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 Abstract

 With epidemiological and astronomical data, it is common to observe vari-
 ances that vary with the observations. Further, values for those variances
 typically are available from follow-up studies or replications. This paper
 deals with consistent estimation and hypothesis testing in a heteroscedas-
 tic polynomial model with measurement error in both axes and an equation
 error. For obtaining consistent estimators and consistently assessing their
 asymptotic variances, we embrace the corrected score approach. Further-
 more, we applied the theoretical results in two real data sets: the WHO
 MONICA project data set on cardiovascular diseases and their risk factors
 and the Chandra observatory data set. We also simulate the rejection rates
 for the Wald statistic in order to study test size and power for small and
 moderate samples, indicating that the test behaves satisfactorily in those
 situations.

 AMS (2000) subject classification. Primary 62J99; secondary 34K25.
 Keywords and phrases. Polynomial regression, measurement error, corrected
 score, asymptotic theory

 1 Introduction

 Recently, heteroscedastic linear errors-in- variables models have been pro-
 posed to fit epidemiological Kulathinal et. al. (2002), Cheng and Riu (2006),
 de Castro et. al. 2008) and astronomical Akritas and Bèrshady (1996), Kelly
 (2007), Kelly et. al. (2008) data sets. In Kulathinal et. al. (2002) was pro-
 posed a simple EM (Expectation and Maximization) algorithm to find the
 maximum likelihood (ML) estimators of a linear heteroscedastic structural
 errors-in-variables model. The authors considered that the linear equation
 is subject to error and applied this model to a real dataset of the WHO
 MONICA project on cardiovascular disease and its risk factors. For this
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 data set, it was found a significant variance for the equation error, which
 makes such more complex models useful in fitting real data sets. In the
 same way, de Castro et. al. (2008) derived the Fisher information for the
 parameters which makes it possible to test conjointly the intercept and in-
 clination parameters using Wald type statistics. They also proposed testing
 statistics based on the likelihood ratio and score statistics. In a previous
 study, Akr it as and Bershady (1996) has entertained a similar model (with
 known covariance between the errors) and applied it to an astronomical data
 set. The authors had proposed a method-of-moment to estimate the model
 parameters and gave an approximation for their asymptotic covariance ma-
 trix. Patriota et. al. (2009) computed the exact asymptotic distribution
 for the method-of-moments estimators considering the same linear model
 presented by Kulathinal et al (2002). Motivated by these applications, we
 assume a heteroscedastic polynomial model with error in both axes adding
 an equation error, which seems not available in literature. Then, using the
 data sets produced by the WHO MONICA project and by the Chandra X-
 ray observatory, we found evidence of a quadratic and cubic relationship,
 respectively, relating the response variable and the covariate (both inacces-
 sible directly). It is also the case that the model presented in this paper
 extends the model considered in Zavála et. al. (2007), where a heteroscedas-
 tic polynomial nonequation error model is considered. The approach is based
 on the corrected score methodology, which when feasible, yields consistent
 and asymptotically normal estimators for the model parameters. Moreover,
 consistent estimators for the asymptotic variances can also be obtained. In
 this paper, we also consider a "flexible" polynomial model where is possi-
 ble to fit partial polynomial relationships between yi (unobservable response
 variable) and X{ (unobservable covariate). That is, in a third degree polyno-
 mial, for example, coefficient for x2 may be taken as zero.

 Most of the literature deal with the homoscedastic case and error in just
 one of the axis. See, for example, Chan and Mak (1985), Puller (1987),
 Cheng and Schneeweis (1998) and Kukush (2005). An exception is Zavála
 (2007) where a heteroscedastic polynomial errors-in- variables model without
 equation error i.s considered.

 This article is organized as follows. Section 2 gives a way to fit partial
 polynomial models, specifically, in a heteroscedastic polynomial errors-in-
 variables model without equation error the same model considered by Zavála
 (2007). Section 3 considers a more general model which regards an equation
 error in the model presented in Section 2. Section 4 presents a simulation
 study where it is shown that the proposed approach yields Wald tests with
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 A HETEROSCEDASTIC POLYNOMIAL REGRESSION 269

 empirical levels close to the nominal significance levels for small and moder-
 ate samples. Section 5 deals with applications to the WHO MONICA and
 Chandra data sets. Section 6 ends the paper with conclusions and remarks.

 2 Partial Polynomial Errors-in- Variables Models Without
 Equation Error

 In this section we present a concise implementation of partial polynomial
 models with no equation error to the model considered in Zavála et. al.
 (2007) where it is specified that:

 m = Vi + eii /9 1 '
 Xi = Xi + Ui, K ■ }

 with yi = ßo + ßiXi+:.., ßvx' and

 GH(GM*:i)
 with Xi and K{ known for г = l,...,n. The authors provided consistent
 estimators of the model parameters and gave consistent estimates for their
 asymptotic covariance matrix. However, if some coefficients in the polyno-
 mial equation are equal to zero, then we have to derive the estimators and
 consistent estimators for the asymptotic covariance matrix for each case. As
 an alternative, we are going to present a general way to fit partial polyno-
 mial models which have some of the parameters equal to zero. For that,
 consider initially the equation yi = aoßo + aißiXi + • • • iapßpx^ which, in
 matrix notation, can be written as

 Vi = ßjAxi (2.2)

 where

 ( ßo' Г ao 00. ..0] / 1 '
 ßi 0 ai 0 ... 0 Xi

 ßF= ß2 , A= 0 0 a2 ... 0 and Xi= xï .

 V/W [ 0 0 0 ... ap' 'xf/
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 The elements of the matrix A are known in such way that, a,j = 0 if
 ßj = 0 and 1, otherwise, for all j = 0, 1, . . . ,p. The model studied by Zavála
 et. al. (2007) considers that a¿ = 1 for all j = 0, . . . ,p.

 To consistently estimate model (2.1) parameters considering (2.2) we con-
 sider the corrected score approach (for details, see Nakamura 1990) which
 depends on a pseudo log-likelihood function £*(в,Х) = YLZ=i^iiß^) sat-
 isfying

 Е(е*(в,х)'¥,х) = е(в,х),

 where ¿(0, x) is the (unobserved) log-likelihood function of (1^, x) and £*(в, X)
 is called the corrected log-likelihood function which depends only on the ob-
 servable data (У , X), where Y = (Yî, . . . , Yn) and X = (Xi, . . . , Xn) and
 ж = (xi, . . . , жп). Note that we omit the response variable Y in the expres-
 sions £(.) and £*(.) to simplify notation. For the nonequation error model,
 the unknown parameter в is the unknown /3. We can then define the follow-
 ing quantities

 TT*(fì l/(0,X)-^ Y' -X^deï(e>Xï ЯТ1н and J(0,X)--^ T*(Ň JT'- у^дЧ*(#»^0 TT*(fì l/(0,X)-^ Y' дв ЯТ1н and J(0,X)--^ T*(Ň JT'-
 г=1 г=1

 and suppose that 0n is such that и*(вп,Х) = 0, which is the corrected
 score estimator of 0. Under the regularity conditions stated in Giménez
 and Bolfarine (1997) the corrected score estimator, 0n, is consistent and

 asymptotically normal that is, у/п(вп - в) - > Л/"(0, Í2n), where Пп is a
 sandwich type matrix which can be consistently estimated by

 Í2n = ±Л^(вп)Г„(в„)Л^(0»)>
 it

 where

 An(0) = --J2m^X) ri and Tn(e) = -J2u*(e,X)U*(e,X)T, ri . n .
 1=1 . 1=1 .

 with U*(6, X) = ^^ and Ц{0, X) = ^gP.
 In order to apply the Nakamura's approach, we start by writing the
 (unobserved) log-likelihood function for model (2.1) which is given by
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 A HETEROSCEDASTIC POLYNOMIAL REGRESSION 271

 £(ßF,x) ex -±¿l(y,_M)»

 Hence, for the purpose of implementing the corrected score approach, we
 have to find the quantities t^k such that Eiti^Xi) = x^ к = 1, . . . ,2p in
 which, under normality, we have that (see Zavála 2007)

 Ufi = 1, U,i = Xi and ЧО'+i) = xiU,j - j«t*i,ü-i)'

 j - 1, . . . , 2p. Moreover, defining

 1 í¿,i *i,2 • • • U,p
 *i,l ^i,2 *i,3 • • • 4(p+l)

 iyi= í»,2 43 *M ••• Ч(р+2) ,

 . ^,p *i,(p+l) **,(p+2) • • • 42p .

 n n

 fci = yť(l 4i 42 .-• 4p)T? Tn = J]JÍ¿/A¿ and Fn = ^hi/Ai,
 ¿=i ¿=i

 it can be verified, by showing that E[t(ßF,X)'x] = £(ßF,x) holds, that
 the corrected log-likelihood function for the observed data (Y,X) is given
 by

 t(ßF,X) a ßlAFn - ^ßTFATnAßF.

 Notice that we can use the decomposition A = AAT, in such a way that
 /3 = Дт/3,р is the vector which has all components different from zero, so
 that the corrected log-likelihood function for ß can be written as

 Г08, X) oc ßTFn - 'ßTfnß, (2.3)
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 272 Alexandre G. Patriota and Heleno Bolfarine

 where Fn = AFn and Ťn = ATTnA. Therefore, differentiating the cor-
 rected log-likelihood function (2.3) we have the corrected score function and
 it is given by

 U*(ß,X) = ^^l = Fn-Tnß (2.4)
 Equating (2.4) to zero, we assess consistent estimators for ß by solving

 the equation Tnßn = Fn, leading to

 ßn = Ť~lFn (2.5)

 We can estimate the asymptotic covariance matrix of the estimator ßn
 using the asymptotic distribution for the corrected score estimator (see
 Giménez and Bolfarine 1997) given by

 Т-хКТ-' (2.6)

 where Лп = YJU и?фп,Х)и?фп,Х)т and U?{ßn,X) =
 ¿ (hi - НфЛ with Hi = АТЩА and 'hi = AT/i¿.

 In addition, for testing Щ : Gß = d we may use the Wald statistic given
 by

 & = (Gßn - d)T (GŤ-1'nŤ-1GTyl (Gßn - d).

 Under the assumptions stated in Zavála (2007), that is, there exists a
 7 > 0 such that

 limIi¿72¿KI(2+7) = 0 and >7)
 i=l

 0 < liminf 1 ¿(^ - xfVv-V < lim sup i ¿(xť - x)2(2p~1} < oo,

 then £n - > X2(fl)j where g = rank(G) and " - >" means convergence in
 distribution.
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 A HETEROSCEDASTIC POLYNOMIAL REGRESSION 273

 For the partial cubic model y% = ßo + ß'%i + Ä^f we have that ao = 1,
 a' = 1, u2 = 0 and аз = 1. The matrix Д is as follows

 "10 0"

 Л= 0 0 0
 _ 0 0 1 _

 and a consistent estimator for ß = (Д>, /?i, /?з)т is computed by (2.5) and its
 asymptotic covariance by (2.6) where

 n 1 1 *i,i Чз n 1 / ** '
 Tn = ]T - tifi Ufl tiA and Fn = J2 Y' Yiii* '

 i=l l L *i,3 «i,4 *»,6 J ;=1 ¿ ' %,3 /

 3 Partial Polynomial Errors-in- Variables Models with Equation
 Error

 In this paper, we also consider that

 Уг'Хг~АГфГАХг;а2), (3.1)
 i.e., the equation is subject to error. This means that the true variables
 y i and Xi are not perfectly related (Cheng and Riu 2006). Therefore, the
 log-likelihood function considering (3.1) is given by

 t(0F,x) oc -i^l0gn-l^l(yi-ytý ¿ г ¿ i=l г i=l Ti

 where Т{ = '{ + a2 and 0^ = (/3j,a2)T. Define

 Tn(^2) = ¿iížM, Fn(a2) = ^ hi/Ti, fn(a2) = ¿АгЛг
 г=1 г=1 г=1
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 n

 and Fn(a2) = ^2hi/Ti,

 • •

 where Hi, hi, Hi and hi are the same quantities defined in Section 2.

 the corrected log-likelihood function for the observed data (Y,X) is given
 by

 1 n i « y2 "hi n Ü

 r(.,*)«-l5>'>-ìES-+'»TE.S-5''TfA 1 i « y2 "hi n Ü г=1 г=1 г=1' г=1

 where 0 = (ßT,a2)T. Differentiating the corrected log-likelihood function
 we have the corrected score functions which are given by

 ^2(/3'x) - dß "¿Д t, / (3-2)
 and

 17 (a ' X) - da* = 2 ¿J 1 T¡ " ^ / ' (3'3)

 where q = Y? -2ßThi + ßTHiß. Equating (3.2) and (3.3) to zero we assess
 consistent estimators for ß and a2 that are obtained solving the following
 equations

 Tn(a2)ßn = Fn(a2) and Z¿ = ¿|, (3.4)
 t=l г г=1 r*

 where ?» = A» + a2 and q = Y¿2 - 23j/i¿ + (3%Нфп. Equations in (3.4)
 do not have analytical solutions, though we can find the estimates using the
 following numerical procedure:

 1. Start the procedure by setting v = 0 and find the initial estimates в^ =

 Ãv)T,52(v))T, where Д10) and a2^ are the initial estimates for ß and a2;

 2. Compute

 яки) = e^ + k[v* (^.x)]"1 u* (gw/x) ,
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 A HETEROSCEDASTIC POLYNOMIAL REGRESSION 275

 where к G (0, 1] is a constant to avoid non-convergence (usually к = 1),

 with

 4 / 1=1

 and

 3. Increment v by. one and repeat the step 2. until convergence.

 It is allowed to assess the asymptotic covariance of the estimators pro-
 duced equating (3.2) and (3.3) to zero by using the sandwich estimator given
 by ¿Г-^Г-1, where

 Гп = I V (в, x) and Лп = i ¿ Utie, X)Ut(êt X)T

 with

 Hence, when an equation error is added to the model, the corrected score
 approach requires numerical (or iterative) procedures, which is not the case
 with the model considered in Zavála (2007). The linear case, where

 yilxi-Afißo + ßiXi,*2),

 has to be treated as a subcase of the general polynomial model. That is,
 there is no analytical solution as in the case of the moments estimators
 (Kulathinal et.al. 2002, Cheng and Riu 2006) and the algorithm described
 above for the polynomial case may also be used for the linear situation.
 Estimates for the asymptotic covariance matrix can also be obtained from
 the general expression described above for the polynomial situation. To the
 best of our knowledge this approach is not in the literature.

 Therefore, for testing Щ : GO = d it allows to use the following Wald
 statistic
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 276 Alexandre G. Patriota and Heleno Bolfarine

 £n = n(GO- d)T (СГ"1ЛПГ-1СТ)~1 (GÕ - d), (3.5)
 which, under (2.7), has asymptotic chi-square distribution with rank-of-G
 degrees of freedom. Naturally, when G is the identity matrix, this conver-
 gence is only valid for testing values when d G 1ZP x 7£+ where 1Z+ is the
 positive real set (excluding zero).

 4 Simulation

 This section presents the results of simulation studies in order to guide us
 regarding the behavior of the statistic (3.5) for small and moderate sample
 sizes. The asymptotic distribution of (3.5) can be used, however, as an
 approximation for testing when the sample size is small or moderate. To
 further study this issue, we designed a Monte Carlo study by generating
 10 000 samples which were used to compute the empirical level and power of
 the statistics at the 5% nominal level. The simulation setting was taken to
 represent the real data set of the WHO MONICA project presented in the
 next section.

 Table 1. Rejection rates for the linear and quadratic models
 (at a 5% nominal level) using the wald statistics (3.5)

 and for п = 40, п - 80 and п = 100.

 Linear relationship Quadratic relationship
 ßo ßi ßi ßi

 n = 40 . 0.6

 -2 0.5831 0.8261 0.9798 -0.15 0.5568 0.5402 0.9990
 0 0.3469 0.0993 0.3171 0.00 0.8897 0.1543 0.9455

 2 0.9862 0.8394 0.5486

 n = 80 0.6

 -2 0.8764 0.9866 0.9999 -0.15 . 0.2917 0.5591 0.9989

 0 0.4386 0.0721 0.3986 0.00 0.8121 0.0904 0.8880

 n = 100 0.6

 -2 0.8779 0.9940 0.9998 -0.15 0.3945 0.7667 0.9999

 0 0.6361 0.0667 0.5870 0.00 0.9731 0.0825 0.9917

 We carry out two types of simulation, namely: linear and quadratic
 relationship between the unobservable variables y' and X{. In both cases,
 we consider that Xí'xí ~ N(xí,kí) where y/K¡ ~ t/(0.5, 1.5) and Yi'x{ ~
 N(yi, A*) where +/X¡ ~ f/(0.5, 4). The (unknown) values of X{ was generated
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 A HETEROSCEDASTIC POLYNOMIAL REGRESSION 277

 from the normal distribution with mean fix = -2 and variance a' = 4. The
 approach presented in this paper is distribution free concerning xi and the
 results, for the corrected score approach, are similar whatever be the values
 of X{. As for the linear relationship, we consider ($o, ßi) on a neighborhood
 of (0, 1). For the quadratic relationship, we consider ßo = 0 and (/3i,/?2) on
 a neighborhood of (1, 0).

 Table 1 presents the results for a linear relationship, which considers the
 following model: yi'xi ~ Äf(ßo + ß'Xi, 10) and also depicts the results of a
 quadratic relationship that considers the following model: y¿|x¿ ~ N{ß'Xi +
 /?2#?,10). It can be seen from Table 1 that the empirical nominal levels
 (middle cells in bold) get closer to the nominal level (5%) as n increases and
 for n = 100 the results are quite satisfactory.

 5 Applications

 5.1 Data set of the WHO MONICA project The WHO MONICA
 project is a monitoring study of cardiovascular diseases, for more informa-
 tion go to http://www.ktl.fi/monica which provides a full description of the
 project. The data analyzed in this section are trends of the risk scores for
 women (n = 36) and for men (n = 38) in each population. According to
 Kulathinal et. al. (2002), the risk score was defined as a linear combina-
 tion of smoking status, systolic blood pressure, body mass index and total
 cholesterol level. Furthermore, a proportional hazards models was taken in
 order to derive its coefficients and the sampling errors of the trend estimates
 were considered as measurement errors. Therefore, it is possible to assess
 the variances in each experimental unit. Additional information about data
 sets can be found in Kuulasmaa et. al. (2000). The data set has been pre-
 viously analyzed in the literature (Kulathinal et. al. 2002, de Castro 2008,
 Kuulasmaa et. al. 2000), where a linear model has been considered. We
 consider now the possibility of fitting ä quadratic model to this data set,
 that is,

 Vi'xi ~ Af(ß0 + ßixi + foxl a2). (5.1)

 Table 2 shows the estimates (and the standard-errors) of the model
 parameters in (13). Figure 1 presents the scatter plot with a estimated
 quadratic and linear regressions for both men and women data sets.
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 Table 2. Estimates (standard-error) of the model parameters
 (13) using Monica data for men and women

 Men Women

 ßi 0.4705 (0.2381) 0.4857 (0.1901) 0.6434 (0.3376) 1.2133 (0.4050)
 & - 0.1278 (0.0477) - 0.2047 (0.0975)
 a2 4.8746 (1.4308) 4.4000 (1.6195) | 11.1092 (5.0150) 10.0241 (5.0665)

 Figure 1: Quadratic (full line) and Linear (dash-dot line) regressions using MONICA
 data for men (a) and women (b).

 5.2. Data set of the Chandra X-ray observatory center. The Chandra
 X-ray observatory is the NASA's flagship mission for X-ray astronomy. One
 of the most studied astronomical problem is to investigate how the "X-
 ray photon index" emission depends on the Eddington ratio of quasars (see
 Kelly et. al. 2008, for details). There are many problems regarding the data
 collection such as sample selection and censoring, as discussed in Kelly (2007)
 and Akritas and Bershady (1996). The data set analyzed in this paper has no
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 A HETEROSCEDASTIC POLYNOMIAL REGRESSION 279

 censored observations, however, it is subject to sample selection as reported
 in Kelly (2007). We modeled this data set disregarding the bias produced
 by the data collection just to show the applicability of our approach. We are
 engaged in future researches to take into account these sample peculiarities in

 a polynomial relationship relating the response variable (X-ray photon index)
 and the covariate (base- 10 logarithm of the Eddington ratio of quasars).

 The Eddington ratio of quasars is a function of the black hole mass,
 which is necessary to estimate. Therefore, the covariate is subject to error.
 In addition, it is allowed to assess the precision related to this measure in
 each experimental unit (defining heteroscedastic errors). The "X-ray photon
 index" and its precision was obtained from Chandra observatory measure-
 ments. The equation error (or intrinsic scatter in the astronomy jargon) is
 expected for this problem. For a full information, see Kelly et. al. (2008).

 Kelly et. al. (2008) found that the relationship between the response
 variable, у и and the covariate, x¿, is not linear. Figure 2 shows the scatter
 plot (with the error bars) of the observed X-ray photon index and the ob-
 served base-10 logarithm of the Eddington ratio of quasars (n = 153), which
 suggests a quadratic relationship. However, the algorithm for a quadratic
 model diverges from this data set which indicates false relationship or larger
 measurement error in the surrogate variable (our simulation study shows the
 larger the measurement error the greater the chance for non-convergence.
 Besides, we found that when a polynomial model of order p is true and a
 polynomial model of order q < p is fitted, non-convergence might happen).
 Also, non-convergence occurs with the linear regression. Then, we consider
 a cubic model. The only configuration that presents statistic significance is
 considering that ßo = /?2 = 0. That is, the model formulated for this data
 set is given by

 Vila* - N{ßiXi + ß3xl <72), (5.2)

 Table 3. Estimates (standard-error) of model parameters
 (14) USING Chandra DATA

 /?з 0.3415 (0.2156)
 a2 0.1156 (0.0293)
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 280 Alexandre G. Patriota and Heleno ВоЦ arine

 Table 3 gives the estimates and their standard-error (in parenthesis) for
 the parameters of model (14). Figure 2 presents the scatter plot with a
 estimated cubic regression for the Chandra data set.

 Figure 2: Cubic regression using Chandra observations.

 6 Conclusions and Remarks

 We studied a heteroscedastic polynomial with measurement error model
 in both axes, allowing to model partial polynomial regressions. Furthermore,
 it is possible to test general linear hypothesis using a Wald statistic with an
 asymptotic (central) chisquare distribution. We also modeled a quadratic
 regression with measurement error in both axes to the real dataset of the
 WHO MONICA project and a cubic partial regression model to the Chandra
 observations showing the usefulness of our approach. We remark that the
 regressions fitted in this paper are valid only for the observed range of the
 covariate, extrapolations of it might not be reliable. Moreover, the model
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 A HETEROSCEDASTIC POLYNOMIAL REGRESSION 281

 studied here can be used as an approximation for complex functions in order
 to fitting data sets more accurately than the linear regression.
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