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We study the behavior of the fermion propagator in an external time-dependent potential

in 0+1 dimension. We show that, when the potential has up to quadratic terms in time,

the propagator can be expressed in terms of generalized Airy functions (or standard
Airy functions depending on the exact time dependence). We study various properties

of these new generalized functions which reduce to the standard Airy functions in a
particular limit.
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1. Introduction

It is well known that a linear potential between quarks in quantum chromodynamics

(QCD) leads to confinement of quarks. The time-independent radial equation of a

three-dimensional Schrödinger equation (for ` = 0) or that of a one-dimensional

equation, with a linear potential, can be written as (with different boundary con-

ditions for the two cases) [
d2

dr2
+ (En − a1r)

]
u(r) = 0 , (1)

where a1 is a real constant denoting the strength of the linear potential. With a

suitable change of variables, this equation can be rewritten as

d2u(r̄)

dr̄2
− r̄u(r̄) = 0 , (2)
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which is the Airy equation.1,2 This is how the Airy functions enter into quantum

mechanics and to the physical question of quark confinement. It also shows up in

many other branches of physics.

Phenomenologically, the non-relativistic (static) potential used in the study of

quarkonium in QCD is conventionally taken to be of the form3

V (r) = −α
r

+ a1r , (3)

where α is the fine structure constant. The first term, on the right, represents

the standard tree level Coulomb potential between a quark and an antiquark

whereas the second linear term represents the confining potential. If we ignore

the Coulomb potential (or consider the large distance behavior), the exact solu-

tions of the Schrödinger equation will lead to Airy functions. More recently, it has

been shown4 that higher-order calculations, taking into account the cancellation of

leading-order renormalons and other non-perturbative effects, lead to a generaliza-

tion of the potential of the form

V (r) = −α
r

+ a0 + a1r + a2r
2, (4)

where the constants a0, a2 are real constants and have nonzero contributions be-

ginning at two loops. Even if we ignore the Coulomb potential, the exact solutions

in this case would not correspond to Airy functions in general.

All of this discussion is within the context of the second-order time-independent

Schrödinger equation. In this paper, we study the solutions for a one-dimensional

fermion interacting with a time-dependent external potential. More specifically, we

study the behavior of the fermion propagator in an external potential. Motivated

by the QCD results (4), we choose the form of the external potential to be

A(t) = a0 + a1t+ a2t
2 , (5)

where a0, a1, a2 are real constants. We show that in this first-order system of equa-

tion (to be discussed below), depending on the values of constant a1, the propagator

is described either by Airy functions or by generalized Airy functions. In particular,

if a1 = 0 (absence of a linear term in t in the potential), the propagator is described

in terms of a linear combination of the Airy and the Scorer functions1 which should

be contrasted with the time-independent (second-order) case. On the other hand,

if a1 6= 0, the propagator is described in terms of generalized Airy functions which

reduce to Airy functions in an appropriate limit. These generalized Airy functions

are new and we study their properties systematically. We note here that, in view of

the importance of the Airy functions in physics as well as in mathematics, various

other generalizations of these functions have also been studied previously.5–9

The paper is organized as follows. In Sec. 2, we study the fermion propagator

systematically and point out the physical meaning of the constants in (5). We

show how generalized Airy functions arise when a1 6= 0 and how these generalized

functions reduce to the conventional Airy functions when a1 = 0. In Sec. 3, we

discuss, in detail, various properties of these generalized functions and how they
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reduce to the standard results in an appropriate limit. We present a brief conclusion

in Sec. 4. In the Appendix, we derive the propagator by solving the differential

equation in the Fourier transformed space and compare it with the coordinate

space calculations.

2. Fermion Propagator

In 0 + 1 dimension, the fermion propagator in a time-dependent external field,

satisfies the first-order differential equation

(i∂t −m− gA(t))S(t) = iδ(t) , (6)

where m is the mass of the fermion, g is the coupling constant and A(t) is a time-

dependent real external potential which can, in principle, be the gauge potential

(in that case, g = e). In 0 + 1 dimension, the Feynman propagator coincides with

the retarded propagator. Therefore, if we assume that the potential switches on at

t = 0, the unique (Feynman/retarded) solution of Eq. (6) can be written as

S(t) = θ(t)e−imte−ig
∫ t
0
dt′A(t′) , (7)

where θ(t) denotes the step function.

In principle, the second exponential factor in (7) with time integration should

involve a time-ordered product. However, since A(t) denotes a classical external

potential, time ordering is not relevant. Furthermore, we note that, in 0 + 1 di-

mension, the fermion propagator coincides with the time evolution operator for the

time-dependent Hermitian Hamiltonian H(t) = m + gA(t), namely, we can also

write S(t) = U(t) = θ(t)e−i
∫ t
0
dt′H(t′). It follows from this that formally (time

evolution is unitary)

S(t)S†(t) = 1 = S†(t)S(t) , (8)

namely, the fermion propagator, in coordinate space, is formally unitary.

The propagator, in the Fourier transformed space, can be obtained to be

S(p) =

∫ ∞
−∞

dt eiptS(t)

=

∫ ∞
0

dt ei(p−m)te−ig
∫ t
0
dt′ A(t′) , (9)

which satisfies the differential equation (in the Fourier transformed space)(
p−m− gA

(
−i d
dp

))
S(p) = i . (10)

If g = 0 (or A(t) = 0), namely, if there is no interaction with an external

potential, (9) (or (10)) yields the free fermion propagator

S0(p) =
i

p−m
, (11)
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where the Feynman iε prescription is understood and is necessary for the conver-

gence of the integral in (9). (Throughout the paper, we will suppress the iε term

for simplicity.)

The complete fermion propagator, in the Fourier transformed (energy) space,

for the theory can be determined either by evaluating the integral in (9) or by

solving the differential equation in (10). In this section, we will determine S(p)

by evaluating the integral in (9). In the Appendix, we will show that this result

coincides with the one obtained by solving (10). Of course, the propagator cannot

be explicitly determined in a closed form for an arbitrary potential. Therefore,

motivated by the studies in QCD, we will choose the potential to be of the form

(see (5))

A(t) = a0 + a1t+ a2t
2 , (12)

where a0, a1, a2 are real constants.

We note that, in this case, we can determine a superpotential W (t) such that

A(t) =
dW (t)

dt
,

W (t) = C + a0t+
a1

2
t2 +

a2

3
t3 ,

(13)

where C is a constant of integration. In terms of the superpotential, we can rewrite

(9) as

S(p) =

∫ ∞
0

dt ei(p−m)t−ig(W (t)−W (0)) . (14)

We note here for future use that

W (t)−W (0) = a0t+
a1

2
t2 +

a2

3
t3 , (15)

where the arbitrary constant has canceled out.

In the next three subsections, we evaluate S(p) from (14) and (15) systematically

and comment on the physical meaning of the three terms in the potential. In the

process we will discover how generalized Airy functions show up in this study.

2.1. A(t) = a0

In this case, we have a1 = a2 = 0 so that (15) yields

W (t)−W (0) = a0t

and (14) leads to

S(p) =
i

p−m− ga0
=

i

p−M
, (16)

where we have identified

M = m+ ga0 . (17)

Thus, for a constant external potential, the fermion propagator continues to be a

free propagator, but with a shifted mass M .
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2.2. A(t) = a0 + a1t

In this case, we have a2 = 0 so that (15) yields

W (t)−W (0) = a0t+
a1

2
t2

and (14) leads to

S(p) =

∫ ∞
0

dt ei(p−M)t− iga1
2 t2 . (18)

Completing the square in the exponent in the integrand (and redefining variables),

we obtain

S(p) =

√
2

iga1
e

i(p−M)2

2ga1

∫ ∞
0

dt e−t
2

−
∫ √

iga1
2

M−p
ga1

0

dt e−t
2


=

√
π

2iga1
e

i(p−M)2

2ga1

[
1− Φ

(√
i

2ga1
(M − p)

)]
, (19)

where

Φ(x) =
2√
π

∫ x

0

dt e−t
2

(20)

denotes the probability function or the error function.

For small values of ga1, the argument of the probability function in (19) becomes

large and the asymptotic expansion10

Φ(x)
x→∞−−−−→ 1− 1√

π

e−x
2

x
+

1

2
√
π

e−x
2

x3
+ · · · (21)

leads to

S(p)→ i

p−M

(
1 +

iga1

(p−M)2
+ · · ·

)
' i

p−M
1

1− iga1

(p−M)2

=
i

p−M − iga1

p−M
, (22)

where we have assumed ga1 � (p−M)2. Therefore, to linear order in ga1, the pole

of the propagator can be determined to be at (we assume ga1 > 0)

p = µ = M ±
√
iga1 = M ± (1 + i)

√
ga1

2
. (23)

While both the signs of the square root in (23) are mathematically allowed, we

choose the negative sign that leads to a retarded propagator (which is what we are
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studying here). (The positive sign would lead to an advanced propagator.) In this

case, we can write the pole of the propagator to be at

p = µ = µR − iµI , (24)

where

µR = M −
√
ga1

2
, µI =

√
ga1

2
. (25)

The presence of an imaginary part in the pole denotes a Breit–Wigner form of

the solution which represents a decay in the amplitude because of (scattering)

interaction with the external potential.

2.3. A(t) = a0 + a1t + a2t
2

In this case, we have (see (15))

W (t)−W (0) = a0t+
a1

2
t2 +

a2

3
t3

and (14) leads to

S(p) =

∫ ∞
0

dt e
i(p−M)t− iga2

3

(
t3+

3a1
2a2

t2
)
. (26)

Completing the cube in the exponent of the integrand (and redefining variables),

this leads to

S(p) = e
− ia1

2a2

(
p−M+

ga2
1

6a2

) ∫ ∞
a1
2a2

dt e
i

(
p−M+

ga2
1

4a2

)
t− iga2

3 t3

. (27)

If we assume that ga2 > 0 (we will comment on the case ga2 < 0 later) and

define

u = (ga2)
1
3 t , q =

ga1

2(ga2)
2
3

, x = −

(
p−M +

ga2
1

4a2

)
(ga2)

1
3

, (28)

so that

x+ q2 =
p−M
(ga2)

1
3

, (29)

we can write the propagator in (27) as

S(p) =
πe

i
(
qx+ q3

3

)
(ga2)

1
3

Fq(x) , (30)

where we have identified

Fq(x) =
1

π

∫ ∞
q

du e
−i
(
ux+ u3

3

)
. (31)
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The study of the propagator is, therefore, equivalent to the study of the function

Fq(x) which we will do in the rest of the paper. We note that the integral in (31)

is reminiscent of the Airy function. In fact, for real q, if we define

Aiq(x) =
1

π

∫ ∞
q

du cos

(
ux+

u3

3

)
= ReFq(x) ,

Giq(x) =
1

π

∫ ∞
q

du sin

(
ux+

u3

3

)
= −ImFq(x) ,

(32)

we can write

Fq(x) = Aiq(x)− iGiq(x) . (33)

We call Aiq(x) and Giq(x) the generalized Airy and Scorer functions, since in

the limit q = 0, they reduce to the Airy and the Scorer functions (we note here

parenthetically that q = 0 corresponds to a1 = 0 for g 6= 0)1

Ai0(x) =
1

π

∫ ∞
0

du cos

(
ux+

u3

3

)
= Ai(x) ,

Gi0(x) =
1

π

∫ ∞
0

du sin

(
ux+

u3

3

)
= Gi(x) .

(34)

This also allows us to identify

F (x) = F0(x) = Ai(x)− iGi(x) . (35)

The Airy function can also be identified with the propagator alternatively as

Ai(x) =
1

π

∫ ∞
0

du cos

(
ux+

u3

3

)

=
1

2π

∫ ∞
−∞

du e
−i
(
ux+ u3

3

)
=

1

2
F−∞(x) . (36)

This shows how intricately the generalized Airy functions are connected with the

fermionic propagator in an external (quadratic) potential. Namely, in a general

quadratic potential without a linear term (a1 = 0, q = 0), the propagator is given

as a combination of the standard Airy and Scorer functions. However, if the linear

term is present in the potential, the Airy and Scorer functions modify to what we

call the generalized Airy functions. We also note here that if ga2 < 0, this would

simply correspond to replacing

Fq(x)→ (F−q(−x))∗ . (37)

In what follows, we will study various properties of these generalized Airy and

Scorer functions.

3. Properties of the Generalized Airy Functions

In this section, we will discuss various properties of the generalized Airy functions.
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3.1. Equations satisfied by the generalized functions

Let us recall that the Airy function Ai(x) and the Bairy function Bi(x) satisfy the

homogeneous differential equation1

d2y(x)

dx2
− xy(x) = 0 . (38)

They are the two independent solutions of (38) with the Wronskian

W{Ai(x), Bi(x)} =
1

π
. (39)

Similarly, the Scorer function Gi(x) (as well as −Hi(x)) satisfy the inhomogeneous

equation

d2y(x)

dx2
− xy(x) = − 1

π
. (40)

The Scorer function can be expressed as a linear combination of Ai(x) and Bi(x)

as

Gi(x) =
1

3
Bi(x) +

∫ x

0

dt(Ai(x)Bi(t)−Ai(t)Bi(x)) . (41)

In a similar manner starting from the definitions in (32), one can show that the

generalized Airy and Scorer functions satisfy the following (x-dependent) inhomo-

geneous equations:

∂2Aiq(x)

∂x2
− xAiq(x) =

1

π
sin

(
qx+

q3

3

)
,

∂2Giq(x)

∂x2
− xGiq(x) = − 1

π
cos

(
qx+

q3

3

)
.

(42)

It is clear that for q = 0, these equations reduce to the Airy equation (38) and the

Scorer equation (40), respectively. Furthermore, it follows from (42) as well as the

identification in (33) (or directly from (31)) that Fq(x) satisfies the (x-dependent)

inhomogeneous equation

∂2Fq(x)

dx2
− xFq(x) =

i

π
e
−i
(
qx+ q3

3

)
= −i∂Fq(x)

∂q
. (43)

The generalized functions Aiq(x), Giq(x) as well as Fq(x) can also be expressed

as linear combinations of the independent functions Ai(x), Bi(x). For example, we

can write

Fq(x) = a(q)Ai(x) + b(q)Bi(x)− ie−
iq3

3

∫ x

−q2

dt(Ai(x)Bi(t)

−Bi(x)Ai(t))e−iqz , (44)

where the coefficients a(q), b(q) are given by

a(q) = −π(Bi(−q2)F ′q(−q2)−Bi′(−q2)Fq(−q2)) ,

b(q) = π(Ai(−q2)F ′q(−q2)−Ai′(−q2)Fq(−q2))
(45)
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with

Fq(−q2) = Fq(x)|x=−q2 =
e

2iq3

3

π

∫∞
0
du e

−i
(
u2q+ u3

3

)
,

F ′q(−q2) =
∂Fq(x)

∂x

∣∣∣∣
x=−q2

=
−ie

2iq3

3

π

∫ ∞
0

du(q + u)e
−i
(
u2q+ u3

3

)
.

(46)

The value of the constants a(0), b(0) can be easily calculated from (45) using the

definitions (35), (46), the Wronskian in (39) as well as (41) and leads to

a(0) = 1 , b(0) = − i
3
. (47)

With this, it follows easily that (44) reduces to (35) when q = 0 (using (41)).

Recalling that (see, for example, Eq. (32))

Aiq(x) = ReFq(x) ,

Giq(x) = −ImFq(x) ,
(48)

we can also obtain the expressions for Aiq(x), Giq(x) in terms of the two indepen-

dent solutions of (38) by taking the real and the imaginary parts of (44).

3.2. Fourier transformation

From the definition (31)

Fq(x) =
1

π

∫ ∞
q

du e
−i
(
ux+ u3

3

)
,

we note that the Fourier transform can be defined as

F̃q(k) =

∫ ∞
−∞

dx eikxFq(x)

=
1

π

∫ ∞
−∞

dx

∫ ∞
q

du e−
iu3

3 ei(k−u)x . (49)

Interchanging the order of integration, this can be evaluated in a straightforward

manner to give a simple form

F̃q(k) = 2θ(k − q)e− ik3

3 . (50)

It is worth pointing out here that k is not the energy, rather it is the conjugate

variable to x (defined in (28)).
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In a similar manner, starting from the definitions in (32), we can derive

Ãiq(k) = (θ(k − q) + θ(−k − q))e− ik3

3 ,

G̃iq(k) = i(θ(k − q)− θ(−k − q))e− ik3

3 .
(51)

In the limit q → 0, these lead to the well-known results

Ãi(k) = e−
ik3

3 , G̃i(k) = i sgn(k)e−
ik3

3 , (52)

where sgn(k) denotes the sign function.

3.3. Graphical behavior

The behavior of the Airy function, Ai(x) = Ai0(x), as well as the Scorer function,

Gi(x) = Gi0(x), are well known and have the forms shown in Fig. 1. The functions

are well behaved at the origin as well as when x→∞ and are oscillatory for x < 0.

In fact, both the functions vanish as x→∞.

We can also plot the behavior of the generalized Airy and Scorer functions. For

q > 0 and an integer, the first few have the forms shown in Fig. 2. Here, again we

see that both the functions are well behaved at the origin and vanish to zero as

x → ∞ in an oscillatory manner. Finally, for q < 0 and an integer, the first few

generalized Airy and Scorer functions have the behavior shown in Fig. 3. They are

also well behaved at the origin and vanish as x→∞ in an oscillatory manner.
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-2.0

-1.5

-1.0

-0.5
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1.5

ΠGi0HxL

Fig. 1. Behavior of Ai(x) = Ai0(x) and Gi(x) = Gi0(x).
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Fig. 2. Behavior of Aiq(x) and Giq(x) for positive integer q.
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Fig. 3. Behavior of Aiq(x) and Giq(x) for negative integer q.
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3.4. Various expansions

First of all, we can write a formal closed form expression for the propagator (Fq(x))

in the following way. We note from the definition (31) that

Fq(x) =
1

π

∫ ∞
q

du e
−i
(
ux+ u3

3

)

=
1

π

∫ ∞
0

du e
−i
(

(u+q)x+
(u+q)3

3

)
, (53)

through a simple shift of the variable of integration. The integrand can be rear-

ranged to give

Fq(x) =
1

π
e
−i
(
qx+ q3

3

)
e

(
iq d2

dx2 +q2 d
dx

) ∫ ∞
0

du e
−i
(
ux+ u3

3

)

= e
−i
(
qx+ q3

3

)
e

(
iq d2

dx2 +q2 d
dx

)
(Ai(x)− iGi(x))

= e
−i
(
qx+ q3

3

)
e

(
iq d2

dx2 +q2 d
dx

)
F (x) , (54)

where we have used (34) as well as (35). Alternatively, we can also write (54) as

Fq(x) = e
−i
(
qx+ q3

3

)
eiq

d2

dx2 (Ai(x+ q2)− iGi(x+ q2))

= e
−i
(
qx+ q3

3

)
eiq

d2

dx2 F (x+ q2) , (55)

where we have used the relation

ea
d
dx f(x) = f(x+ a) . (56)

Both (54) and (55) reduce to

F0(x) = F (x) = Ai(x)− iGi(x) . (57)

Using the identity∫
du ef(u) =

ef(u)

f ′(u)

∞∑
n=0

(
− d

du

1

f ′(u)

)n
, (58)

we note that if we identify f(u) = −i(ux+u3/3), f ′(u) = −i(u2 +x), we can obtain

a useful expansion of the propagator for q2 + x > 1 as

Fq(x) =
1

π

∫ ∞
q

du e
−i
(
ux+ u3

3

)

=
1

π

e
−i
(
ux+ u3

3

)
−i(u2 + x)

∞∑
n=0

(
− d

du

1

−i(u2 + x)

)n∣∣∣∣∣
∞

q

=
e
−i
(
qx+ q3

3

)
iπ(q2 + x)

[
1 +

2iq

(q2 + x)2
+ · · ·

]
. (59)
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Similarly, when q2 � 3|x|, the propagator (Fq(x)) can be expanded in inverse

powers of x as follows. We note that we can write

Fq(x) =
1

π

∫ ∞
q

du e
−i
(
ux+ u3

3

)

=
1

π

∫ ∞
0

du e
−i
(
ux+ u3

3

)
− 1

π

∫ q

0

du e
−i
(
ux+ u3

3

)

= Ai(x)− iGi(x)− 1

iπx

∫ iqx

0

dū e−ūe
ū3

3x3 , (60)

where we have defined ū = iux. The second exponential inside the integral can be

Taylor expanded leading to

Fq(x) = Ai(x)− iGi(x)− 1

iπx

∞∑
n=0

1

n!

1

(3x3)n
γ(3k + 1, iqx) , (61)

where we have used the definition of the incomplete gamma function

γ(a, b) =

∫ b

0

dt e−tta−1 . (62)

When q = 0, the incomplete gamma function in (61) vanishes, γ(a, 0) = 0 (as can

be seen from (62)), so that we recover the familiar result (35)

F0(x) = F (x) = Ai(x)− iGi(x) . (63)

We note that, for fixed values of the parameters a0, a1, a2, all these expansions

correspond to non-perturbative expansions in the sense that, for small g (see (28)),

q ∼ g 1
3 (small) whereas x ∼ g− 1

3 (large).

We can also obtain a perturbative expansion for the propagator (Fq(x)) as

follows. We note from (53) that we can write

Fq(x) =
e−i(qx+ q3

3 )

π

∫ ∞
0

du e
−iu(x+q2)−i

(
u2q+ u3

3

)

=
e
−i
(
qx+ q3

3

)
π

∫ ∞
0

du e−iu(x+q2)
∞∑
k=0

(−i)k

k!

(
u2q +

u3

3

)k

=
e
−i
(
qx+ q3

3

)
π

∫ ∞
0

du e−iu(x+q2)
n∑
k=0

k∑
n=0

(−i)k

n!(k − n)!
(u2q)k−n

(
u3

3

)n

=
e
−i
(
qx+ q3

3

)
π

∞∑
k=0

k∑
n=0

(−i)k

n!(k − n)!

qk−n

3n
(−i)2k+n+1

(x+ q2)2k+n+1
Γ(2k + n+ 1) ,

(64)
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where we have used the definition of the Gamma function∫ ∞
0

dt e−µttν−1 =
1

µν
Γ(ν) . (65)

From the definitions (28) and (29), it is easy to see that, for small g and fixed

values of the parameters, each term in the sum goes as ∼ (g)k+ 1
3 and thereby gives

a perturbative expansion of Fq(x).

It is interesting to note from (64) that when q = 0, namely, (a1 = 0), the only

term in the n expansion (64) that contributes is the term with n = k and we have

F0(x) = Ai(x)− iGi(x)

=
1

π

∞∑
k=0

(−i)4k+1

k!3kx3k+1
Γ(3k + 1)

= − i

πx

∞∑
k=0

(3k)!

k!

1

(3x3)k
. (66)

As g → 0, x→ g−
1
3 becomes large (see (29) with q = 0). Therefore, (66) provides a

large x expansion of F (x) and from (66), we can now identify

Ai(x)
x large−−−−→ 0 ,

Gi(x)
x large−−−−→ 1

πx

∞∑
k=0

(3k)!

k!

1

(3x3)k
.

(67)

The first of these relations is known and is easily seen from Fig. 1 and the second

gives a quantitative description of the decrease in the Scorer function for large value

of the argument.

4. Conclusion

We have studied the fermion propagator in an external time-dependent potential in

0 + 1 dimension. We have shown that, when this potential is quadratic in time, one

can obtain a closed form result for the fermion propagator in terms of generalized

Airy functions. These represent new generalizations of the Airy functions and reduce

to the standard Airy functions when the potential is independent of a linear term

in time. We have discussed various properties associated with these generalized

functions.

We note here that the present analysis can also be extended to the study of the

fermion propagator in an external potential at finite temperature11 where general-

ized Airy functions also appear. In this case, (6) can be solved exactly, subject to the

anti-periodic boundary conditions of a finite-temperature fermion propagator.12,13
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Appendix A. Solving the Differential Equation

We can alternatively determine the propagator by solving the energy space differ-

ential equation in (10) (
p−m− gA

(
−i d
dp

))
S(p) = i . (A.1)

In this Appendix, we do this systematically and compare the results with the coor-

dinate space calculations. In the zeroth-order when there is no interaction (g = 0),

the free propagator

S0(p) =
i

p−m
, (A.2)

has already been discussed in (11) in both the ways.

If we include only the constant term in the potential, A(t) = a0, then (A.1)

takes the form

(p−m− ga0)S(p) = (p−M)S(p) = i , (A.3)

which determines

S(p) =
i

p−M
, (A.4)

where we have identified, as in (17), M = m + ga0. This first-order propagator

coincides with (16).

At the next order, A(t) = a0 +a1t, the differential equation (A.1) takes the form(
p−m− ga0 − ga1

(
−i d
dp

))
S(p) = i

(A.5)

or

(
d

dp
− i

ga1
(p−M)

)
S(p) =

1

ga1
.

This can be solved with an integrating factor. For example, if we define

S(p) = e
i

2ga1
(p−M)2

S̄(p) , (A.6)

this leads to

dS̄(p)

dp
=

1

ga1
e−

i
2ga1

(p−M)2

, (A.7)

which has the solution

S̄(p) = C +

√
2

iga1

∫ √
i

2ga1
(p−M)

0

dp′ e−(p′)2

= C −
√

π

2iga1
Φ

(√
i

2ga1
(M − p)

)
. (A.8)
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Here, C is a constant and we have used the definition of the probability function

or the error function as well as its antisymmetry (see (20))10

Φ(x) =
2√
π

∫ x

0

dt et
2

, Φ(−x) = −Φ(x) . (A.9)

The constant C is determined from the requirement that

S(p) = e
i

2ga1
(p−M)2

S̄(p)
a1→0−−−→ i

p−M
. (A.10)

From the asymptotic behavior of the probability function (see (21))

Φ(x)
x→∞−−−−→ 1− 1√

π

e−x
2

x
+ · · · , (A.11)

we determine that

C =

√
π

2iga1
. (A.12)

This leads to the propagator at the second-order to be

S(p) =

√
π

2iga1
e

i
2ga1

(p−M)2

(
1− Φ

(√
i

2ga1
(M − p)

))
, (A.13)

which coincides with (19).

At the next order, A(t) = a0 + a1t + a2t
2, the differential equation (A.1) has

the form (
p−m− ga0 − ga1

(
−i d
dp

)
− ga2

(
−i d
dp

)2
)
S(p) = i

(A.14)

or

(
ga2

d2

dp2
+ iga1

d

dp
+ p−M

)
S(p) = i .

As before (see (28) and (29)), we can define

q =
ga1

2(ga2)
2
3

, x = − (p−M)

(ga2)
1
3

− q2 , (A.15)

so that the differential equation takes the form(
d2

dx2
− 2iq

d

dx
− (x+ q2)

)
S(x) =

i

(ga2)
1
3

. (A.16)

To solve this equation, let us define

S(x) = ei(qx+ q3

3 )S̄(x) , (A.17)

so that S̄(x) satisfies the equation

d2S̄(x)

dx2
− xS̄(x) =

ie
−i
(
qx+ q3

3

)
π(ga2)

1
3

. (A.18)
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Comparing this with (43), we conclude that

S̄(x) =
π

(ga2)
1
3

Fq(x) ,

S(x) = e
i
(
qx+ q3

3

)
S̄(x) =

πe
i
(
qx+ q3

3

)
(ga2)

1
3

Fq(x) ,

(A.19)

which can be compared with (30) and (31).
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