos conceitos de

objeto – um agregado de dados isolados, ou encapsqjados, que podem ser acessados
apenas através de funções apropriadas, que podem ser usadas para criar o
objeto, consultar seu estado ou alterá-lo;

atributos são os dados de um objeto, e contém seu estado;

métodos – são as funções que permitem acessar a um objeto. Funções que o
criam são chamadas construtores, ou com$tructors ; funções que o destróem são
chamadas destruidOTes, ou destructoTS, funções para consulta de seu estado
são chamadas funções acessadoras, ou accessors:

classes – são os padrões segundo os quais os objetos são criados. Meyer [10] se
refere às classes como fábricas de objetos. Uma classe pode reaproveitar os
recursos de6nidos em outra; neste caso tem-se o que se chama herança, ou
€nheritance, que é a maior originalidade da programação orientada ao objeto,
já que a maioria de seus conceitos já estavam – isoladamente – disponíveis
sob outros nomes em outras técnicas; entre elas, notadamente a programação
modular.

A linguagem (7 não tem recursos especiais para a prograInaÇão orientada ao
objeto; em outras palavras, não é uma object-oriente(1 progrüTrbming langqage, como
a linguagem Eiffel [10], ou o Java [3]; ela também não é uma linguagem multi-
paradigmática como o a+ + [11]. Apesar de que com sua reconhecida flexibilidade,
e seu acesso a recursos de baIxo nível do processador, não é difícil implementar a
própria herança em O. Isso é demontrado pelo fato de que os primeiros compiladores
O + + e Eiffel geravam programas (7 como resultado de compilação, em vez do
código-objeto habitual. Além do mais, isso é exemplificado em detalhe em livros
como [6], que propõe a programação orientada ao objeto stricto sensu em O.

1 ESTRATÉGIAS DE IMPLEMENTAÇÃO b

Contudo, não sendo O uma linguagem originalmente orientada ao objeto, essas
soluções em geral têm pouco apelo estético, pouca simplicidade e, em última in-
stância, dependem mais da disciplina do programador em se comprometer com seu
uso

Devido às diâculdades implícitas na programação orientada ao objeto na lin-
guagem O, devido ao extremo interesse de se manter a máxima simplicidade, recomenda-
se uma forma muito moderada e simpliâcada de programação ao objeto: em primeiro
lugar, não se sugere o uso de herança ou de programação genérica. Mesmo havendo
muitas ocasiões em que o uso desses recursos de programação permitem um grande
reuso de softtnaTe, como nas diversas listas usadas, tais como:

• list(V, C), ou lista de vértices, onde C é ou a coordenada X, ou a coordenada
Y, deve ser implementada através de classe VER:rEx_LisT, coin a indicação da
coordenada através de atributo;

• list(E , C), ou lista de arestas, a ser implementada através de classe EDGE_LIST,
e

• cauntÇE , C) e catInt(Y, C), implementadas conjuntamente através de classe
COUNT_LIST.

Nesta dissertação sugere-se apenas o recurso de estrutura, ou struct da linguagem
C e de funções com nomes iniciados pelo nome da classe. Por exemplo, na classe
VERTEX_TAB, uma tabela destinada ao armazenarnento de vértices, sugerese definir
uma struct com esse nome e definir funções para as várias necessidades da classe.
Por exemplo, a construção de objetos desta classe deve ser feita pela função

RET_VAL EDGE_TABcreat (VERTEX_TAB ++this , FILE +inp_f) ;

A impressão deve ser feita pela função

RET_VAL EDGE_TABprint (VERTEX_TAB +this, FILE +out_f) ;

Através da convenção que relembra a linguagem O + +, usa-se o nome this para
indicar o objeto sendo manipulado. Ele é passado como

1. um apontador nos casos em que ele é consultado ou seus atributos são alter-
ados, como em VERTEX_TABprint o acima, ou

2. um endereço de apontador nos casos em que é criado, como em
R:ET_VAL VERTEX_TABcreat (VERTEX_TAB ++this, FILE #inp_f) ,
ou então destruído, como o é em
RE:T_VAL VERTEX_TABdestruct (VERTEX_TAB ++this).

O tipo RE:T_VAL, usado como valor de retorno da maioria das funções, também é
uma classe, a ser usada fortemente nas estratégias de detecção de erros, que são
apresentadas no item 1.1.3.

1 ESTRATÉGIAS DE IMPLEMENTAÇÃO 6

1.1.3 Técnicas de depuração e detecção de erros

Abordam-se aqui as estratégias de depuração e de detecção de erros. Um projeto
de software de algum porte, como o da dissecação anintlada cartesiana deve prever
essas estratédas desde sua concepção.

Sobre a detecção de erros Sendo relativamente complexo, o algoritmo da dis-
secaÇão cürtesianü anirbhada enseja desde logo o desenvolvimento de técnicas para
a detecção de erros. Suger&se a noção de pré-condições e pós-c0%(lições de Meyer
[10]

Nessa técnica, garante-se que quando na entrada de uma função, todos seus
parâmetros atendam a condições de consistência; caso contrário, a função não é ex-
ecutada e o programa é interrompido; isto é chamado de pré-condição. Do mesmo
modo, uma função deve garantir que à sua saída, os dados por ela gerados ou alter-
ados atendam a certas condições de consistência; isto é chamado de pós- condição.
Em geral, fazem-se execuções com de teste com todas veriâcações habilitadas. Na-
turalmente, a detecção de erros toma tempo de processamento e, por isso, tendo-se
detectado os erros maIs importantes, e o programa se tornado mais estável, o rnecan-
ismo de detecção de erros pode ser desligado mediante uma opção de compilação,
sem nenhuma alteração no texto-fonte do programa.

O não atendimento a pré ou pós-condição é um erro do programa, que gera
uma e=ceção, que pode ser tratada por mecanismos específicos de linguagens como
o Eif feI, de Meyer [10], ou o O + +, de Stroustrup [11].

Nesta propõese o uso da linguagem de programação O (ver item 1.1.1, na página
2), que não tem explicitamente um mecanismo para lidar com exceções, apesar de
possuir funções e recursos, como set jnpo e longjmpo [7], que podem ser usados
para implementá-lo.

Preferindo-se sempre que possível a simplicidade, suger&se implementar a de-
tecção de erros através do uso do préprocessador embutido na linguagem O. O
recurso de detecção de erros permite apenas que a pilha de chamadas de funções
executadas até o momento seja desfeita – o que é chamado de stack hnfolding – e
que sejam impressas mensagens descrevendo o erro e a linha do programa onde ele
ocorreu. Este processo chega até a função principal e o programa é terminado.

Sugere-se implementar esse recurso através de macros de pré-processador, chamadas
de retorno condicional: quando ocorrer uma condição de erro, a função deve retornar
para a outra que a chamou. Nesta função há outra macro de retorno condicional,
que verifica que a função chamada não retornou com o valor correto. Isto faz com
que a função chamadora também retorne. E o processo de retorno condicional con-
tinua até que todo o programa seja terminado. Sugerüse que nas macros de retorno
condicional sejam implementados recursos que permitam que cada retorno condi-
cional gere mensagem informando qual o tipo de erro e a linha de programa onde
ele ocorreu.

1 ESTRATÉGIAS DE iMPLEMENTAÇÃO 7

O uso de macros criadas pelo préprocessador embutido na linguagem O permite
que as definições das macros possam ser habilitadas ou desabilitadas por opções de
compilação: assim, do mesmo modo que em Eiffel [10], a detecção de erros pode ser
inte©almente desabilitada – sem nenhuma alteração no texto do programa-fonte
–, gerand(»se uma versão de execução mais rápida, a ser usada para medidas de
desempenho.

Sugere-se também um estágio intermediário de detecção de erros: também por
opção de compilação, pode-se permitir que apenas um ou mais tipos de erros sejam
detectados, sendo os outros ignorados.

Os tipos de erros devem ser padronizados em uma enumeração, a ser chamada
RET_VAL, de RETqrn, VAlue. Na classe de funções RE:T_VAL, devem existir funções
que permitam decodi6car um valor de retorno. Assim, em vez do valor numérico
do código de erro imprimese uma mensagem descrevendo em termos gerais o erro
detectado.

A título de exemplo, eis uma seqüência possível de detecção de erros, aplicado
à criação de uma tabela de vértices, a ser implementada pela classe VERTEX_TAB,
disparada a partir da impressão de um gra;fo, implementado pela classe GRAPH. Eis
como deve ser a verificação de erros através da checagem de parâmetros na funçãn
membro VERTEX_TABprint :

RE:T_VAL VERTEX_TABprint (const VERTE:X_TAB +this
, FILE +out _f
)

{

DECLARE_RET_VAL

cret_IXVPARM (this == RUL) ;
cret_INVPARM (out_i == NULL) ;
cret_INCONS (f ecf (out_f)) ;
cret_INCORS (f error (out_i)) ;

return (Rv_aK) ;
}

Neste trecho de programa faz-se a declaração de variáveis necessárias ao pacote de
detecção de erros, através da macro DECLARE_RET_VAL. Verifica-se se não são nulos
os apontadores para o objeto da classe VERTEX_TAB, de nome this, e para o arquivo
de impressão, de nome out_f . Se algum desses apontadores for nulo, a função que
chama esta recebe como retorno o valor RV_INVPARM, que significa que a função
chamada recebeu um parâmetro inválido. Além disso, verifica-se se o arquivo de
saída não está exaurido ou sob alguma condição de erro.

Caso todos os testes sejam corretos, a função retorna chega até sua última linha,
quando retorna o valor RV_OK, que significa que todo o processamento foi realizado

1 ESTRATÉGIAS DE IMPLEMENTAÇÃO 8

corretamente.
Por sua vez, na função GRAPHprint o , onde são impressos grafos, deve haver

uma linha da forma:

conf e_DK (VERTEX_TABprint (this->vt , out_f)) ;

Neste caso, busca-se a confirmação de que a função chamada terminou corretamente,
retornando RV_OK. A letra e, no prefixo conf e_, não é casual: ela significa que o
parâmetro da macro deve ser eupünclido mesmo se a detecção de erros não estiver
habilitada. Neste caso, a linha acima se transforma simplesmente em:

VERTEX_TABprint (this->vt , out_f) ;

Isto é, em uma impressão normal do objeto VERTEX_TAB.
Caso haja um erro, a função chamadora GRAPHprint o retorna a quem a chamou,

que pode ser um objeto da classe GRAPH_TREE, que implementa o conceito de árvore
de grafos. E neste caso, também a função chamadora, agora da classe GRAPH_TREE
retorna a quem a tenha chamado. Neste caso o programa principal, chamado main ()
em O. Neste ponto, o programa termina. Não sem que tenham sido impressas
mensagens informando as linhas onde os retornos condicionüis ocorreram. E a
condição que levou a esse retorno, que no exemplo dado pode ser RV_INVP ARM – para
parâmetros inválidos – ou RV_INCORS, caso um dos parâmetros seja inconsistente,
apesar de aparentemente válido.

Sobre a depuração Na criação dos recursos de depuração sugere-se o uso de
uma técnica similar à da detecção de erros: sugere-se a criação de uma biblioteca
de depuração, chamada, por exemplo, dbglib, que conte coin funções de impressão
de valores e mensagens, e com um nível de pré-processamento; as macros devem
possuir a mesma funcionalidade, o mesmo nome e argumentos das funções, mas em
maiúsculas. Por exemplo, deve existir uma função chamada dl_print_int o , para
a impressão de expressões de tipo int e de uma mensagem definindo-a, e macros
como DL_PRINT_INT () .

As funções não devem ser chamadas diretamente, mas através das macros. Por
sua vez, quando a opção de depuração está habilitada, a macro se expande para a
função de depuração de nome equivalente. Quando não, a macro gera o texto nulo.
Ou em outras palavras, não gera nenhuma instrução.

Assim, uma linha de programa da forma

DLJR:INT_INT ("ind_col" , ind_col)) ;

depois do preprocessamento se expande como

dl_print_int ("ind_col11 , ind_col)) ;

se a depuração estiver habilitada; e na linha nula, se a depuração não estiver habil-
itada.

1 ESTRATÉGIAS DE IMPLEMENTA(,’AO 9

1.2 O algoritmo paralelo
Neste ponto faz-se uma apresentação detalhada do algoritmo da dissecação anã-
ntradü cartesiana [4], adaptado às condições prédefinidas para a realização destas
estratégias.

Nesta parte do texto o objetivo não é a apresentação dos conceitos envolvidos
na dissecação aírirbhada cartesãana, mas a apresentação do algoritmo paralelo, espe-
cialmente adaptado ao metacomputador que será usado. A ênfase é no paralelismo
do processo. Partes do algoritmo que são seqüenciais não recebem a mesma atenção
de partes paralelas.

1.2.1 Iniciação

Na Iqjciação, como sugere o nome, são efetuados os passos que permitem que o
processamento seja iniciado. Neste caso, isto signiâca ler os valores dos dados do
problema, distribuí-los aos processadores e criar estruturas de dados que permitam o
trabalho coordenado dos processadores para atingir a meta da reordenação da matriz
de coeíicientes do sistema segundo o algoritmo da dissecação aninhada cartesiana.

1.2.2 Leitura
Na fase de leitura, um processador centraliza o processo de leitura do arquivo de
dados de aresta e vértice de grafo a ser separado. A seguir, esse processador –
chamado de mestre, ou master – envia os dados para os outros processadores, que
são usualmente chamados escravos. ou staves.

Eis os passos de leitura da fase de inicialização do algoritmo. Para uma com-
preensão da leitura ocorrendo em paralelo no processador mestre e nos escravos,
seus passos são mostrados em itens distintos.

1.2.3 Ordenação local

Fase inteiramente local, como seu nome sugere . . . Nesta fase são criadas duas listas
com valores de coordenadas em X e y de cada um dos vértices residentes em cada
processador. A seguir essas listas são ordenadas independentemente. As regiões de
memória das duas listas são contíguas, para que os dados locais de um processador
possa ser enviado em um único pacote de dados, através de uma única mensagem.

1.2.4 Inteirização e Atribuição das faixas de valores

Processamento hierárquico, dividido em passos, onde a cada passo, as informações
são concentradas. Ao final desta fase, os vértices têm suas coordenadas “int;ei-
rizadas“ , ou integerized.

1 ESTRATÉGIAS DE IMPLEMENTAÇÃO 10

Em vez de se usar uma linguagem semelhante às linguagens de programação para
descrever o algoritmo, faz-se antes a apresentação do algoritmo de modo informal,
para os vários passos.

A título de exemplo, usam-se 8 processadores, mas qualquer outro número pod&
ria ser usado. No entanto, a exposição do algoritmo é facilitada coIn quantidades de
processadores que sejam potências inteiras de 2.

Envio para os representantes: O envio para os representantes pode ser entendi-
do como a criação de um conjunto de vértices através da união de seus subconjuntos
de 2 em 2. Num primeiro passo, são unidos dois dos subconjuntos destinados a cada
processador.

Por exemplo, o envio de zl para z2 equivale a se fazer uma união Y(xl) U Y(r2).
No Passo 2 a seguir, o envio de T2 para 74 equivale a se fazer a união (Y(rt) U

Y(h)) u (Y(h) u Y(u)). De maneira geral, no Passo { são unidos 21 subconjuntos.

Inteirização stricto sensu pelo representante geral: Nesta fase, estando
de posse de todos os valores de coordenadas, o representante geral promove o que
de fato é a inteirização, ou a transformação posiciona11 de coordenadas em valores
fracionários, ou de “pontnHutuante“, para coordenadas inteiras.

Esta fase é realizada unicamente pelo representante geral, que a realiza de modo
inteiramente seqúencial.

Envio para os representados: Nesta fase, é efetuado o envio das listas de coor-
denadas inteirizadas para os processadores. Este também é um processo hierárquico,
onde no Passo 3 o representante geral passa metade das informações para seu repre-
sentado direto e retém para si a outra metade. A seguir as informações são de novo
repartidas em dois, até que todos processadores recebam suas informações.

1.2.5 Identi6cação da coordenada separadora

Nesta grande seção do algoritmo paralelo, é identificada a coordenada separadora,
que permitirá, na fase seguinte a criação do separador.

Listas de contagem locais Nesta etapa, cada nó calcula, localmente, para cada
coordenada do problema, sua lista de contagem de vértices, e de arestas, esta com
os itens (€, Di, Q, ai), onde Di é o número de arestas iniciadas na coordenada de valor
i; 61 é o número de arestas terminadas no dado valor €; e ai é o número de arestas
“atravessadas“ , ou strüdclted. no dado va:lor á.

As listas de contagem de arestas e de vértices são enviadas conjuntamente. Isto
é: para cada coordenada envia-se a quíntupla ordenada de valores (i, ci, Oi, ei, Q),

1 ESTRATÉGIAS DE IMPLEMENTAÇÃO 11

onde Di, ei e ai são definidos como antes e cá é a contagem de vértices na coordenada
Z

Isto permite minimizar o número de mensagens enviadas e maximizar a eficiência
do envio, minimizando o tempo de overtlead no estabelecimento de uma mensagem.

Comunicação de listas de contagem locais Neste passo é feita a comunicação
das listas de contagem, nos moldes das comunicações hierárquicas anteriores. Depois
deste passo do algoritmo cada processador tem os itens da lista de contagem das
faixas de valores das coordenadas que lhe correspondem.

Transmissão de representados para representantes: Neste ponto a infor-
mação é acumulada nos representantes, até o ponto máximo onde apenas um repre-
sentante geral concentra toda informação de listas de contagens de vértices e arestas
ao longo dos diferentes valores de cada uma das coordenadas.

Transmissão de representantes para representados: Neste ponto do algorit-
mo, ocorre apenas envio e recepção de informações. Não é feito nenhum cálculo ou
comparação.

O objetivo é fazer chegar a cada processador as informações referentes a conta-
gens de vértices e arestas de seus dois blocos de coordenadas, tanto referentes a X
quanto a Y.

Cálculo local da melhor coordenada separadora Com os dados das listas de
contagem, cada processador tem condições de avaliar quais valores de cada coord&
nada satisfazem a equação de balanço e de, além disso, deânir quais desses valores
têm o menor valor possível da função ?.

Comunicação de coordenadas separadoras Tendo cada processador estimado
seu candidato a separador, esses valores são enviados aos outros, de novo num esqu&
ma hierárquico de comunicação. As informações têm o formato (coord, á, 77(1)), onde
coord é o eixo de coordenadas escolhido, ou a, ou y; à é o valor nessa coordenada
que satisfaz a equação de balanço e que gera o menor valor da função 77 nos dois
intervalos de coordenadas do processador, seja na coordenada 3, seja na y. Para
que possa ser feita a comparação com os valores de outros processadores, também é
enviado 77(€), o valor da função 77 calculado para €.

Depois dessas informações terem chegado ao representante geral, este tem con-
dições de decidir por uma dada coordenada, e por um dado valor dela. Isto é então
comunicado a todos outros processadores.

1 ESTRATÉGIAS DE IMPLEMENTAÇÃO 12

Cálculo do conjunto corretor Neste caso, a introdução do paralelismo oferece
uma dificuldade: normalmente seria necessário que os processadores comunicassem
entre si os conjuntos corretores, para minimizar seu tamanho. Isto é, como observam
Heath; Raghavan [4], se duas arestas (u, u) e (a, w) são atravessadas pela coordenada
s escolhida,_ fender-se-in. inclrrlr n.r>enn.q n vértlce II. nn cnrlirrntr) corretor. em vez de doisr r

vértices. Isto, naturalmente, só seria possível se cada processador Ti comunicasse
com os outros seu conjunto E,(q), de arestas atravessadas por s.

Neste trabalho, inicialmente se preferirá a alternativa de Heath; Raghavan, pois
mesmo na implementação seqüencial prefere-se um balanço entre os dois subgrafos
à direita e à esquerda de onde são retirados os vértices para o conjunto corretor.
Quando da seleção entre vértices das arestas atravessadas, sorteia-se aleatoriamente
um deles.

Apesar dessa estratégia não dar origem aos menores separadores possíveis, ela
dá origem a subgrafos mais balanceados em termos de tamanho, o que é desejável
em termos de processamento paralelo.

Uma alternativa a ser considerada para implementação seria os custos de um
trecho de algoritmo que visasse a criação de um conjunto separador. Apesar de
haver um custo de comunicação inegável, talvez seja interessante avaliar qual a
qualidade dos separadores obtidos desse modo. Não é impossível que uma melhoria
na qualidade dos separador obtidos compense os custos de obtiê-la.

Mesmo no caso em que o conjunto corretor é calculado localmente, é necessá-
ria ainda uma fase de comunicação. Depois de calculados os conjuntos corretores,
cada processador q deve comunicar a seus vizinhos qual o tamanho de seu conjunto
separador. Isso é necessário para que a fase de renumeração dos vértices possa ser
feita

Aqui é usada outra decisão de Heath; Raghavan [4]: como a ordem de renu-
meração de vértices é arbitrária, renumeram-se os vértices seguindo a ordem dos
processadores. Isto é, os vértices atribuídos ao processador rj precedem os vértices
do processador 7rá+1, que precedem os vértices do processador ri+2 etc.

Uma vez mais essa decisão é tomada para minimizar a comunicação necessária.

Cálculo de conjunto corretor o cálculo do conjunto corretor O, é relativamente
simples: identificam-se arestas que são atravessadas pela coordenada separadora
escolhida s. Isto é, arestas que se iniciam num vértices à direita da coordenada
separadora e terminam à esquerda dela. Supondo que tenha sido escolhido um valor
s da coordenada 3, a idéia é localizar arestas (a, u) nas quais seja verdade que
(u.z < s) e (v .3 > s).

Nessas arestas, escolhe-se arbitrariamente um dos vértices e ele passa a fazer
parte de C,.

1 ESTRATÉGIAS DE IMPLEMENTAÇÃO 13

Cálculo dos conjuntos de vértices corrigidos Neste ponto, busca-se calcular
localmente para cada processador Ii seus conjuntos 71(b), Y,(b) e Y2(b), que se-
rão, respectivamente, o conjunto de vértices do subgrafo à direita Gl, o conjunto
separador e o conjunto de vértices do subgrafo à direita (32.

Dados os conjuntos U\, U, e U2, respectivamente os conjuntos de vértices com
coordenadas menores do que 8, iguais a s e maiores do que 8, a correcção significa
retirar de U\ e U2 alguns dos vértices das arestas atravessadas, contidos no conjunto
corretor O,, acrescentandeos a U,. Formalmente,

71 = Ul –O,
Y, = c/, UC,
72 = U2 – 0.

Como isso é feito localmente, na verdade em cada processador ri tem-se os conjuntos
71(%), Y,(zl) e 72(ri), construídos a partir do corretor local O,(q).

Comunicação do tamanho dos conjuntos separadores locais: Neste item
cada processador rj comunica aos outros o tamanho da parte do conjunto separador
que lhe cabe, ou seja IH(b)1. Conforme comentado, isto é necessário para que cada
processador saiba que número usar para renumerar os vértices de seu subconjunto.

A renumeração dos vértices do conjunto separador é arbitrária: a heurística da
dissecação aninhada não especifica uma forma de se renumerá-los. Contudo, neste
texto seguese a mesma estratégia recomendada por [4]: os vértices do subconjunto
separador em rt, chamados l/,(zl), são renumerados depois dos vértices em V,(z2),
que são renumerados depois dos vértices de l/,(z3), e assim por diante. Isto significa
que os vértices em 7,(71) são renumerados de

1781 – lys(„1)1+1 „ lysl .

Por sua vez, os vértices em Y,(72) serão renumerados

IR1– 178(„1)l– lys(„2)l+1 a lys ly.(„1)1 .

De maneira geral, os vértices do subconjunto separador contidos no processador ri,
ou Y, (b), são renumerados de

1731 – IK(„1)1 – IK(„2)1 – . . . – lys(„i–2)+ 1

a

1781 – lys(„1)1 – IU(„2)1 – . . . – ly,(„1–2)1 – lys(„!–1)1 .

Naturalmente, € deve estar entre 1 e P, o número de processadores disponíveis para
o problema.

1 ESTRATÉGIAS DE IMPLEMENTAÇ AO 14

Para que a renumeração dos vértices em Y,(rt) seja possível, basta que Zr receba
IY,1, o tamanho total do conjunto separador. Contudo, além de | Y,1, r2 deve receber
também IY,(zl)1, z3 deve receber 17,(Zr) + IY,(72)1. E, de modo geral, xi deve
receber IY, e IY,(a1)l + IY,(h)l + . . . + IY,(b_1)1.

A seguir, no detalhamento do algoritmo, vêse como a técnica da comunicação
hierárquica pode ser usada para fazer chegar essas informações aos processadores.

1. Comunicação de representantes a representados

Neste ponto, como de hábito, os processadores representantes acumulam in-
formação, selecionam o que deve ser enviado a seus representantes no passo
seguinte e o fazem.

Esses procedimentos são repetidos até que um único processador, o represen-
tante gera:1 acumule toda informação. A partir daí acontece o processo inverso
e os representantes passam a fornecer informações selecionadas a seus repre-
sentados.

2. Comunicação de representantes a representados
Neste ponto, os processadores representantes enviam a seus representados o
valor geral 11/,1 e os valores das somas parciais dos subconjuntos anteriores em
cada um dos 3 passos da Comunicação de representantes a representados

Antes de se fazer o detalhamento do algoritmo desta etapa, é interessante
tentar definir o que é uma soma parcial dos subconjuntos anteriores de um
dado passo.

Na etapa de concentração de informações o fluxo de informações sempre é feito
de processadores de índice menor, os representados, para aqueles de índice
maior, os representantes. Na fase de dispersão, o movimento é no sentido in-
verso, dos representantes, com índice maior para os representados, com menor
índice

Assim, num dado passo, cada representante tem as inforrnções dos represen-
tantes de menor índice até o seu próprio. No passo de número 1, o processador
representante tem informações sobre o processador imediatamente menor; no
Passo 2 o representante tem informações sobre 3 processadores menores. De
modo geral, no passo { cada representante tem informações sobre 2’ – 1 pre>
cessadores de índices menores do que os dele.

Deste modo, em um dado passo á, subsoma do passo anterior é o número de
2i–1 – 1 tamanhos de conjunto separador somados ao tamanho de seu próprio
separador; em outras palavras, o tamamho de 21–1 separadores. Simbolica-
rnente, uma subsoma de tamanhos de separadores de um passo n de um pre>
cessador Td é:

Ys(q–2„+1)1 + IYs(zi–2„+2) | + - ' ' + IYs7i

1 ESTRATÉGIAS DE IMPLEMENTAÇÃO 15

1.2.6 Construção paralela de um separador

Já que todos os conjuntos envolvidos na separação foram convenientemente torna-
dos locais, e divididos entre cada processador participante na separação, o processo
de construção de um separador se torna inteirarnente paralelo, sem nenhuma neces-
sidade de comunicação. Na terminologia de alguns autores, a construção paralela
de um separador seria um processo embürrassingtu paTatlet, ou “embaraçosamente
paralelo” .

1.2.7 Renumeração dos vértices de um separador

No caso da primeira separação de vértices, na qual o grafo inicial Go dá origem a
dois subgrafos Gl e G2, o conjunto separador Y, é renumerado como segue. Em
primeiro lugar,

Y, = V,(zl) U % (h) U . . . U Y,(z/>)

Deste modo, IY,1 – o número de elementos de Y, – é a soma do número de elementos
dos subconjuntos locais em cada processador.

Como, de acordo com a técnica da dissecação aninhada cartesiana, os vértices do
separador são renumerados com os maiores valores de índice disponíveis, tem-se para
o primeiro separador que o maior valor disponível é mesmo o número de elementos
do conjunto de vértices Y, já que Go = G = (V, E). Deste modo, os vértices do
separador são renumerados de IVl – IY,Ê + 1 a IVl. Deste modo, 7,(rI), ou os
vértices do separador contido no processador rt são renumerados de IYl – IKI + 1
a IVl – 1781 + IR(„1)1 .

Por sua vez, os vértices do separador contidos no processador ri são renumerados
de

lvl – lysl + lys(„1)1 + ly,(„2)1 + ly,(„3)1 + . . . + ly.(„i–1) | + 1
a

IVl – 1731 + lys(„1)E + Ey,(„2)1 + . . . + lys(„1–1)1 + ly,(„1)1.

1.2.8 Generalização do algoritmo para vários grafos

Para não carregar a notação, toda a apresentação do algoritmo foi feita em termos
de apenas um Bralfo, o grafo inicial, G = Go = (Y, E) = (%, Eo). Na verdade, o
interessante do algoritmo é a completa dissecação do grafo, o que só é conseguido
após vários passos de separação.

Assim, no passo seguinte de separação haverá dois grafos que se deverá consid-
erar: Gr e (72, resultados da separação de Go. Como Gl usa os vértices à direita da

1 ESTRATÉGIAS DE IMPLEMENTAÇÃO 16

coordenada separadora s escolhida no primeiro passo de separação, Gl
Do mesmo modo, (72 = (72, E2).

A separação de C71, através de uma coordenada separadora e seu valor t, dará
origem a um conjunto separador Vlt. A coordenada separadora de (72 em geral será
outra, de valor r. Assim, a separação de (72 dará origem a um outro seDarador Vb"

Como as duas separações estão sendo feitas simultaneamente, neste caso é ne-
cessário é informar nas trocas de mensagem a que grafo se referem as contagens e
os valores de separação que estão sendo enviados.

A seguir é feita uma reapresentação do algoritmo para generalizá-lo para vários
subgrafos sendo simultaneamente separados. Como os passos do algoritmo já foram
apresentados em suficiente detalhe para a separação de apenas um grafo, agora
apenas informaremos as alterações necessárias para tratar com múltiplos grafos si-
multaneamente nas estruturas de dados enviados e nos passos do algoritmo.

(yI) El).

1.3 E;numeração das modificações sugeridas
Nesta parte do texto são apresentadas modificações efetuadas nesta dissertação em
relação à especificação do algoritmo da dissecação arbintlada cartesiaTba [41. Elas
se dividem em duas partes: modiâcações devidas ao haT(lu)aTe diferente utilizado e
modificações experimentais, onde pontos do algoritmo original da dissecação aninha-
da cartesiana são alterados e os resultados obtidos são comparados com o original.

1.3.1 Modi6cações devido ao t\ardtoüTe distinto

Aqui se comentam as alterações efetuadas no algoritmo devidas ao uso de equipa-
mento distinto. Por exemplo, em [4] os autores propõem um algoritmo para a trans-
missão de informações que usa a riqueza de caminhos alternativas de comunicaçõa
disponível na arquitetura hipercubo. Essa mesma riqueza não estando disponível nas
maquinas usadas, é preferível desenvolver algoritmos que levem em conta a limitação
das comunicações em uma rede Ethernet .

Em termos muito simpli6cados, uma rede Ethernet pode ser descrita como sendo
um canal seqüencia1 de informações, um “fio” onde apenas uma informação pode
trafegar a cada vez [12]. Recursos como switches e hubs soâsticados podem mudar
esse panorama, mas não estão aInda amplamente disponíveis. Ademais, seu resulta-
do prático certamente não leva a riquezas de recursos de comunicação comparáveis
àquelas de arquitetura como a malha, ou mesh, e o hipercubo, uma vez que essas
arquiteturas são altamente otimizadas e dimensionadas para alto desempenho, sem
limitações de custo. Ao passo que acessórios para redes locais têm pelo menos a
limitação de custo.

Assim, buscou-se algoritmos que minimizassem o número de mensagens que tem
de ser enviadas a cada passo. Mesmo que a um custo maior do tamanho dessas
mensagens. Contudo, mesmo assim foi possível obter eficiência maior do que aquela

1 ESTRATÉGIAS DE IMPLEMENTAÇÃO 17

do envio linear puro e simples: todos processadores enviam informações para todos
os outros. Esse tipo de comunicação entre todos os processadores de um conjunto
é chamado all-to-all broadcast na literatura de processamento paralelo [8], mas de
gossiping na literatura de redes [5].

A título de comparação, para a troca de informações entre P processadores, onde
P = 2k é uma potência inteira de 2, pela técnica de envio linear, cada processador
envia aos P – 1 outros uma mensagem de, digamos, comprimento n bytes. Deste
modo, são enviadas P x (P – 1) mensagens, num total de P x (P – 1) x n bytes
comunicados. A operação pela qual um processador envia informações para um
grupo de outros é chamada broadcast.

Teoricamente seria possível otimizar o desempenho para redes Ethernet , nas
quais existe uma primitiva de comunicação que perInite o envio de apenas uma
mensagem, na qual um header especial informa quaás processadores devem recebê-la.
Portanto, uma única mensagem pode ser recebida pelos P– 1 processadores. Assim,
seria possível fazer o att-to-aU broadcast com apenas P– 1 mensagens, transmitindo
se um total de m x (P – 1) bytes.

Contudo, os ambientes de passagem de mensagens, como o MPI [9] e o PVM
[1], não costumam ser otimizados para o uso de redes locais. Assim, seu broadcast
acaba correspondendo ao envio de n – 1 mensagens.

Projetou-se um algoritmo, chamado concentração - dispersão, que foi exposto
em vários itens da seção 1.2. Basicamente ele corresponde a se agrupar informações
em grupos de 2 processadores, depois em grupos de 4, depois de 8 etc. Supondo
que P, o número de processadores seja uma potência inteira de dois, na etapa de
concentração são necessários log2P = À passos para que um único processador,
chaInado representante geTat, concatene informações de todos outros processadores.

A partir daí, começa a etapa de dispersão: os representatnte geral envia metade
das informações com outro processador; no passo seguinte esses dois processadores
dividem metade das informações com mais dois outros processadores. E assim,
depois de A passos, toda informação está distribuída pelos P processadores.

Como as duas partes do algoritmo são simétricas, podese fazer análise apenas da
fase de concentração. No primeiro passo da concentração, são enviadas { mensagens
com colnprimento n cada uma. No segundo passo, são enviadas { mensagens, com
comprimento 271. E assim por diante, até o passo A, quando é enviada apenas uma
mensagem, com comprimento ; x n. Isto signiâca um total de P – 1 mensagens,
com um volume transferido de W bytes.

Deste modo, para o algoritmo como um todo, são 2(P – 1) mensagens, com um
volume de A x P x n bytes.

Para fixar idéias, supondo P = 23 = 8, o volume no caso dos broadcastIS está
em P x (P – 1) = 8 x 7 = 56 mensagens, com 5671 bytes transmitidos. No caso da
concentração - dispersão, esse número é de 2(P – 1) = 2 x 7 = 14 mensagens, com
um total de 3 x 8 x n = 247& bytes transferidos.

REFERÊNCIAS 18

1.3.2 Modi6cações experimentais

Em alguns trechos do algoritmo, parece ser interessante alterar as abordagens seguidas.
Por exemplo, Heath; Raghavan [4] sugerem uma forma muito peculiar de função ?
para estimar o tamanho do conjunto corretor. Essa forma de função depende da cb
munica.ção de dois valores de contagem para cada valor s de uma dada coordenada,
chamados p, e e,.

A única vantagem dessa forma da função parece ser minorar levemente a quan-
tidade de informação transmitida entre processadores. Ora, uma análise sirnples
mostra que a economia é muito pequena. E que além disso, a cada passo de comu-
nicação é necessário transmitir e receber dois valores, p, e e,.

Assim, parece ser interessante avaliar o uso de um único parâmetro, que foi
chamado a„ correspondente ao tamanho do conjunto E, de arestas atravessadas
pela coordenada s. Qual o custo em termos do algoritmo dessa alternativa? Qual o
impacto na qualidade dos separadores?

Referências
[1] Anonymous: An Introduction to PVM

http : //www . epm . orn1 . gov/pvm/intro . html. 1996;

PTogramrning.

[2] Estratégias para implementação paralela-distribuída da dissecação aninhada
cartesiana. São Paulo, Depto. Engenharia da Computação e Sistemas Digitais,
Escola Politécnica da Universidade de São Paulo, 184 + 11 pp. 1998;

[3] J. Gosling; B. Joy; G. L. Steele: The Java language specijca-
tion', ftp : //ftp . j avasoft . com/docs/specs/langspec-l .O . pdf ; mu + 825;
1996

[4] M. T. Heath; P. Raghavan: A cartesian parallel nested dissection atgorit;hm.
University of Illinois at Urbana-Charnpaign. Technical Report UIUDCS-92-
1772, 18 PP. 1992;

[5] S. M.Hedetniemi; S. T. Hedetniemi: À suTveu of Gossiping and Broütlcasting
in CommuTrication Networks. Networks, 18(4), pp. 319 – 349; 1988;

[6] A. Holub: a + a + +; Programming tDitt\ objects án C and O + +. New York,
McGraw-Hill; TiV + 427 pp.; 1992;

[7] B. W. Kernighan; D. M. Ritchie: The O programming language, 2nd ed. Mur-
ray Hill, Prentice-Hall; =ü + 272 pp.; 1988;

[8] V. Kumar; A. Grama; A. Gupta; Ge. Karypis: Introduction to parallel comput;-
ing: design and analysis of ütgoTitt\Tns. Redwood City, Benjamin-Cummings,
30 + 599; 1996;

REFERENCIAS

[9] Message Passing Interface Forum: MPI: d M essüge-Passing InteTfüce Stan-
(Iurd. ftp : //netlib . org/tennessee/ut–cs–94-230 . ps; 1994;

[10] B. Meyer: Object-oriented software con$trhction-, Hemel-Hempstead; Prentice-
Hall; zuiáá + 534 pp.; 1988;

[11] B. Stroustrup: The C++ prograTrtming lang&age, 2rrd ed. Reading, Addison.
Wesley, à + 699. 1991;

[12] A. S. Tanenbaum: Computer NettnoTks, 2nd. ed. New Jersey, Prentic üHall,
gu + 658 pp., 199;

19

P

Indice
Heath, 2, 12
Holub_ 4

Java, 4

Meyer, 4, 6, 7
MPI, 2

PVM, 2

Raghavan, 2, 12

Stroustrup, 4, 6

Tanenbaum. 16

BOLETINS TÉCNICOS - TEXTOS PUBLICADOS

BT/PCS/9301 - Interligação de Processadores através de Chaves Ômicron - GERALDO LINO DE CAMPOS. DEMI
GETSCHKO

BT/PCS/9302 - Implementação de Transparência em Sistema Distribuido - LUÍSA YUMIKO AKAO, JOÃO JOSÉ NETO

BT/PCS/9303 - Desenvolvimento de Sistemas Especificados em SDL - SIDNEI H, TANO, SELMA S. S. MELNIKOFF

BT/PCS/9304 - Um Modelo Formal para Sistemas Digitais à Nível de Transferência de Registradores - JOSÉ EDUARDO
MOREIRA, WILSON VICENTE RUGGIERO

BT/PCS/9305 - Uma Ferramenta para o Desenvolvimento de Protótipos de Programas Concorrentes - JORGE KINOSHITA,
JOÃO JOSÉ NETO

BT/PCS/9306 - Uma Ferramenta de Monitoração para um Núcleo de Resolução Distribuída de Problemas Orientado a
Objetos - JAIME SIMÃO SICHMAN, ELERI CARDOSO

BT/PCS/9307 - Uma Análise das Técnicas Reversíveis de Compressão de Dados - MÁRIO CESAR GOMES SEGURA, EDIT
GRASSIANI LINO DE CAMPOS

BT/PCS/9308 - Proposta de Rede Digital de Sistemas Integrados para Navio - CESAR DE ALVARENGA JACOBY, MOACYR
MARTUCCI JR

BT/PCS/9309 - Sistemas UNIX para Tempo Real - PAULO CESAR CORIGLIANO, JOÃO JOSÉ NETO

BT/PCS/9310 - Projeto de uma Unidade de Matching Store baseada em Memória Paginada para uma Máquina Fluxo de
Dados Distribuido - EDUARDO MARQUES, CLAUDIO KIRNER

BT/PCS/9401 - Implementação de Arquiteturas Abertas: Uma Aplicação na Automação da Manufatura - JORGE LUIS RISCO
BECERRA, MOACYR MARTUCCI JR.

BT/PCS/9402 - Modelamento Geométrico usando do Operadores Topológicos de Euler - GERALDO MACIEL DA FONSECA,
MARIA ALICE GRIGAS VARELLA FERREIRA

BT/PCS/9403 - Segmentação de Imagens aplicada a Reconhecimento Automático de Alvos - LEONCIO CLARO DE BARROS
NETO, ANTONIO MARCOS DE AGUIRRA MASSOLA

BT/PCS/9404 - Metodologia e Ambiente para Reutilização de Software Baseado em Composição - LEONARDO PUJATTI.
MARIA ALICE GRIGAS VARELLA FERREIRA

BT/PCS/9405 - Desenvolvimento de uma Solução para a Supervisão e Integração de Células de Manufatura Discreta - JOSÉ
BENEDITO DE ALMEIDA, JOSÉ SIDNEI COLOMBO MARTINI

BT/PCS/9406 - Método de Teste de Sincronização para Programas em ADA - EDUARDO T. MATSUDA, SELMA SHIN
SHiMIZU MELNrKOFF

BT/PCS/9407 - Um Compilador Paralelizante com Detecção de Paralelismo na Linguagem Intermediária - HSUEH TSUNG
HSIANG, LÍRIA MATSUMOTO SAITO

BT/PCS/9408 - Modelamento de Sistemas com Redes de Petri Interpretadas - CARLOS ALBERTO SANGIORGIO, WILSON
V. RUGGIERO

BT/PCS/9501 - Sintese de Voz com Qualidade - EVANDRO BACCI GOUVÊA, GERALDO LINO DE CAMPOS

BT/PCS/9502 - Um Simulador de Arquiteturas de Computadores “A Computer Architecture Simulator” - CLAUDIO A. PRADO,
WILSON V. RUGGIERO

BT/PCS/9503 - Simulador para Avaliação da Confiabilidade de Sistemas Redundantes com Reparo - ANDRÉA LUCIA
BRAGA, FRANCISCO JOSÉ DE OLIVEIRA DIAS

BT/PCS/9504 - Projeto Conceitual e Projeto Básico do Nível de Coordenação de um Sistema Aberto de Automação,
Utilizando Conceitos de Orientação a Objetos - NELSON TANOMARU, MOACYR MARTUCCI JUNIOR

BT/PCS/9505 - Uma Experiência no Gerenciamento da Produção de Software - RICARDO LUIS DE AZEVEDO DA ROCHA,
JOÃO JOSÉ NETO

BT/PCS/9506 - MétodOO - Método de Desenvolvimento de Sistemas Orientado a Objetos: Uma Abordagem Integrada à
Análise Estruturada e Redes de Petri - KECHI HIRAMA, SELMA SHIN SHIMIZU MELNIKOFF

BT/PCS/9601 - MOOPP: Uma Metodologia Orientada a Objetos para Desenvolvimento de Software para Processamento
Paralelo - ELISA HATSUE MORIYA HUZITA, LÍRI A MATSUMOTO SATO

BT/PCS/9602 - Estudo do Espalhamento Brillouin Estimulado em Fibras Ópticas Monomodo - LUIS MEREGE SANCHES
CHARLES ARTUR SANTOS DE OLIVEIRA

BT/PCS/9603 - Programação Paralela com Variáveis Compartilhadas para Sistemas Distribuídos - LUCIANA BEZERRA
ARANTES, LIRIA MATSUMOTO SATO

BT/PCS/9604 - Uma Metodologia de Projeto de Redes Locais - TEREZA CRISTINA MELO DE BRITO CARVALHO, WILSON
VICENTE RUGGIERO

BT/PCS/9605 - Desenvolvimento de Sistema para Conversão de Textos em Fonemas no Idioma Português - DIMAS
TREVIZAN CHBANE, GERALDO LINO DE CAMPOS

BT/PCS/9606 - Sincronização de Fluxos Multimídia em um Sistema de Videoconferência - EDUARDO S. C. TAKAHASHI,
STEFANIA STIUBIENER

BT/PCS/9607 - A importância da Completeza na Especificação de Sistemas de Segurança - JOAO BATISTA CAMARGO
JÚNIOR, BENÍCIO JOSÉ DE SOUZA

BT/PCS/9608 - Uma Abordagem Paraconsistente Baseada em Lógica Evidencial para Tratar Exceções em Sistemas de
Frames com Múltipla Herança - BRÁULIO COELHO ÁVILA, MÁRCIO RILLO

BT/PCS/9609 - Implementação de Engenharia Simultânea - MARCIO MOREIRA DA SILVA, MOACYR MARTUCCI JÚNIOR

BT/PCS/9610 - Statecharts Adaptativos - Um Exemplo de Aplicação do STAD - JORGE RADY DE ALMEIDA JUNIOR. JOAO
JOSÉ NETO

BT/PCS/9611 - Um Meta-EdItor Dirigido por Sintaxe - MARGARETE KEIKO IWAI. JOAO JOSE NETO

BT/PCS/9612 - Reutilização em Software Orientado a Objetos: Um Estudo Empirico para Analisar a Dificuldade de
Localização e Entendimento de Classes - SELMA SHIN SHIMIZU MELNIKOFF. PEDRO ALEXANDRE DE
OLIVEIRA GIOVANI

BT/PCS/9613 - Representação de Estruturas de Conhecimento em Sistemas de Banco de Dados - JUDITH PAV(SN
MENDONZA, EDIT GRASSIANI LINO DE CAMPOS

BT/PCS/9701 - Uma Experiência na Construção de um Tradutor Inglês - Português - JORGE KINOSHITA, JOÃO JOSE
NETO

BT/PCS/9702 - Combinando Análise de "Wavelet" e Análise Entrópica para Avaliar os Fenômenos de Difusão e Correlação -
RUI CHUO HUEI CHIOU, MARIA ALICE G. V. FERREIRA

BT/PCS/9703 - Um Método para Desenvolvimento de Sistemas de Computacionais de Apoio a Projetos de Engenharia -
JOSÉ EDUARDO ZINDEL DEBONI. JOSÉ SIDNEI COLOMBO MARTINI

BT/PCS/9704 - O Sistema de Posicionamento Global (GPS) e suas Aplicações - SÉRGIO MIRANDA PAZ. CARLOS
EDUARDO CUGNASCA

BT/PCS/9705 - METAMBI-OO - Um Ambiente de Apoio ao Aprendizado da Técnica Orientada a Objetos - JOÃO UMBERTO
FURQUIM DE SOUZA, SELMA S. S. MELNIKOFF

BT/PCS/9706 - Um Ambiente Interativo para Visualização do Comportamento Dinâmico de Algoritmos - IZAURA CRISTINA
ARAÚJO, JOÃO JOSÉ NETO

BT/PCS/9707 - Metodologia Orientada a Objetos e sua Aplicação em Sistemas de CAD Baseado em "Features" - CARLOS
CÉSAR TANAKA, MARIA ALICE GRIGAS VARELLA FERREIRA

BT/PCS/9708 - Um Tutor Inteligente para Análise Orientada a Objetos - MARIA EMÍLIA GOMES SOBRAL, MARIA ALICE
GRIGAS VARELLA FERREIRA

BT/PCS/9709 - Metodologia para Seleção de Solução de Sistema de Aquisição de Dados para Aplicações de Pequeno Porte -
MARCELO FINGUERMAN, JOSÉ SIDNEI COLOMBO MARTINI

BT/PCS/9801 - Conexões Virtuais em Redes ATM e Escalabilidade de Sistemas de Transmissão de Dados sem Conexão -
WAGNER LUIZ ZUCCHI, WILSON VICENTE RUGGIERO

BT/PCS/9802 - Estudo Comparativo dos Sistemas da Qualidade - EDISON SPINA, MOACYR MARTUCCI JR

BT/PCS/9803 – The VIBRA Multi-Agent Architecture: lntegrating Purposive Vision With Deliberative and Reactive Planning –
ANNA H. REALI C. RILLO, REINALDO A. C. BIANCHI, LELIANE N. BARROS

BT/PCS/9901 – Metodologia ODP para o Desenvolvimento de Sistemas Abertos de Automação – JORGE LUIS RISCO
BECCERRA, MOACYR MARTUCCI JUNIOR

BT/PCS/9902 – Especificação de Um Modelo de Dados Bitemporal Orientado a Objetos – SOLANGE NICE ALVES DE
SOUZA, EDIT GRASSIANI LINO DE CAMPOS

