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Abstract

With epidemiological and astronomical data, it is common to observe vari-
ances that vary with the observations. Further, values for those variances
typically are available from follow-up studies or replications. This paper
deals with consistent estimation and hypothesis testing in a heteroscedas-
tic polynomial model with measurement error in both axes and an equation
error. For obtaining consistent estimators and consistently assessing their
asymptotic variances, we embrace the corrected score apprcach. Further-
more, we applied the theoretical results in two real data sets: the WHO
MONICA project data set on cardiovascular diseases and their risk factors
and the Chandra observatory data set. We also simulate the rejection rates
for the Wald statistic in order to study test size and power for small and
moderate samples, indicating that the test behaves satisfactorily in those
situations.

AMS (2000) subject classification. Primary 62J99; secondary 34K25.
Keywords and phrases. Polynomial regression, measurement error, corrected
score, asymptotic theory

1 Introduction

Recently, heteroscedastic linear errors-in-variables models have been pro-
posed to fit epidemiological Kulathinal et. al. (2002), Cheng and Riu (2006),
de Castro et. al. 2008) and astronomical Akritas and Béershady (1996), Kelly
(2007), Kelly et. al. (2008) data sets. In Kulathinal et. al. (2002) was pro-
posed a simple EM (Expectation and Maximization) algorithm to find the
maximum likelihood (ML) estimators of a linear heteroscedastic structural
errors-in-variables model. The authors considered that the linear equation
is subject to error and applied this model to a real dataset of the WHO
MONICA project on cardiovascular disease and its risk factors. For this
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data set, it was found a significant variance for the equation error, which
makes such more complex models useful in fitting real data sets. In the
same way, de Castro et. al. (2008) derived the Fisher information for the
parameters which makes it possible to test conjointly the intercept and in-
clination parameters using Wald type statistics. They also proposed testing
statistics based on the likelihood ratio and score statistics. In a previous
study, Akritas and Bershady (1996) has entertained a similar model (with
known covariance between the errors) and applied it to an astronomical data
set. The authors had proposed a method-of-moment to estimate the model
parameters and gave an approximation for their asymptotic covariance ma-
trix. Patriota et. al. (2009) computed the exact asymptotic distribution
for the method-of-moments estimators considering the same linear model
presented by Kulathinal et al (2002). Motivated by these applications, we
assume a heteroscedastic polynomial model with error in both axes adding
an equation error, which seems not available in literature. Then, using the
data sets produced by the WHO MONICA project and by the Chandra X-
ray observatory, we found evidence of a quadratic and cubic relationship,
respectively, relating the response variable and the covariate (both inacces-
sible directly). It is also the case that the model presented in this paper
extends the model considered in Zavala et.al. (2007), where a heteroscedas-
tic polynomial nonequation error model is considered. The approach is based
on the corrected score methodology, which when feasible, yields consistent
and asymptotically normal estimators for the model parameters. Moreover,
consistent estimators for the asymptotic variances can also be obtained. In
this paper, we also consider a “flexible” polynomial model where is possi-
ble to fit partial polynomial relationships between y; (unobservable response
variable) and z; (unobservable covariate). That is, in a third degree polyno-
mial, for example, coefficient for 2 may be taken as zero.

Most of the literature deal with the homoscedastic case and error in just
one of the axis. See, for example, Chan and Mak (1985), Fuller (1987),
Cheng and Schneeweis (1998) and Kukush (2005). An exception is Zavala
(2007) where a heteroscedastic polynomial errors-in-variables model without
equation error is considered.

This article is organized as follows. Section 2 gives a way to fit partial
polynomial models, specifically, in a heteroscedastic polynomial errors-in-
variables model without equation error the same model considered by Zavala
(2007). Section 3 considers a more general model which regards an equation
error in the model presented in Section 2. Section 4 presents a simulation
study where it is shown that the proposed approach yields Wald tests with
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A HETEROSCEDASTIC POLYNOMIAL REGRESSION 269

empirical levels close to the nominal significance levels for small and moder-
ate samples. Section 5 deals with applications to the WHO MONICA and
Chandra data sets. Section 6 ends the paper with conclusions and remarks.

2 Partial Polynomial Errors-in-Variables Models Without
Equation Error

In this section we present a concise implementation of partial polynomial
models with no equation error to the model considered in Zavala et. al.
(2007) where it is specified that:

i = yite,
i 5 + Ui,

-

(2.1)

-

with yi=,30+,31.’12i+'...,,3p i and

()~ (G} %))

with )\; and &; known for ¢ = 1,...,n. The authors provided consistent
estimators of the model parameters and gave consistent estimates for their
asymptotic covariance matrix. However, if some coefficients in the polyno-
mial equation are equal to zero, then we have to derive the estimators and
consistent estimators for the asymptotic covariance matrix for each case. As
an alternative, we are going to present a general way to fit partial polyno-
mial models which have some of the parameters equal to zero. For that,
consider initially the equation y; = apfo + a151zi + ... ,ap,[i’pa:f which, in
matrix notation, can be written as

v = BrAZ; (2.2)
where
Bo a9 0 0 ... 0] 1
ﬂl 0 ai o ... 0 x;
Br=| P2 |, A=|0 0 a ... O and #; = z2
Bp | 0 0 0 ... ap | zf

This content downloaded from
143.107.45.1 on Thu, 31 Jul 2025 23:33:16 UTC
All use subject to https://about.jstor.org/terms



270 Alezandre G. Patriota and Heleno Bolfarine

The elements of the matrix A are known in such way that, a; = 0 if
B; = 0 and 1, otherwise, for all j =0, 1,...,p. The model studied by Zavala
et. al. (2007) considers that a; =1 for all j =0,...,p

To consistently estimate model (2.1) parameters considering (2.2) we con-
sider the corrected score approach (for details, see Nakamura 1990) which
depends on a pseudo log-likelihood function £*(0, X) = Y7 ; £*(6, X) sat-
isfying

E(¢"(6, X)|Y,x) = 4(0, ),

where £(0, x) is the (unobserved) log-likelihood function of (Y, ) and £*(6, X)
is called the corrected log-likelihood function which depends only on the ob-
servable data (Y, X), where Y = (¥1,...,Y,) and X = (X3,...,X,) and
z = (z1,...,Z,). Note that we omit the response variable Y in the expres-
sions £(.) and £*(.) to simplify notation. For the nonequation error model,
the unknown parameter 6 is the unknown 3. We can then define the follow-
ing quantities

. = 00:(6, X . 0% (8, X
U (0,X)=Z% and I*(0,X) = Z 80(6“)
=1

and suppose that §n is such that U* (§n,X ) = 0, which is the corrected
score estimator of 8. Under the regularity conditions stated in Gimenez
and Bolfarine (1997) the corrected score estimator, 6,, is consistent and
asymptotically normal that is, ﬁ(@n - 0) 2N (0,92,), where Q, is a
sandwich type matrix which can be consistently estimated by

Q, = ;Anl(on)rn(en)An l(on):

where

An(O) == S I8, X) and Tu(6) = %iU{‘(O,X)U,-*(O,X)T,

i=1 =1
with U}(0, X) = ﬂ",(;%& and I} (0, X) = a;e;é%x' .

In order to apply the Nakamura’s approach, we start by writing the
(unobserved) log-likelihood function for model (2.1) which is given by
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«g —li“l Y; -
F’ 2 p A y@

x B ZY”‘—EB AZ(“" )Aﬁp

Hence, for the purpose of implementing the corrected score approach, we
have to find the quantities ¢;x such that E(t;x|z;) = ¥, k=1,...,2pin
which, under normality, we have that (see Zavala 2007)

tio=1, tin=Xi and 1 (1) = Xitij — JKiti 1)

j=1,...,2p. Moreover, defining

[ 1 ti1 ti2 tip 1
ti1 ti2 ti3 - ti,(p+1)
H;= |tz t3 s . figpeo) |,
L tip tip+1) lipr2) --- ti2p

n n
h;=Y; (1 tix tig ... ti,p)T, T, = ZHi/)\i and F, = Zhi//\i,
i= ) =1

it can be verified, by showing that E[¢*(8Br, X)|z] = £(8F,x) holds, that
the corrected log-likelihood function for the observed data (Y, X) is given
by

1
f*(ﬁp, X) X IB}‘—AFn - iﬁ;ATnAﬁF

Notice that we can use the decomposition A = AAT, in such a way that
B = ATBr is the vector which has all components different from zero, so
that the corrected log-likelihood function for B can be written as

£(8,X) « BT En — 57T, (23)
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272 Alezandre G. Patriota and Heleno Bolfarine

where F, = AF, and T, = ATT,A. Therefore, differentiating the cor-
rected log-likelihood function (2.3) we have the corrected score function and
it is given by

or (B, X)

U*(8,X) = =2

=F,-T,8 (2.4)

Equating (2 4) to zero, we assess consistent estimators for 3 by solving
the equation. Tn,Bn = F,, leading to

,Bn = —lF (2.5)

We can estimate the asymptotic covariance matrix of the estimator ﬁn
using the asymptotic distribution for the corrected score estimator (see
Gimenez and Bolfarine 1997) given by

T, AT, (2.6)
where A, = Y0, U(Bn, X)U(Bn, X)T and U (B, X) =
L (hi — I’Lﬂn) with H; = ATH;A and h; = ATh.

In addition, for testing Hy : GB = d we may use the Wald statistic given
by.

n = (GBa— )T (T AT'GT) " (GBa —d).

Under the assumptions stated in Zavala (2007), that is, there exists a
v > 0 such that

lim Z 22|+ =0 and (2.7

nl+ /2

0 < hm lnf Z(z —_ x)2(2p 1) < hm Sup Z(w —_ x)2(2p"1) < 00
’—1 1—1

then &, — x2%(g), where g = rank(G) and «L» means convergence in
distribution.
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For the partial cubic model y; = By + Biz; + ,83:1:;3 we have that ag = 1,
a; =1, a3 =0 and ag = 1. The matrix A is as follows

S o o
o o O
— O O O

and a consistent estimator for 8 = (ﬁo, B1,B)7 is computed by (2.5) and its
asymptotic covariance by (2.6) where

n g 1t ti,3 . nq Y;
=Y |t tiz tig and  F,=)_ | Yitia
i= tiz tia tig =170\ Yiti3

3 Partial Polynomial Errors-in-Variables Models with Equation
Error

In this paper, we also consider that

yilzi ~ N(BrAi;; 0°), (3.1)
i.e., the equation is subject to error. This means that the true variables

y; and x; are not perfectly related (Cheng and Riu 2006). Therefore, the
log-likelihood function considering (3.1) is given by

L(Op,x) ——Zlogn——z (Yi — w:)°

zl'

Y2
o ——Zlog'r, — — 4+
1

; +ﬁFAZ L —ﬁEAZ(

where 7; = \; + 0% and 6 = (B},02) 7. Define

)AﬁF,

Tn(cr2) = ZH /i Fo(0?) = Zhi/n, T (0?) = ZH,-/T,-
i=1 i=1

i=1
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e n .
and  Fy(o?) = Zhi/ﬂ',

where H;, h;, H; and I'r.i are the same quantities defined in Section 2. Then,
the corrected log-likelihood function for the observed data (Y, X) is given
by

n .. n o
Y T hz 1 T Hoi
B Z — 3P > B,

=1 i=1 i=1

(0, X) x ——Zlogn 2

where @ = (B7,02)". Differentiating the corrected log-likelihood function
we have the corrected score functions which are given by

U (p,x) = LCX) _ 5 {ﬂ} 62
i=1 t
and "
- LB A (s 1y

where ¢; = Y2 28" h;+ 8" H;3. Equatmg (3.2) and (3.3) to zero we assess
consistent estimators for 3 and o2 that are obtained solving the following
equations

PR "1 L
To@)Bn = Fo(6%) and Y ==, (3.4)

where 7; = \; + 02 and ¢ = Yiz - 2:3:{7&,- + ,[’i;rﬁiﬁn. Equations in (3.4)
do not have analytical solutions, though we can find the estimates using the
following numerical procedure:

1. Start the procedure by setting v = 0 and find the initial estimates o™ =
(,B(v) ,52)T | where ﬁ(o) and 520 are the initial estimates for 8 and o?;

2. Compute

v+ — g 4 [V* (ﬁv),x)] e (§(v),'x) :

This content downloaded from
143.107.45.1 on Thu, 31 Jul 2025 23:33:16 UTC
All use subject to https://about.jstor.org/terms



A HETEROSCEDASTIC POLYNOMIAL REGRESSION 275

where k € (0, 1] is a constant to avoid non-convergence (usually k = 1),

v (5.%) - Zﬁ(awwn—[%g%Léﬁ]

with

*'0,2 n
L(o®) =E <————3U éaz’x)) = %Zurf;

i=1

and
3. Increment v by.one and repeat the step 2. until convergence.

It is allowed to assess the asymptotic covariance of the estimators pro-
duced equating (3.2) and (3.3) to zero by using the sandwich estimator given
by lI“IA 75!, where

1 - ~ 1 i x(n 7 T
I‘nzﬁv (O,X) and An"“‘E;Ui (O?X)Ui (O’X)

with

_ 1
57 T 7

_ L(hs— Hif,
U 0,X) = ( £ (; % i) ) :

Hence, when an equation error is added to the model, the corrected score
approach requires numerical (or iterative) procedures, which is not the case

with the model considered in Zavala (2007). The linear case, where

y‘ilxi ~ N(IBO + ﬁlxis 02),

has to be treated as a subcase of the general polynomial model. That is,
there is no analytical solution as in the case of the moments estimators
(Kulathinal et.al. 2002, Cheng and Riu 2006) and the algorithm described
above for the polynomial case may also be used for the linear situation.
Estimates for the asymptotic covariance matrix can also be obtained from
the general expression described above for the polynomial situation. To the
best of our knowledge this approach is not in the literature.

Therefore, for testing Hy : GO = d it allows to use the following Wald
statistic
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~ -1 ~
£ =n(GO—d)T (GI‘;IAnI‘;lGT) (GO - d), (3.5)

which, under (2.7), has asymptotic chi-square distribution with rank-of-G
degrees of freedom. Naturally, when G is the identity matrix, this conver-
gence is only valid for testing values when d € R? x R4 where R, is the
positive real set (excluding zero).

4 Simulation

This section presents the results of simulation studies in order to guide us
regarding the behavior of the statistic (3.5) for small and moderate sample
sizes. The asymptotic distribution of (3.5) can be used, however, as an
approximation for testing when the sample size is small or moderate. To
further study this issue, we designed a Monte Carlo study by generating
10 000 samples which were used to compute the empirical level and power of
the statistics at the 5% nominal level. The simulation setting was taken to
represent the real data set of the WHO MONICA project presented in the
next section. :

TABLE 1. REJECTION RATES FOR THE LINEAR AND QUADRATIC MODELS
(AT A 5% NOMINAL LEVEL) USING THE WALD STATISTICS (3.5)
AND FOR n = 40, n = 80 AND n = 100.

" Linear relationship Quadratic relationship

Bo B B2 B1

n=40 . 0.6 1 1.4 n =40 0.6 1 1.4
-2 0.5831 0.8261  0.9798 -0.15 0.5568 0.5402 0.9990
0 0.3469 0.0993 0.3171 0.00 0.8897 0.1543 0.9455
2 09862 0.8394 0.5486 0.15 0.9918 0.4964 0.6014

n =80 0.6 1 14 n =280 0.6 1 1.4
-2 0.8764 09866 0.9999 -0.15. 0.2917 - 0.5591 0.9989
0 0438 0.0721 0.3986 0.00 0.8121 0.0904 0.8880
2 1.0000 0.9861 0.8443 0.15 0.9936 0.4999 0.3557

n = 100 0.6 1 1.4 n = 100 0.6 1 1.4
-2 0.8779 0.9940 0.9998 -0.15 0.3945 0.7667  0.9999
0 0.6361 0.0667 0.5870 0.00 0.9731 0.0825 0.9917
2 1.0000 0.9950 0.8508 0.15 1.0000 0.7300 0.4964

We carry out two types of simulation, namely: linear and quadratic
relationship between the unobservable variables y; and z;. In both cases,
we consider that Xj|z; ~ N (=, k;) where \/k; ~ U(0.5,1.5) and Y;|z; ~
N (yi, Ai) where +/A; ~ U(0.5,4). The (unknown) values of x; was generated
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A HETEROSCEDASTIC POLYNOMIAL REGRESSION 277

from the normal distribution with mean p, = —2 and variance 02 = 4. The
approach presented in this paper is distribution free concerning z; and the
results, for the corrected score approach, are similar whatever be the values
of z;. As for the linear relationship, we consider (fp, 1) on a neighborhood
of (0,1). For the quadratic relationship, we consider By = 0 and (5, 52) on
a neighborhood of (1,0).

Table 1 presents the results for a linear relationship, which considers the
following model: y;|z; ~ N(Bp + B1zi,10) and also depicts the results of a
quadratic relationship that considers the following model: y;|z; ~ N (B1z; +
,sz?, 10). It can be seen from Table 1 that the empirical nominal levels
(middle cells in bold) get closer to the nominal level (5%) as n increases and
for n = 100 the results are quite satisfactory.

5 Applications

5.1 Data set of the WHO MONICA project. The WHO MONICA
project is a monitoring study of cardiovascular diseases, for more informa-
tion go to http://www.ktl.fi/monica which provides a full description of the
project. The data analyzed in this section are trends of the risk scores for
women (n = 36) and for men (n = 38) in each population. According to
Kulathinal et. al. (2002), the risk score was defined as a linear combina-
tion of smoking status, systolic blood pressure, body mass index and total
cholesterol level. Furthermore, a proportional hazards models was taken in
order to derive its coefficients and the sampling errors of the trend estimates
were considered as measurement errors. Therefore, it is possible to assess
the variances in each experimental unit. Additional information about data
sets can be found in Kuulasmaa et. al. (2000). The data set has been pre-
viously analyzed in the literature (Kulathinal et. al. 2002, de Castro 2008,
Kuulasmaa et. al. 2000), where a linear model has been considered. We
consider now the possibility of fitting a quadratic model to this data set,
that is,

yilzi ~ N (Bo + Przi + Bz, 0°). (5.1)

Table 2 shows the estimates (and the standard-errors) of the model
parameters in (13). Figure 1 presents the scatter plot with a estimated
quadratic and linear regressions for both men and women data sets.
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TABLE 2. ESTIMATES (STANDARD-ERROR) OF THE MODEL PARAMETERS
(13) USING MONICA DATA FOR MEN AND WOMEN

Men Women
Linear Quadratic Linear Quadratic
Bo —2.0888 (0.4352) —2.7183 (0.5095) | —0.0705 (0.8602) —0.5811 (0.9123)
B1 0.4705 (0.2381) 0.4857 (0.1901) 0.6434 (0.3376) 1.2133 (0.4050)
- 0.1278 (0.0477) - 0.2047 (0.0975)
o®  4.8746 (1.4308) 4.4000 (1.6195) 11.1092 (5.0150)  10.0241 (5.0665)

9
e ]
' T T T T T T
-6 -4 -2 0 2 4 6
X
(a) Men
e 4
w - - .
1
s o _ .
----- -
O - TP YT siss
7 I 2 o iy R EREE e e ettt
o | ..‘..;.---.o---hlv- ' '
1
T T — T T T T
=5 -4 -2 0 2 4
X
(b) Women

Figure 1: Quadratic (full line) and Linear (dash-dot line) regressions using MONICA
data for men (a) and women (b).

5.2. Data set of the Chandra X-ray observatory center. The Chandra
X-ray observatory is the NASA’s flagship mission for X-ray astronomy. One
of the most studied astronomical problem is to investigate how the “X-
ray photon index” emission depends on the Eddington ratio of quasars (see
Kelly et. al. 2008, for details). There are many problems regarding the data
collection such as sample selection and censoring, as discussed in Kelly (2007)
and Akritas and Bershady (1996). The data set analyzed in this paper has no
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A HETEROSCEDASTIC POLYNOMIAL REGRESSION 279

censored observations, however, it is subject to sample selection as reported
in Kelly (2007). We modeled this data set disregarding the bias produced
by the data collection just to show the applicability of our approach. We are
engaged in future researches to take into account these sample peculiarities in
a polynomial relationship relating the response variable (X-ray photon index)
and the covariate (base-10 logarithm of the Eddington ratio of quasars).

The Eddington ratio of quasars is a function of the black hole mass,
which is necessary to estimate. Therefore, the covariate is subject to error.
In addition, it is allowed to assess the precision related to this measure in
each experimental unit (defining heteroscedastic errors). The “X-ray photon
index” and its precision was obtained from Chandra observatory measure-
ments. The equation error (or intrinsic scatter in the astronomy jargon) is
expected for this problem. For a full information, see Kelly et. al. (2008).

Kelly et. al. (2008) found that the relationship between the response
variable, ;, and the covariate, z;, is not linear. Figure 2 shows the scatter
plot (with the error bars) of the observed X-ray photon index and the ob-
served base-10 logarithm of the Eddington ratio of quasars (n = 153), which
suggests a quadratic relationship. However, the algorithm for a quadratic
model diverges from this data set which indicates false relationship or larger
measurement error in the surrogate variable (our simulation study shows the
larger the measurement error the greater the chance for non-convergence.
Besides, we found that when a polynomial model of order p is true and a
polynomial model of order ¢ < p is fitted, non-convergence might happen).
Also, non-convergence occurs with the linear regression. Then, we consider
a cubic model. The only configuration that presents statistic significance is
considering that Gy = B2 = 0. That is, the model formulated for this data
set is given by

yilz; ~ N (B1z; + B3z, 0?), (5.2)

TABLE 3. ESTIMATES (STANDARD-ERROR) OF MODEL PARAMETERS
(14) usING Chandra DATA

Estimates
Br  -2.1202 (0.3944)
B3 0.3415 (0.2156)
o®  0.1156 (0.0293)
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280 Alezandre G. Patriota and Heleno Bolfarine

Table 3 gives the estimates and their standard-error (in parenthesis) for
the parameters of model (14). Figure 2 presents the scatter plot with a
estimated cubic regression for the Chandra data set.

logsoER

Figure 2: Cubic regression using Chandra observations.

6 Conclusions and Remarks

We studied a heteroscedastic polynomial with measurement error model
in both axes, allowing to model partial polynomial regressions. Furthermore,
it is possible to test general linear hypothesis using a Wald statistic with an
asymptotic (central) chisquare distribution. We also modeled a quadratic
regression with measurement error in both axes to the real dataset of the
WHO MONICA project and a cubic partial regression model to the Chandra
observations showing the usefulness of our approach. We remark that the
regressions fitted in this paper are valid only for the observed range of the
covariate, extrapolations of it might not be reliable. Moreover, the model

This content downloaded from
143.107.45.1 on Thu, 31 Jul 2025 23:33:16 UTC
All use subject to https://about.jstor.org/terms



A HETEROSCEDASTIC POLYNOMIAL REGRESSION 281

studied here can be used as an approximation for complex functions in order
to fitting data sets more accurately than the linear regression.
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