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‘Candidatus Liberibacter’ species have developed a dependency on essential nutrients and metabolites from the
host cell, as a result of substantial genome reduction. Still, it is difficult to state which nutrients they acquire and
whether or not they are metabolically reliant. We used a reverse-ecology model to investigate the potential
metabolic interactions of ‘Ca Liberibacter’ species, Citrus, and the psyllid Diaphorina citri in the huanglongbing
disease pyramid. Our findings show that hosts (citrus and psyllid) tend to support the nutritional needs of ‘Ca.
Liberibacter’ species, implying that the pathogen’s metabolism has become tightly linked to hosts, which may

reflect in the parasite lifestyle of this important genus.

1. Introduction

The citrus tree is a member of the Rutaceae family and is one of the
major fruit trees in the world, including important crops such as oranges
(C. sinensis), lemons (C. limon), grapefruits (C. paradisi), pomelos
(C. maxima), and limes (C. aurantiifolia). In addition, several biotic and
abiotic issues have challenged the production and quality of citrus fruits
across the world, with huanglongbing (HLB), or greening disease,
standing out for its ability to have a significant impact on Citrus trees.
HLB is caused by a group of Gram-negative bacteria ‘Candidatus Lib-
eribacter’ spp., which include the ‘Candidatus Liberibacter asiaticus’
(CLas), ‘Candidatus Liberibacter americanus’ (CLam), ‘Candidatus Lib-
eribacter africanus’ (CLaf) (Jagoueix et al., 1994). Together, these species
are phloem-colonizing, psyllid-transmitted fastidious bacteria, classified
in the Rhizobiaceae (CLass: Alphaproteobacteria) (Fagen et al., 2014).
‘Ca. Liberibacter’ spp. is transmitted in the hemolymph and salivary
glands of psyllids Diaphorina citri, and since psyllids feed on sap, this
allows bacteria to enter the plant’s phloem (Nadarasah and Stavrinides,
2011). They cause significant metabolic and regulatory changes in the
plant, causing damage to the transport system, affecting the plant’s
defensive mechanisms, and altering the chemical and sensory properties

of the fruit. Blotchy mottle leaves, stunted growth, reduced fruit size,
premature fruit drop, corky veins, and root decline are also observed
(Baldwin et al., 2010; Bové and Barros, 2006; Dala Paula et al., 2018;
Wang et al., 2017).

‘Ca. Liberibacter’ spp. are obligate host-associated bacteria with
specialized living environments in the host plant (i.e., phloem) or vector
(specific psyllid cells, tissues, and organs). As a result, their genomes
undergo extensive gene and DNA loss, resulting in a small genome
(approximately 1.2 Mb) with few genes and correspondingly restricted
metabolic capacities that rely on the regular supply of certain energy
substrates from hosts (Moran, 2002; Thapa et al., 2020). Although
several studies have addressed the interaction of ‘Ca. Liberibacter’ spp.,
citrus, and psyllids (Mafra et al., 2013; Ramsey et al., 2020; de Francesco
et al., 2022), it is still unclear which nutrients they acquire and whether
there is metabolic dependency. Therefore, we employed a reverse
ecology analysis to obtain insights into the potential metabolic interplay
of ‘Ca. Liberibacter’ spp., C. sinensis and the psyllid D. citri. This approach
is based on several computational tools to translate high-throughput
genetic data into large-scale ecological data, which potentially turns
ecology into a high-throughput field (Levy and Borenstein, 2012).

Reverse ecology approaches have been used in different fields,

Abbreviations: HLB, huanglongbing; CLas, Candidatus Liberibacter asiaticus; CLam, Candidatus Liberibacter americanus; CLaf, Candidatus Liberibacter africanus;
KEGG, Kyoto Encyclopedia of Genes and Genomes; BSS, biosynthetic support score; MCI, metabolic complementarity index.
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including microbial-plant interactions to uncover metabolic environ-
ments (Karpinets et al., 2014; Ofaim et al., 2017); in human health, to
quantify microbes’ biosynthetic capabilities across the human oral
microbiome (Bernstein et al., 2019) and to identify immune-beneficial
infant gut bacteria by mining their metabolism for prebiotic feeds
(Michelini et al., 2018). Here, we investigated the potential metabolic
interplay among ‘Ca. Liberibacter’ spp., C. sinensis, and D. citri using
reverse ecology analysis.

2. Material and methods

Public metabolic data were retrieved from the KEGG (Kyoto Ency-
clopedia of Genes and Genomes) database using the function getOrg-
MetabolicData in the Package RevEcoR (Cao et al., 2016). The following
‘Ca. Liberibacter’ spp. was employed in this study: CLas, CLam, CLaf, and
‘Ca Liberibacter solanacearum’ CLso-ZC1 (CLso-ZC1 - Iso). In addition, we
included Liberibacter crescens BT-1 (lcc), a culture representative surro-
gate for plant pathogen ‘Ca. Liberibacter’ (Jain et al., 2019), and
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Fig 1. The potential interplay among ‘Ca Liberibacter’ species, C. sinensis, and the psyllid D. citri depicted through reverse ecology. A, The metabolic networks of ‘Ca’
L. asiaticus (CLas), Citrus, and D. citri. Nodes represent compounds and edges connecting substrates to products. Each network highlights which metabolites were
identified as seeds (blue), which of these seeds were identified as being potentially supported by the second species (red), and the corresponding supporting me-
tabolites in the second network (green). Only the giant components are considered here. B, the distribution of the biosynthetic support score. C, Diagram Ven
showing shared compounds among the ‘Ca’ Liberibacter species. Abbreviations: *Candidatus Liberibacter asiaticus’ (CLas); ’Candidatus Liberibacter americanus’ (CLam);
*Candidatus Liberibacter africanus’ (CLaf); *Candidatus Liberibacter solanacearum’ CLso-ZC1 (CLso); Liberibacter crescens BT-1 (lcc); Sinorhizobium meliloti 1021 (sme).
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Sinorhizobium meliloti 1021 (sme), a closely related model bacterium to
Liberibacter. We also retrieved metabolic data from the hosts C. sinensis
(cit) and D. citri (dci). Each KEGG Organism code is displayed in the front
of the species name in parenthesis.

Next, a matrix was created including the substrate and product for
each species, and then NetCooperate was applied for inferring host-
microbe cooperation (cooperative and competitive potential) (Levy
et al.,, 2015). The biosynthetic support score (BSS), and metabolic
complementarity index (MCI) were measured for species interactions.
The compounds were then annotated in KEGG compounds with bio-
logical roles and the Phytochemical compounds Database
(https://www.genome.jp/kegg/compound/). In addition, NetMet
(https://freilich-lab-tools.com/) (Tal et al., 2020) was used for pre-
dicting the metabolic performances of microbes and their corresponding
combinations in user-defined environments. For that, we took the lists of
species-specific enzymatic reactions (EC numbers) in the Joint Genome
Institute (JGI, https://genome.jgi. doe.gov/portal/) for the ‘Ca. Lib-
eribacter’ spp. and used the C. sinensis and D. citri compounds from
RevEcoR output as environmental input (nutritional resources).

3. Results and discussion

We first calculate the Biosynthetic Support Score (BSS), which
evaluates a host species’ capacity to provide the nutritional re-
quirements of a parasitic or commensal species (Levy et al., 2015). Ac-
cording to network analysis (Fig. 1A), the majority of ‘Ca. Liberibacter’
spp. metabolic pathways were supported by metabolic pathways of
C. sinensis and D. citri, as shown by the support seeds (red dots), indi-
cating that the bacteria obtain compounds exogenously from the hosts.
These seed sets were proven to be compatible with the lifestyles of many
bacteria and typically correspond with various basic aspects of the
species’ surroundings, as well as biological observations of key adap-
tations (Borenstein et al., 2008). Additionally, the distribution of BSS
values of ‘Ca. Liberibacter’ spp. against C. sinensis and D. citri ranged from
approximately 0.1 to 0.8 (Fig. 1B), and there was a significant difference
in BSS scores between bacteria and hosts (Fig. 1B). Our findings suggest
that CLam and CLas are more dependent on D. citri than CLaf and CLso-
ZC1, but the same evidence was not observed for C. sinensis (Fig. 1B). In
addition, we revealed that the ‘Ca. Liberibacter’ spp. and closely related
species L. crescens and S. meliloti have a similar score, despite the fact
that S. meliloti has low score support from the host (Fig. 1B).

Furthermore, we seek to provide which pathways and compounds
are involved in these interactions in both directions. In the ‘Ca. Lib-
eribacter’ spp. — C. sinensis interaction, we mapped a total of 1702
compounds grouped into 17 pathways, while in the ‘Ca. Liberibacter’ spp.
— D. citri interaction, we mapped 1141 compounds grouped into 14
pathways (Fig. S1, Supplementary Table S1). These pathways were
involved mostly in metabolic pathways, biosynthesis of secondary me-
tabolites, biosynthesis of cofactors, and biosynthesis of amino acids. We
observe that the hosts may supply some compounds involved in specific
pathways for ‘Ca. Liberibacter’ spp., S. meliloti, and L. crescens, such as
compounds in D-amino acid metabolism in the C. sinensis-CLam inter-
action; and compounds in fatty acid and pyrimidine metabolism in the
C. sinensis-CLas/ D. citri-CLas interaction (Fig. S2, Fig. S3).

In general, most of these compounds were involved in metabolic
pathways, including ATP, UDP-glucose, L-Alanine, 5-Phospho-alpha-D-
ribose 1-diphosphate, and Folinic acid, following biosynthesis of sec-
ondary metabolites. Details of the compounds that were found in the
hosts-pathogen interaction can be found in Supplementary Table S2.
Other key pathways for bacterial survival have been found, including
amino acid biosynthesis, carbon metabolism, and fatty acid metabolism.
It has been proposed that very-long-chain fatty acids play an important
role in the axenic growth of pathogenic Liberibacter spp., but this gene is
missing in all ‘Ca. Liberibacter’ spp. (Leonard et al., 2012). Remarkably,
we only mapped this compound in the interaction among S. meliloti,
a closely related model bacterium, C. sinensis and D. citri (Supplementary
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Table S2). Besides, CLas lacks the ability to synthesize phosphatidyl-
choline, which is associated with the fluidity, permeability, and poten-
tial of bacterial membranes, but encodes a predicted ABC transporter
system for choline, indicating that it is capable of utilizing extracellular
choline (Li et al., 2012). We found evidence that D. citri may support this
compound for CLas (Supplementary Table S2).

The compounds involved in the BSS were then contracted against
each ‘Ca. Liberibacter’ spp. We found that L. crescens and CLaf had the
most exclusive compounds mapped, 33 and 31, respectively (Fig. 1C).
We mapped L. crescens, compounds with biological roles in the classes of
organic acids (2-oxoisovalerate), carbohydrates (d-mannose), peptides
(l-ornithine), and vitamins and cofactors (phylloquinone, menaquinone,
and nicotinamide). In addition, for CLaf, we found organic acids (ma-
late), nucleic acids (dAMP), vitamins and cofactors (pyridoxamine,
UDP-glucose, biotin) (Supplementary Table S3).

Finally, we used NetMet (Tal et al., 2020), a tool for predicting the
metabolic performances of microorganisms and their environments,
which we defined as a compilation of nutrients provided by the hosts
citrus and psyllid (Fig. 2). Our analysis shows that the hosts may provide
practically all needed cellular components, however, some categories
are host-dependent and/or produced individually by the strain, such as a
few essential amino acids, cofactors and nucleotides (Fig. 2).

Throughout the longitudinal study, our in-silico approach was also
congruent with experimental data of metabolite extracts obtained from
leaf samples taken from CLas and control grafted lemon plants (Ramsey
et al., 2020). The authors profiled 25 metabolites using 1H NMR spec-
troscopy, including sugars, amino acids, and other primary and sec-
ondary metabolites. Interestingly, adenosine, along with many amino
acids (proline, arginine, and the branched-chain amino acids (BCAA),
was among the metabolites with the significant concentration changes
between fruit taken from CLas™ trees and those collected from CLas trees
(Slisz et al., 2012). Similar metabolites were also reported by other
studies using different Citrus varieties (Chin et al., 2014; Liu et al.,
2020).

Fan et al., (2012) observed different transcriptional changes in host
responses to CLas in highly susceptible C. sinensis and tolerant rough
lemon (C. jambhiri Lush.) throughout the time course, including lipid
metabolism and hormone metabolisms, using microarray analysis.
Furthermore, the authors demonstrated that pathways such as glucose
metabolism, cell wall metabolism, and stress response were completely
changed in disease development. Overall, these results indicate that
several metabolites are available during the infection of ‘Ca. Liberibacter’
spp. in Citrus trees may be used by the pathogen to thrive in the plant
environment.

Here, we demonstrated that the main common compounds abun-
dantly available in the phloem sap and hemolymph environments, such
as organic acids, and amino acids, vitamins, saccharides, and fatty acids
(Duan et al., 2009; Killiny, 2017; Killiny et al., 2017; Merfa et al., 2019),
including the metabolism of purines and pyrimidines, which CLas lacks
essential enzymes (Hartung et al., 2011), may be provided by the hosts
for ‘Ca. Liberibacter’ spp. In addition, several studies have shown that
‘Ca. Liberibacter’ spp. obtain essential nutrients from microbial com-
munities other than citrus and psyllid hosts ((Zuniga et al., 2020; Hu
et al., 2021).

Taken together, our findings show that hosts (citrus and psyllid) tend
to support the nutritional requirements of ‘Ca. Liberibacter’ spp. This
suggests that the pathogen’s metabolism has become tightly linked to
hosts, which may reflect in the parasite lifestyle and the complexity to
isolate in axenic culture ‘Ca. Liberibacter’ spp. in an artificial medium.
Understanding the interaction between the host and pathogen could aid
in the development of new disease-control strategies, as well as the
design of sustainable media culture that supports the growth of the
bacteria.
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Fig 2. Profiles of the predicted production of cellular building blocks by the C. sinensis and D. citri. X-axis: *Candidatus Liberibacter asiaticus’ (CLas); ’Candidatus
Liberibacter americanus’ (CLam); ’Candidatus Liberibacter africanus’ (CLaf); *Candidatus Liberibacter solanacearum’ CLso-ZC1 (CLso); Liberibacter crescens BT-1 (lcc);

Sinorhizobium meliloti 1021 (sme).
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