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We study the behavior of the fermion propagator in an external time-dependent potential
in 0+ 1 dimension. We show that, when the potential has up to quadratic terms in time,
the propagator can be expressed in terms of generalized Airy functions (or standard
Airy functions depending on the exact time dependence). We study various properties
of these new generalized functions which reduce to the standard Airy functions in a
particular limit.
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1. Introduction

It is well known that a linear potential between quarks in quantum chromodynamics
(QCD) leads to confinement of quarks. The time-independent radial equation of a
three-dimensional Schrédinger equation (for ¢ = 0) or that of a one-dimensional
equation, with a linear potential, can be written as (with different boundary con-
ditions for the two cases)
d2
] + (En —arr)|u(r) =0, (1)
where a; is a real constant denoting the strength of the linear potential. With a
suitable change of variables, this equation can be rewritten as
d?u(F)
dr?

—7u(f) =0, (2)
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which is the Airy equation.!>? This is how the Airy functions enter into quantum
mechanics and to the physical question of quark confinement. It also shows up in
many other branches of physics.

Phenomenologically, the non-relativistic (static) potential used in the study of
quarkonium in QCD is conventionally taken to be of the form?

Vir)= —% +air, (3)

where « is the fine structure constant. The first term, on the right, represents
the standard tree level Coulomb potential between a quark and an antiquark
whereas the second linear term represents the confining potential. If we ignore
the Coulomb potential (or consider the large distance behavior), the exact solu-
tions of the Schrodinger equation will lead to Airy functions. More recently, it has
been shown* that higher-order calculations, taking into account the cancellation of
leading-order renormalons and other non-perturbative effects, lead to a generaliza-
tion of the potential of the form

o
Vr)= - +ag + arr + asr?, (4)

where the constants ag, as are real constants and have nonzero contributions be-
ginning at two loops. Even if we ignore the Coulomb potential, the exact solutions
in this case would not correspond to Airy functions in general.

All of this discussion is within the context of the second-order time-independent
Schrédinger equation. In this paper, we study the solutions for a one-dimensional
fermion interacting with a time-dependent external potential. More specifically, we
study the behavior of the fermion propagator in an external potential. Motivated
by the QCD results (4), we choose the form of the external potential to be

A(f;) =ag + ait + a2t2 5 (5)

where ag, a1, as are real constants. We show that in this first-order system of equa-
tion (to be discussed below), depending on the values of constant a;, the propagator
is described either by Airy functions or by generalized Airy functions. In particular,
if a; = 0 (absence of a linear term in ¢ in the potential), the propagator is described
in terms of a linear combination of the Airy and the Scorer functions! which should
be contrasted with the time-independent (second-order) case. On the other hand,
if a; # 0, the propagator is described in terms of generalized Airy functions which
reduce to Airy functions in an appropriate limit. These generalized Airy functions
are new and we study their properties systematically. We note here that, in view of
the importance of the Airy functions in physics as well as in mathematics, various
other generalizations of these functions have also been studied previously.>™

The paper is organized as follows. In Sec. 2, we study the fermion propagator
systematically and point out the physical meaning of the constants in (5). We
show how generalized Airy functions arise when a; # 0 and how these generalized
functions reduce to the conventional Airy functions when a; = 0. In Sec. 3, we
discuss, in detail, various properties of these generalized functions and how they
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reduce to the standard results in an appropriate limit. We present a brief conclusion
in Sec. 4. In the Appendix, we derive the propagator by solving the differential
equation in the Fourier transformed space and compare it with the coordinate
space calculations.

2. Fermion Propagator

In 0 + 1 dimension, the fermion propagator in a time-dependent external field,
satisfies the first-order differential equation

(10, —m — gA(t))S(t) = ié(t) , (6)

where m is the mass of the fermion, g is the coupling constant and A(t) is a time-
dependent real external potential which can, in principle, be the gauge potential
(in that case, g = €). In 0 + 1 dimension, the Feynman propagator coincides with
the retarded propagator. Therefore, if we assume that the potential switches on at
t = 0, the unique (Feynman/retarded) solution of Eq. (6) can be written as

S(t) _ e(t)efimtefig Jo dt’ A(t") , (7)

where 0(¢) denotes the step function.

In principle, the second exponential factor in (7) with time integration should
involve a time-ordered product. However, since A(t) denotes a classical external
potential, time ordering is not relevant. Furthermore, we note that, in 0 + 1 di-
mension, the fermion propagator coincides with the time evolution operator for the
time-dependent Hermitian Hamiltonian H(¢) = m + gA(t), namely, we can also
write S(t) = U(t) = 6(t)e=Jo %" H() Tt follows from this that formally (time
evolution is unitary)

S(t)ST(t) =1 = ST(t)S(t), (8)

namely, the fermion propagator, in coordinate space, is formally unitary.
The propagator, in the Fourier transformed space, can be obtained to be

S(p) = /OO dt e S(t)

_ A dt 6z'(pfm)tefig JSdt" At ’ (9)

which satisfies the differential equation (in the Fourier transformed space)

(p—m—gA<—i;;>)5(p) =1i. (10)

If g =0 (or A(t) = 0), namely, if there is no interaction with an external
potential, (9) (or (10)) yields the free fermion propagator
1

So(p) = (11)

_p—m’
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where the Feynman ie prescription is understood and is necessary for the conver-
gence of the integral in (9). (Throughout the paper, we will suppress the ie term
for simplicity.)

The complete fermion propagator, in the Fourier transformed (energy) space,
for the theory can be determined either by evaluating the integral in (9) or by
solving the differential equation in (10). In this section, we will determine S(p)
by evaluating the integral in (9). In the Appendix, we will show that this result
coincides with the one obtained by solving (10). Of course, the propagator cannot
be explicitly determined in a closed form for an arbitrary potential. Therefore,
motivated by the studies in QCD, we will choose the potential to be of the form

(see (5))
A(t) = Qo —+ (th —+ [12t2 y (12)
where ag, a1, as are real constants.
We note that, in this case, we can determine a superpotential W (¢) such that
dW (t)
t) = ,
(t) g

(13)
a as .
W(t) = C + aot + Elﬁ + 32153,
where C'is a constant of integration. In terms of the superpotential, we can rewrite
(9) as

S(p) = / % gt eilo-myt—igW(D-W(0) (14)

0

‘We note here for future use that
W (t) — W(0) = agt + %tQ + %H : (15)

where the arbitrary constant has canceled out.

In the next three subsections, we evaluate S(p) from (14) and (15) systematically
and comment on the physical meaning of the three terms in the potential. In the
process we will discover how generalized Airy functions show up in this study.

2.1. A(t) = ao
In this case, we have a; = az = 0 so that (15) yields
W (t) — W(0) = agt
and (14) leads to
i i

S(p) = = , 16
1) = o = (16)

where we have identified
M =m+ gagp. (17)
Thus, for a constant external potential, the fermion propagator continues to be a

free propagator, but with a shifted mass M.
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2.2. A(t) = ao + axt
In this case, we have as = 0 so that (15) yields
ai o
W(t) = W(0) = aot + 5t
and (14) leads to

S(p) :/ dt P (18)
0

Completing the square in the exponent in the integrand (and redefining variables),
we obtain

gay M—p

L(p M)? 2 V 5t ga1 2
S(p) = Zgal / dte —/ dte
7/9(11 0

T i(p—M)? 7
= 2ga 1—-0 M — 19
Froae [ ( o p>>], (19)

(z) = % /0 Cdte (20)

denotes the probability function or the error function.
For small values of gay, the argument of the probability function in (19) becomes

where

large and the asymptotic expansion!®
2 2
Z—00 1 e™® 1 e®
Pr) 221 — — 21
(z) N AR A (21)
leads to
) 1gay
S(p) — (1++~-->
p—M (p—M)?
) 1
- _ _igay
p—M1-— s
)
= e (22)
p—M— 5

where we have assumed ga; < (p— M)?2. Therefore, to linear order in gay, the pole
of the propagator can be determined to be at (we assume ga; > 0)

p=p=M=* \figa, = Mi(l+),/%. (23)

While both the signs of the square root in (23) are mathematically allowed, we
choose the negative sign that leads to a retarded propagator (which is what we are
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studying here). (The positive sign would lead to an advanced propagator.) In this
case, we can write the pole of the propagator to be at

p=Hp=pr—iur, (24)

R L e

The presence of an imaginary part in the pole denotes a Breit—Wigner form of
the solution which represents a decay in the amplitude because of (scattering)
interaction with the external potential.

where

2.3. A(t) = ap + a1t + axt?

In this case, we have (see (15))
Wme@:%H%#+%ﬁ
and (14) leads to

oo . iga k 3a 2
S(p):/ dtez(P*M)t*%(t3+ﬁt). (26)
0

Completing the cube in the exponent of the integrand (and redefining variables),
this leads to

. 2 2 .
-3 7]W+9;4> > ( 7M+9;4>t7ﬂt3
s(p) = o B (i [l (27)

ay
Zas

If we assume that gas > 0 (we will comment on the case gas < 0 later) and
define

2
1 p—M+g,
u = (gaz)3t, T — x=—(142)7 (28)
2(gaz)3s (gaz)3s
so that
- M
s =272 (29)
(gaz)s
we can write the propagator in (27) as
ret (4255
Sp) = ——1Fy(2), (30)
(gaz)s
where we have identified
1 e —i(ux ud
a@:f/ due (vt 5) (31)
T Jq
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The study of the propagator is, therefore, equivalent to the study of the function
F,(z) which we will do in the rest of the paper. We note that the integral in (31)
is reminiscent of the Airy function. In fact, for real ¢, if we define

) 1 [ u?
Aig(z) = — du cos | uz + 3)= Re Fy(z),
q

™

. I R u®
Gig(z) = f/ dusin | uz + — | = —Im F,(x),
T Jq 3
we can write
Fy(z) = Aig(z) — iGig(x) . (33)

We call Aij(x) and Gig(x) the generalized Airy and Scorer functions, since in
the limit ¢ = 0, they reduce to the Airy and the Scorer functions (we note here
parenthetically that ¢ = 0 corresponds to a; = 0 for g # 0)*

) 1 [ u? ,
Aig(z) = ;/ ducos | ux + 5= Ai(x),
0

(34)
: I u? :
Gip(z) = f/ dusin ( ur + — | = Gi(z).
™ Jo 3
This also allows us to identify
F(z) = Fo(z) = Ai(x) —iGi(x) . (35)

The Airy function can also be identified with the propagator alternatively as

oS 3
Ai(x) l/ du cos (ux—i— 1;)
T
1

0
> i u? 1
7/ due= (o) Zlp oy (36)
27 J_ o 2

This shows how intricately the generalized Airy functions are connected with the
fermionic propagator in an external (quadratic) potential. Namely, in a general
quadratic potential without a linear term (a; = 0, ¢ = 0), the propagator is given

as a combination of the standard Airy and Scorer functions. However, if the linear
term is present in the potential, the Airy and Scorer functions modify to what we
call the generalized Airy functions. We also note here that if gas < 0, this would
simply correspond to replacing

Fy(z) = (Fg(=2))". (37)

In what follows, we will study various properties of these generalized Airy and
Scorer functions.

3. Properties of the Generalized Airy Functions

In this section, we will discuss various properties of the generalized Airy functions.
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3.1. Equations satisfied by the generalized functions

Let us recall that the Airy function Ai(z) and the Bairy function Bi(z) satisfy the
homogeneous differential equation!

dy(x)
2 zy(z) =0. (38)
They are the two independent solutions of (38) with the Wronskian

1
—
Similarly, the Scorer function Gi(z) (as well as —Hi(z)) satisfy the inhomogeneous
equation

W{Ai(z), Bi(z)} = (39)

d*y(z) 1
Fr zy(x) = - (40)
The Scorer function can be expressed as a linear combination of Ai(x) and Bi(x)

as

Gi(z) = %Bi(m) + /0 " di(Ai(2)Bi(t) — Ai(t)Bi(x)). (41)

In a similar manner starting from the definitions in (32), one can show that the
generalized Airy and Scorer functions satisfy the following (z-dependent) inhomo-
geneous equations:

2A' 1 3
9" Aiq(w) a;(g(x) — zAiy(x) = p sin <qm + %),
(42)
20 1 3
85;;2(9:) —2Gig(x) = — - cos <qx + (]3>
It is clear that for ¢ = 0, these equations reduce to the Airy equation (38) and the
Scorer equation (40), respectively. Furthermore, it follows from (42) as well as the
identification in (33) (or directly from (31)) that F,(z) satisfies the (2-dependent)
inhomogeneous equation
0T, () OF,(2)
dz? oq

The generalized functions Ai,(x), Gigz(z) as well as F(z) can also be expressed

as linear combinations of the independent functions Ai(z), Bi(x). For example, we

—aFy(z) = %.e_z(qw_%) = - (43)

can write
xr

Fy(x) = a(q)Ai(z) + b(q) Bi(z) — ie~ % /_ dn(Ai(r) Bi)
— Bi(x)Ai(t))e " (44)
where the coefficients a(q), b(q) are given by
a(q) = —m(Bi(—¢*)Fy(—¢*) — Bi'(—¢*)Fy(=¢%)) ,
b(q) = m(Ai(—=¢*) Fy(—q®) — Ai'(—=¢*) Fy(—¢*))

1750171-8
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with

OF,(x)
F/ —q2) = q
o(—%) 0 | (46)
- / du(Q+u)e_i(u2q+%).
m 0

The value of the constants a(0), b(0) can be easily calculated from (45) using the
definitions (35), (46), the Wronskian in (39) as well as (41) and leads to

a(0)=1,  b0)=——. (47)

With this, it follows easily that (44) reduces to (35) when ¢ = 0 (using (41)).

Recalling that (see, for example, Eq. (32))
Aiy(z) = Re Fy(x), (18)
Gig(z) = —Im F,(x),

we can also obtain the expressions for Ai,(z), Gig(x) in terms of the two indepen-
dent solutions of (38) by taking the real and the imaginary parts of (44).

3.2. Fourier transformation

From the definition (31)
1 *° —i(ux u3
Fq(a:):f/ due ( +3),
a

we note that the Fourier transform can be defined as

E,(k) = /00 dz e F,(z)

— 00

]. > > iud
= 7/ dx/ due™ 5 gtlh—wz, (49)
T J oo q

Interchanging the order of integration, this can be evaluated in a straightforward
manner to give a simple form

Fy(k) = 20(k — q)e= % . (50)

It is worth pointing out here that k is not the energy, rather it is the conjugate
variable to z (defined in (28)).
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In a similar manner, starting from the definitions in (32), we can derive
ik3

Aig(k) = (8(k — q) + 0(—k — q))e™ "5,

_ " (51)
Gig(k) = i(6(k — a) = 0(—k — q)e™ %
In the limit ¢ — 0, these lead to the well-known results
Aik) =%, Gi(k) = isgn(k)e” ¥, (52)

where sgn(k) denotes the sign function.

3.3. Graphical behavior

The behavior of the Airy function, Ai(z) = Aip(x), as well as the Scorer function,
Gi(z) = Gig(x), are well known and have the forms shown in Fig. 1. The functions
are well behaved at the origin as well as when x — oo and are oscillatory for x < 0.
In fact, both the functions vanish as z — oo.

We can also plot the behavior of the generalized Airy and Scorer functions. For
q > 0 and an integer, the first few have the forms shown in Fig. 2. Here, again we
see that both the functions are well behaved at the origin and vanish to zero as
x — oo in an oscillatory manner. Finally, for ¢ < 0 and an integer, the first few
generalized Airy and Scorer functions have the behavior shown in Fig. 3. They are
also well behaved at the origin and vanish as £ — oo in an oscillatory manner.

A ’ N // \ / LOJ

/A [\ [\ /

[ [\ [ /

[ [ / \ / 05

/N B Y f — TAiGX)

DN U A W
T I e s

/ — 7Giy(x)

Fig. 1. Behavior of Ai(z) = Aip(z) and Gi(z) = Gip(x).
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20

— mAi(x)
— mAip(x)

P mAB(®X)

— 7Giy(x)
— 7Giy(x)

— nGijz(x)

— mAi_|(x)
— mAi_(x)

— mAi_;(x)

L5

A

A \\ § G
Vo SR S e G
\ /

-y N A GiLe

-0.51

/

-1.0r-

Fig. 3. Behavior of Aiq(x) and Giq(x) for negative integer g.
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3.4. Various expansions

First of all, we can write a formal closed form expression for the propagator (Fy(z))
in the following way. We note from the definition (31) that

) ) “
Fy(z) = l/ due_l(uz-’_;)
q

™

1 o0 —1| (u+ a;+(“+,7q>3
= —/ due <( ? ’ ) ) (53)
0

™

through a simple shift of the variable of integration. The integrand can be rear-
ranged to give

i) = Lo ome ) i) [ g i)
0

. 3 L 42 2
i) (954 E) (i) — iGi(w))
. q3 . 2
= e_Z(qx+7)e(lqﬁ+q2%>F(x) ; (54)
where we have used (34) as well as (35). Alternatively, we can also write (54) as

Fy(z) = efi(qyr%)eiqddaT22 (Ai(z + ¢*) — iGi(x + ¢°))

= () o prp 4 g?) (55)
where we have used the relation
et f(z) = f(z +a). (56)
Both (54) and (55) reduce to
Fy(z) = F(z) = Ai(x) —iGi(x) . (57)

Using the identity

w _ " S (_d1>n
J e = 3 () (%)

n=0

we note that if we identify f(u) = —i(uz +u3/3), f'(u) = —i(u?+x), we can obtain
a useful expansion of the propagator for ¢> + = > 1 as

0 : u
Fy(x) = l/ du e_l(uz—i_;)
a

™

o0

B 167i<uw+%) o) d 1 n
T —i(u? + ) z_% <_du —i(u? + x))
n= q

e (1+5) [ g . } (59)

. +
im(q? + z) (¢*> + )2
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Similarly, when ¢* < 3|z|, the propagator (F,(z)) can be expanded in inverse
powers of = as follows. We note that we can write

R =2 [ e o)
q

™

%/OC due _i<1Lr+£) 1 /qdue_i(““'%)
0

A — 313
(x) —iGi(x zmv/ die "es? (60)

where we have defined @ = iuz. The second exponential inside the integral can be
Taylor expanded leading to

o0

1
1T

Fy(z) = Ai(z) —iGi(z 1

~v(3k + 1,iqx), (61)

3

where we have used the definition of the incomplete gamma function

b
v(a,b) :/0 dte t*1 . (62)

When ¢ = 0, the incomplete gamma function in (61) vanishes, vy(a,0) = 0 (as can
be seen from (62)), so that we recover the familiar result (35)

Fo(x) = F(z) = Ai(z) — iGi(x) . (63)

We note that, for fixed values of the parameters ag,ai,as, all these expansions
correspond to non-perturbative expansions in the sense that, for small g (see (28)),
¢~ g3 (small) whereas = ~ g~3 (large).

We can also obtain a perturbative expansion for the propagator (F,(x)) as
follows. We note from (53) that we can write

3

—i(qz+%) oo ) 2y (2 | W3

Ry = T [ gy e d)
T 0

_i(qx_t,_%) 00 oo . k: 3\ k
_ e _ A du e—zu(w-i-q Z (u q+ u3)

—i(qﬂf-‘rg) ) n_ k (_)k 3\
e , 2 1 u

- du e~ tu(@+a%) 7Y 2 Nk—n [ Y

v /0 we Zn!(k—n)!(u 9 3

. q3
e_z(qm""T) ok (—Z)k qkfn (_,L')2k:+n+1
- T ZZ nl(k —n)! 37 (x+q2)2k+n+lr(2k+n+ OF

(64)
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where we have used the definition of the Gamma function
> —ptyv—1 1
/ dte=rtpr=t = L) (65)
0 w

From the definitions (28) and (29), it is easy to see that, for small g and fixed
values of the parameters, each term in the sum goes as ~ (g)k‘*‘% and thereby gives
a perturbative expansion of F(x).

It is interesting to note from (64) that when ¢ = 0, namely, (a; = 0), the only
term in the n expansion (64) that contributes is the term with n = k and we have

Fo(z) = Ai(z) —iGi(x)

1 oo ( )4k+1
- Z 13k 3k 1 I3k +1)
k=0

| (3R)! 1
- v Z (3k)! ) (66)
As g — 0,2 — g~ 3 becomes large (see (29) with ¢ = 0). Therefore, (66) provides a

large 2 expansion of F(z) and from (66), we can now identify

AZ(ZE) x large 07
(67)

The first of these relations is known and is easily seen from Fig. 1 and the second
gives a quantitative description of the decrease in the Scorer function for large value
of the argument.

4. Conclusion

We have studied the fermion propagator in an external time-dependent potential in
0+ 1 dimension. We have shown that, when this potential is quadratic in time, one
can obtain a closed form result for the fermion propagator in terms of generalized
Airy functions. These represent new generalizations of the Airy functions and reduce
to the standard Airy functions when the potential is independent of a linear term
in time. We have discussed various properties associated with these generalized
functions.

We note here that the present analysis can also be extended to the study of the
fermion propagator in an external potential at finite temperature!! where general-
ized Airy functions also appear. In this case, (6) can be solved exactly, subject to the

anti-periodic boundary conditions of a finite-temperature fermion propagator.t2:13
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Appendix A. Solving the Differential Equation

We can alternatively determine the propagator by solving the energy space differ-

ential equation in (10)
—m—gA i S(p) =1 (A1)
P g de p)=1i. .

In this Appendix, we do this systematically and compare the results with the coor-
dinate space calculations. In the zeroth-order when there is no interaction (g = 0),
the free propagator

1

So(p) = e (A.2)

has already been discussed in (11) in both the ways.
If we include only the constant term in the potential, A(t) = ag, then (A.1)
takes the form

(p—m —gaog)S(p) = (p— M)S(p) =i, (A.3)

which determines
)

= 3 (A4)

S(p)

where we have identified, as in (17), M = m + gag. This first-order propagator
coincides with (16).
At the next order, A(t) = ag+aqt, the differential equation (A.1) takes the form

S

. (A.5)
i_i( — M) )S( )_i
or dp  ga p p)= gar
This can be solved with an integrating factor. For example, if we define
S(p) = e M5 p), (A.6)
this leads to
dS() _ 1 —pimo-a? (A7)
dp gax

which has the solution

_ D) 57 (P—M) o
9= 00 [T
19a1 Jo
s 7
=(C — [0 M — . A.
C ’/Qigal <\/29a1( p)) (A.8)
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Here, C' is a constant and we have used the definition of the probability function
or the error function as well as its antisymmetry (see (20))*°

d(z) = ;7?/0 dte’” | ®(—z) = —D(z). (A.9)

The constant C' is determined from the requirement that

S(p) = emar @M g(p) 2120, pf e (A.10)

From the asymptotic behavior of the probability function (see (21))

2
1 —XT
@(w)ﬁ—“u—ﬁem T (A.11)
we determine that
T
C = Siga; " (A.12)

This leads to the propagator at the second-order to be

S(p) = /méfialeﬁwmz <1 s ( 2921 (M _p))> , (A.13)

which coincides with (19).
At the next order, A(t) = ag + ait + ast?, the differential equation (A.1) has

the form
d d N’ .
(p —m — gay — gay <_2dp> — gas (_ldp) )S(p) =1
A.14
P2 J . (A.14)
or gag—— tigai— +p—M S(p)=i.
dp dp
As before (see (28) and (29)), we can define
a - M
g=-" z:*M*qz, (A.15)
2(gaz)3 (gaz)3
so that the differential equation takes the form
d? d i
— — 2ig— — 2 = : Al
(i~ 2~ e+ ) )0 = Ly (A.16)
To solve this equation, let us define
S(z) = ellart% >5( ), (A.17)
so that S(x) satisfies the equation
2 ~ . 77.(q1:+q )
@) gyt 7 (A.18)

dz? m(gaz)s
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Comparing this with (43), we conclude that

S(x) = L1Fq x),

(z) (gan)? ()
5 (A.19)
o)

S(x :ei(qm+§>5’ x) = T
@ =T

F‘J(x)a

which can be compared with (30) and (31).
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