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A B S T R A C T   

‘Candidatus Liberibacter’ species have developed a dependency on essential nutrients and metabolites from the 
host cell, as a result of substantial genome reduction. Still, it is difficult to state which nutrients they acquire and 
whether or not they are metabolically reliant. We used a reverse-ecology model to investigate the potential 
metabolic interactions of ‘Ca Liberibacter’ species, Citrus, and the psyllid Diaphorina citri in the huanglongbing 
disease pyramid. Our findings show that hosts (citrus and psyllid) tend to support the nutritional needs of ‘Ca. 
Liberibacter’ species, implying that the pathogen’s metabolism has become tightly linked to hosts, which may 
reflect in the parasite lifestyle of this important genus.   

1. Introduction 

The citrus tree is a member of the Rutaceae family and is one of the 
major fruit trees in the world, including important crops such as oranges 
(C. sinensis), lemons (C. limon), grapefruits (C. paradisi), pomelos 
(C. maxima), and limes (C. aurantiifolia). In addition, several biotic and 
abiotic issues have challenged the production and quality of citrus fruits 
across the world, with huanglongbing (HLB), or greening disease, 
standing out for its ability to have a significant impact on Citrus trees. 
HLB is caused by a group of Gram-negative bacteria ‘Candidatus Lib
eribacter’ spp., which include the ‘Candidatus Liberibacter asiaticus’ 
(CLas), ‘Candidatus Liberibacter americanus’ (CLam), ‘Candidatus Lib
eribacter africanus’ (CLaf) (Jagoueix et al., 1994). Together, these species 
are phloem-colonizing, psyllid-transmitted fastidious bacteria, classified 
in the Rhizobiaceae (CLass: Alphaproteobacteria) (Fagen et al., 2014). 
‘Ca. Liberibacter’ spp. is transmitted in the hemolymph and salivary 
glands of psyllids Diaphorina citri, and since psyllids feed on sap, this 
allows bacteria to enter the plant’s phloem (Nadarasah and Stavrinides, 
2011). They cause significant metabolic and regulatory changes in the 
plant, causing damage to the transport system, affecting the plant’s 
defensive mechanisms, and altering the chemical and sensory properties 

of the fruit. Blotchy mottle leaves, stunted growth, reduced fruit size, 
premature fruit drop, corky veins, and root decline are also observed 
(Baldwin et al., 2010; Bové and Barros, 2006; Dala Paula et al., 2018; 
Wang et al., 2017). 

‘Ca. Liberibacter’ spp. are obligate host-associated bacteria with 
specialized living environments in the host plant (i.e., phloem) or vector 
(specific psyllid cells, tissues, and organs). As a result, their genomes 
undergo extensive gene and DNA loss, resulting in a small genome 
(approximately 1.2 Mb) with few genes and correspondingly restricted 
metabolic capacities that rely on the regular supply of certain energy 
substrates from hosts (Moran, 2002; Thapa et al., 2020). Although 
several studies have addressed the interaction of ‘Ca. Liberibacter’ spp., 
citrus, and psyllids (Mafra et al., 2013; Ramsey et al., 2020; de Francesco 
et al., 2022), it is still unclear which nutrients they acquire and whether 
there is metabolic dependency. Therefore, we employed a reverse 
ecology analysis to obtain insights into the potential metabolic interplay 
of ‘Ca. Liberibacter’ spp., C. sinensis and the psyllid D. citri. This approach 
is based on several computational tools to translate high-throughput 
genetic data into large-scale ecological data, which potentially turns 
ecology into a high-throughput field (Levy and Borenstein, 2012). 

Reverse ecology approaches have been used in different fields, 
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including microbial-plant interactions to uncover metabolic environ
ments (Karpinets et al., 2014; Ofaim et al., 2017); in human health, to 
quantify microbes’ biosynthetic capabilities across the human oral 
microbiome (Bernstein et al., 2019) and to identify immune-beneficial 
infant gut bacteria by mining their metabolism for prebiotic feeds 
(Michelini et al., 2018). Here, we investigated the potential metabolic 
interplay among ‘Ca. Liberibacter’ spp., C. sinensis, and D. citri using 
reverse ecology analysis. 

2. Material and methods 

Public metabolic data were retrieved from the KEGG (Kyoto Ency
clopedia of Genes and Genomes) database using the function getOrg
MetabolicData in the Package RevEcoR (Cao et al., 2016). The following 
‘Ca. Liberibacter’ spp. was employed in this study: CLas, CLam, CLaf, and 
‘Ca Liberibacter solanacearum’ CLso-ZC1 (CLso-ZC1 - lso). In addition, we 
included Liberibacter crescens BT-1 (lcc), a culture representative surro
gate for plant pathogen ‘Ca. Liberibacter’ (Jain et al., 2019), and 

Fig 1. The potential interplay among ‘Ca Liberibacter’ species, C. sinensis, and the psyllid D. citri depicted through reverse ecology. A, The metabolic networks of ‘Ca’ 
L. asiaticus (CLas), Citrus, and D. citri. Nodes represent compounds and edges connecting substrates to products. Each network highlights which metabolites were 
identified as seeds (blue), which of these seeds were identified as being potentially supported by the second species (red), and the corresponding supporting me
tabolites in the second network (green). Only the giant components are considered here. B, the distribution of the biosynthetic support score. C, Diagram Ven 
showing shared compounds among the ‘Ca’ Liberibacter species. Abbreviations: ’Candidatus Liberibacter asiaticus’ (CLas); ’Candidatus Liberibacter americanus’ (CLam); 
’Candidatus Liberibacter africanus’ (CLaf); ’Candidatus Liberibacter solanacearum’ CLso-ZC1 (CLso); Liberibacter crescens BT-1 (lcc); Sinorhizobium meliloti 1021 (sme). 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Sinorhizobium meliloti 1021 (sme), a closely related model bacterium to 
Liberibacter. We also retrieved metabolic data from the hosts C. sinensis 
(cit) and D. citri (dci). Each KEGG Organism code is displayed in the front 
of the species name in parenthesis. 

Next, a matrix was created including the substrate and product for 
each species, and then NetCooperate was applied for inferring host- 
microbe cooperation (cooperative and competitive potential) (Levy 
et al., 2015). The biosynthetic support score (BSS), and metabolic 
complementarity index (MCI) were measured for species interactions. 
The compounds were then annotated in KEGG compounds with bio
logical roles and the Phytochemical compounds Database 
(https://www.genome.jp/kegg/compound/). In addition, NetMet 
(https://freilich-lab-tools.com/) (Tal et al., 2020) was used for pre
dicting the metabolic performances of microbes and their corresponding 
combinations in user-defined environments. For that, we took the lists of 
species-specific enzymatic reactions (EC numbers) in the Joint Genome 
Institute (JGI, https://genome.jgi. doe.gov/portal/) for the ‘Ca. Lib
eribacter’ spp. and used the C. sinensis and D. citri compounds from 
RevEcoR output as environmental input (nutritional resources). 

3. Results and discussion 

We first calculate the Biosynthetic Support Score (BSS), which 
evaluates a host species’ capacity to provide the nutritional re
quirements of a parasitic or commensal species (Levy et al., 2015). Ac
cording to network analysis (Fig. 1A), the majority of ‘Ca. Liberibacter’ 
spp. metabolic pathways were supported by metabolic pathways of 
C. sinensis and D. citri, as shown by the support seeds (red dots), indi
cating that the bacteria obtain compounds exogenously from the hosts. 
These seed sets were proven to be compatible with the lifestyles of many 
bacteria and typically correspond with various basic aspects of the 
species’ surroundings, as well as biological observations of key adap
tations (Borenstein et al., 2008). Additionally, the distribution of BSS 
values of ‘Ca. Liberibacter’ spp. against C. sinensis and D. citri ranged from 
approximately 0.1 to 0.8 (Fig. 1B), and there was a significant difference 
in BSS scores between bacteria and hosts (Fig. 1B). Our findings suggest 
that CLam and CLas are more dependent on D. citri than CLaf and CLso- 
ZC1, but the same evidence was not observed for C. sinensis (Fig. 1B). In 
addition, we revealed that the ‘Ca. Liberibacter’ spp. and closely related 
species L. crescens and S. meliloti have a similar score, despite the fact 
that S. meliloti has low score support from the host (Fig. 1B). 

Furthermore, we seek to provide which pathways and compounds 
are involved in these interactions in both directions. In the ‘Ca. Lib
eribacter’ spp. – C. sinensis interaction, we mapped a total of 1702 
compounds grouped into 17 pathways, while in the ‘Ca. Liberibacter’ spp. 
– D. citri interaction, we mapped 1141 compounds grouped into 14 
pathways (Fig. S1, Supplementary Table S1). These pathways were 
involved mostly in metabolic pathways, biosynthesis of secondary me
tabolites, biosynthesis of cofactors, and biosynthesis of amino acids. We 
observe that the hosts may supply some compounds involved in specific 
pathways for ‘Ca. Liberibacter’ spp., S. meliloti, and L. crescens, such as 
compounds in D-amino acid metabolism in the C. sinensis-CLam inter
action; and compounds in fatty acid and pyrimidine metabolism in the 
C. sinensis-CLas/ D. citri-CLas interaction (Fig. S2, Fig. S3). 

In general, most of these compounds were involved in metabolic 
pathways, including ATP, UDP-glucose, L-Alanine, 5-Phospho-alpha-D- 
ribose 1-diphosphate, and Folinic acid, following biosynthesis of sec
ondary metabolites. Details of the compounds that were found in the 
hosts-pathogen interaction can be found in Supplementary Table S2. 
Other key pathways for bacterial survival have been found, including 
amino acid biosynthesis, carbon metabolism, and fatty acid metabolism. 
It has been proposed that very-long-chain fatty acids play an important 
role in the axenic growth of pathogenic Liberibacter spp., but this gene is 
missing in all ‘Ca. Liberibacter’ spp. (Leonard et al., 2012). Remarkably, 
we only mapped this compound in the interaction among S. meliloti, 
a closely related model bacterium, C. sinensis and D. citri (Supplementary 

Table S2). Besides, CLas lacks the ability to synthesize phosphatidyl
choline, which is associated with the fluidity, permeability, and poten
tial of bacterial membranes, but encodes a predicted ABC transporter 
system for choline, indicating that it is capable of utilizing extracellular 
choline (Li et al., 2012). We found evidence that D. citri may support this 
compound for CLas (Supplementary Table S2). 

The compounds involved in the BSS were then contracted against 
each ‘Ca. Liberibacter’ spp. We found that L. crescens and CLaf had the 
most exclusive compounds mapped, 33 and 31, respectively (Fig. 1C). 
We mapped L. crescens, compounds with biological roles in the classes of 
organic acids (2-oxoisovalerate), carbohydrates (d-mannose), peptides 
(l-ornithine), and vitamins and cofactors (phylloquinone, menaquinone, 
and nicotinamide). In addition, for CLaf, we found organic acids (ma
late), nucleic acids (dAMP), vitamins and cofactors (pyridoxamine, 
UDP-glucose, biotin) (Supplementary Table S3). 

Finally, we used NetMet (Tal et al., 2020), a tool for predicting the 
metabolic performances of microorganisms and their environments, 
which we defined as a compilation of nutrients provided by the hosts 
citrus and psyllid (Fig. 2). Our analysis shows that the hosts may provide 
practically all needed cellular components, however, some categories 
are host-dependent and/or produced individually by the strain, such as a 
few essential amino acids, cofactors and nucleotides (Fig. 2). 

Throughout the longitudinal study, our in-silico approach was also 
congruent with experimental data of metabolite extracts obtained from 
leaf samples taken from CLas and control grafted lemon plants (Ramsey 
et al., 2020). The authors profiled 25 metabolites using 1H NMR spec
troscopy, including sugars, amino acids, and other primary and sec
ondary metabolites. Interestingly, adenosine, along with many amino 
acids (proline, arginine, and the branched-chain amino acids (BCAA), 
was among the metabolites with the significant concentration changes 
between fruit taken from CLas+ trees and those collected from CLas trees 
(Slisz et al., 2012). Similar metabolites were also reported by other 
studies using different Citrus varieties (Chin et al., 2014; Liu et al., 
2020). 

Fan et al., (2012) observed different transcriptional changes in host 
responses to CLas in highly susceptible C. sinensis and tolerant rough 
lemon (C. jambhiri Lush.) throughout the time course, including lipid 
metabolism and hormone metabolisms, using microarray analysis. 
Furthermore, the authors demonstrated that pathways such as glucose 
metabolism, cell wall metabolism, and stress response were completely 
changed in disease development. Overall, these results indicate that 
several metabolites are available during the infection of ‘Ca. Liberibacter’ 
spp. in Citrus trees may be used by the pathogen to thrive in the plant 
environment. 

Here, we demonstrated that the main common compounds abun
dantly available in the phloem sap and hemolymph environments, such 
as organic acids, and amino acids, vitamins, saccharides, and fatty acids 
(Duan et al., 2009; Killiny, 2017; Killiny et al., 2017; Merfa et al., 2019), 
including the metabolism of purines and pyrimidines, which CLas lacks 
essential enzymes (Hartung et al., 2011), may be provided by the hosts 
for ‘Ca. Liberibacter’ spp. In addition, several studies have shown that 
‘Ca. Liberibacter’ spp. obtain essential nutrients from microbial com
munities other than citrus and psyllid hosts ((Zuñiga et al., 2020; Hu 
et al., 2021). 

Taken together, our findings show that hosts (citrus and psyllid) tend 
to support the nutritional requirements of ‘Ca. Liberibacter’ spp. This 
suggests that the pathogen’s metabolism has become tightly linked to 
hosts, which may reflect in the parasite lifestyle and the complexity to 
isolate in axenic culture ‘Ca. Liberibacter’ spp. in an artificial medium. 
Understanding the interaction between the host and pathogen could aid 
in the development of new disease-control strategies, as well as the 
design of sustainable media culture that supports the growth of the 
bacteria. 
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Merfa, M.V., Pérez-López, E., Naranjo, E., Jain, M., Gabriel, D.W., De La Fuente, L., 2019. 
Progress and Obstacles in Culturing ‘Candidatus Liberibacter asiaticus’, the Bacterium 
Associated with Huanglongbing. Phytopathology® 109 (7), 1092–1101. https://doi. 
org/10.1094/PHYTO-02-19-0051-RVW. 

Michelini, S., Balakrishnan, B., Parolo, S., Matone, A., Mullaney, J.A., Young, W., 
Gasser, O., Wall, C., Priami, C., Lombardo, R., Kussmann, M., 2018. A reverse 
metabolic approach to weaning: In silico identification of immune-beneficial infant 
gut bacteria, mining their metabolism for prebiotic feeds and sourcing these feeds in 
the natural product space. Microbiome 6, 1–18. https://doi.org/10.1186/s40168- 
018-0545-x. 

Moran, N.A., 2002. Microbial Minimalism: Genome Reduction in Bacterial Pathogens. 
Cell 108 (5), 583–586. https://doi.org/10.1016/S0092-8674(02)00665-7. 

Nadarasah, G., Stavrinides, J., 2011. Insects as alternative hosts for phytopathogenic 
bacteria. FEMS Microbiol. Rev. 35 (3), 555–575. https://doi.org/10.1111/j.1574- 
6976.2011.00264.x. 

Ofaim, S., Ofek-Lalzar, M., Sela, N., Jinag, J., Kashi, Y., Minz, D., Freilich, S., 2017. 
Analysis of microbial functions in the rhizosphere using a metabolic-network based 
framework for metagenomics interpretation. Frontiers in. Microbiology.  

Ramsey, J.S., Chin, E.L., Chavez, J.D., Saha, S., Mischuk, D., Mahoney, J., Mohr, J., 
Robison, F.M., Mitrovic, E., Xu, Y., Strickler, S.R., Fernandez, N., Zhong, X., 
Polek, M., Godfrey, K.E., Giovannoni, J.J., Mueller, L.A., Slupsky, C.M., Bruce, J.E., 
Heck, M., 2020. Longitudinal transcriptomic, proteomic, and metabolomic analysis 
of citrus limon response to graft inoculation by Candidatus Liberibacter asiaticus. 
J Proteome Res 19, 2247–2263. https://doi.org/10.1021/acs.jproteome. 9b00802. 

Slisz, A.N., Breksa, A.P., Mishchuk, D.O., McCollum, G., Slupsky, C.M., 2012. 
Metabolomic Analysis of Citrus Infection by Candidatus Liberibacter’ Reveals Insight 
into Pathogenicity. Journal of Proteome Research 11 (8), 4223–4230. https://doi. 
org/10.1021/pr300350x. 

Tal, O., Selvaraj, G., Medina, S., Ofaim, S., Freilich, S., 2020. NetMet: a network-based 
tool for predicting metabolic capacities of microbial species and their interactions. 
Microorganisms 8 (6), 840. https://doi.org/10.3390/microorganisms8060840. 

Thapa, S.P., De Francesco, A., Trinh, J., Gurung, F.B., Pang, Z., Vidalakis, G., Wang, N., 
Ancona, V., Ma, W., Coaker, G., 2020. Genome-wide analyses of Liberibacter species 
provides insights into evolution, phylogenetic relationships, and virulence factors. 
Mol. Plant Pathol. 21 (5), 716–731. https://doi.org/10.1111/mpp.12925. 

Wang, N., Pierson, E.A., Setubal, J.C., Xu, J., Levy, J.G., Zhang, Y., Li, J., Rangel, L.T., 
Martins, J., 2017. The Candidatus Liberibacter-Host Interface: Insights into 
pathogenesis mechanisms and disease control. Annu. Rev. Phytopathol. 55 (1), 
451–482. https://doi.org/10.1146/annurev-phyto-080516-035513. 
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