

ON THE REPRESENTATIONS OF LIE RING $\text{sl}(2, \mathbf{Z})$

A. Grishkov, A. Yuschenko

The theory of Lie rings is very different from that of Lie algebras. In this note we deal with the Lie ring of 2×2 -matrices over an integral domain R of characteristic zero. Let F denote the field of fractions for R . A 3-dimensional free R -module S in the Lie algebra $\text{sl}(2, F)$ is called an R -form of $\text{sl}(2, F)$ provided that $[S, S] \subseteq S$. Note that in this case $S \otimes_R F \cong \text{sl}(2, F)$.

The problem of describing all the R -forms of $\text{sl}(2, F)$ is quite complicated and depends heavily on the ring R . A partial result in this direction was obtained by A. Yuschenko.

Let $R = \mathbf{Z}_p$ denote the ring of p -adic integers, where p is an odd prime. Denote by \mathbf{Q}_p the field of p -adic numbers. Let us fix three positive integers n, m , and k . Denote by $S_{n,m}$ the Lie algebra over \mathbf{Z}_p with the basis $\{e, h, f\}$ and the multiplication:

$$[e, h] = p^n e, \quad [e, f] = p^m h, \quad [f, h] = -p^n f.$$

We will call such an algebra *diagonal*. We put $\Phi_{n,m,k} = \{S \subset \text{sl}(2, \mathbf{Q}) \mid S = S_{a,b,c} = S_{n,m} + v\mathbf{Z}_p, v = (ae + bh + cf)/p^k, a, b, c \in \mathbf{Z}_p^*\}$. Clearly, the Lie algebras over \mathbf{Z}_p belonging to $\Phi_{n,m,k}$ are \mathbf{Z}_p -forms of $\text{sl}(2, \mathbf{Q}_p)$ if $n \geq k$ and $m \geq k$.

Theorem. Let n, m , and k be natural numbers such that $n \geq k$ and $m \geq k$. Then $\Phi_{n,m,k}$ contains just finitely many non-isomorphic Lie algebras over \mathbf{Z}_p .

A \mathbf{Z}_p -algebra $S(a, b, c)$ is diagonal if and only if $n = m$ and $\left(\frac{b^2 - 2ac}{p}\right) = 1$, where (\cdot) is the Lagrange symbol, or $n < m$.

Now let us fix a diagonal form of $\text{sl}(2, \mathbf{Q})$ isomorphic to $\text{sl}(2, \mathbf{Z}) = \mathbf{Z}e \oplus \mathbf{Z}h \oplus \mathbf{Z}f$, where $[eh] = 2e$, $[ef] = h$, and $[fh] = -2f$. Denote by \mathcal{O} the category of S -modules that are free and finite-dimensional as \mathbf{Z} -modules. If $V \in \mathcal{O}$, then V is said to be *diagonal* if $V = \bigoplus_{i \in \mathbf{Z}} V_i$ where $V_i = \{v \in V \mid vh = iv\}$. One can easily show that every S -module $V \in \mathcal{O}$ includes a unique maximal diagonal submodule V_d . A module $V \in \mathcal{O}$ is called *irreducible* if V is diagonal and the $\text{sl}(2, \mathbf{Q})$ -module $V \otimes_{\mathbf{Z}} \mathbf{Q}$ is irreducible. Every module $V \in \mathcal{O}$ includes a unique maximal submodule V_m which is the direct sum of irreducible modules.

Now we will describe the structure of an irreducible S -module V . By definition, $V = \bigoplus_{i \in \Gamma} V_i$, where $\Gamma = \{-n, -n+2, \dots, n-2n\}$ and $V_i = \mathbf{Z}v_i$. If $v_i e = \alpha_i v_{i+2}$, $v_i f = \beta_i v_{i-2}$, and $\alpha_n = \beta_{-n} = 0$, then

$$\alpha_{n-2i} \beta_{n-2i+2} = -i(n-i+1).$$

Hence, we can assume that $\alpha_i > 0$ and $\beta_i < 0$. Let $\bar{\alpha} = (\alpha_{-n}, \alpha_{-n+2}, \dots, \alpha_{n-2}) \in \mathbf{N}^n$, where \mathbf{N}^n stands for the set of the n -tuples of naturals. Denote by $V(\bar{\alpha})$ the S -module V described above.

Proposition. Every irreducible S -module V is isomorphic to a module of type $V(\bar{\alpha})$ for some $\bar{\alpha}$. Two modules $V(\bar{\alpha})$ and $V(\bar{\gamma})$ are isomorphic if and only if $\bar{\alpha} = \bar{\gamma}$.

Let $V(\overline{\alpha})$ and $V(\overline{\gamma})$ be irreducible S -modules and let $W = V(\overline{\alpha}) \otimes V(\overline{\gamma})$ be the diagonal S -module. In general, $W \neq W_m$. Our main goal is to compute the index $|W : W_m|$ of W_m in W .

If $V(\overline{\alpha}) = \bigoplus_{i \in \Gamma} \mathbf{Z} v_i$ and $v = \sum_{i \in \Gamma} a_i v_i$ with $a_i \in \mathbf{Z}$ and $\Gamma \subset \mathbf{Z}$, then $|v| = a \in \mathbf{N}$ where $a_i/a \in \mathbf{Z}$, and a is the maximal integer with such a property.

Let $\{v_n, v_{n-2}, \dots, v_{-n}\}$ and $\{w_m, w_{m-2}, \dots, w_{-m}\}$ be the bases of the modules $V(\overline{\alpha})$ and $V(\overline{\gamma})$ respectively. Then $W = V(\overline{\alpha}) \otimes V(\overline{\gamma})$ has the basis $\{v_i \otimes w_j \mid i = -n, \dots, n; j = -m, \dots, m\}$. Define in W primitive vectors $u_{n+m}, u_{n+m-2}, \dots, u_{n-m}$, $n \geq m$, as follows

$$u_{n+m-2k} = \sum_0^k x_i^k v_{n-2} \otimes w_{m-2k+2i},$$

where $u_{n+m-2k} = 0$, $|u_{n+m-2k}| = 1$, $x_0^k > 0$, and $x_i^k \in \mathbf{Z}$.

Set $u_i^k = u_{n+m-2k} f^i$ and define the numbers Δ_N , $N = 1, \dots, [\frac{n+m}{2}]$ as follows:

$$\Delta_N = \prod_{j=1}^N (x_0^j j! (n+m-2j+3)^{j-1} (n+m-2j+2)^j) / \alpha_1^j,$$

if $N = 1, \dots, m$ and

$$\Delta_N = (-1)^{N-m} C_N^{N-m} \beta_n \beta_{n-2} \dots \beta_{n-2N+2m+2} \Delta_m,$$

if $N = m+1, \dots, [\frac{n+m}{2}]$, where $\beta_{n-2i+2} = -i(n+1-i)/\alpha_{n-2i}$.

The main result is the following

Theorem.

$$|W : W_m| = \Delta \prod_{i=0}^{n+m-2k} \prod_{k=0}^m |u_k^i|^{-1} \prod_{N=1}^{[\frac{n+m-1}{2}]} \Delta_N^2,$$

where $\Delta = \Delta_{(n+m)/2}$ if $n+m$ is even, and $\Delta = 1$ otherwise.

Alexander Grishkov

Departamento de Matemática - IME

Universidade de São Paulo

CEP 05317-970, São Paulo, SP, Brasil

E-mail grishkov@ime.usp.br

Alexander Yuschenko

Department of Mathematics

Omsk State University

Prospekt Mira 55

Omsk 644077, Russia

E-mail yuschenk@univer.omsk.su