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1 Introduction

One of the main challenges of hadron physics is the understanding of the origin of strangeness
enhancement in high-energy hadronic collisions. This prominent phenomenon consists in the
continuous increase of the strange to non-strange hadron yield ratios with increasing charged-
particle pseudorapidity density at midrapidity (dNch/dη), from low-multiplicity pp collisions,
characterised by dNch/dη ∼ 3 (approximately 40% of the minimum-bias value), up to high-
multiplicity p-Pb collisions, with dNch/dη ∼ 50 [1–5]. For higher values of charged-particle
multiplicity, the yield ratios stay approximately constant up to the highest multiplicities
reached in central Pb-Pb collisions (dNch/dη ∼ 2000) [5]. The enhanced production of strange
hadrons in heavy-ion collisions compared to minimum-bias pp collisions, first observed at
the SPS experiments in the late 90’s [6], was historically considered one of the signatures
of quark-gluon plasma (QGP) formation [7]. The observation of a smooth evolution of
the strange to non-strange yield ratios across different collision systems and centre-of-mass
energies suggests a continuous transition of the underlying hadronisation mechanism that
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determines the hadron chemistry, i.e. the relative abundances of different hadron species,
in high-energy hadronic collisions.

Important insights into the origin of strangeness production in small collision systems came
from the results of the ALICE Collaboration on strange hadron production associated with
hard scattering processes and to the underlying event (UE) in pp and p-Pb collisions [8, 9]. In
the cited ALICE results, in particular, different values and pT dependencies of strange baryon-
to-meson and baryon-to-baryon ratios are measured in- and out-of-jets. The baryon-to-meson
ratio shows an increasing trend at low pT, reaching a maximum value at pT ∼ 3 GeV/c and
then decreasing towards higher pT, giving rise to a broad peak at intermediate pT. This peak is
more pronounced for strange baryons and mesons produced in the UE, while a lower ratio and
a milder evolution with pT are observed within jets. The study of strange hadron production in
hard and soft quantum chromodynamics (QCD) regimes was recently extended using the two-
particle correlation technique as a function of the charged-particle multiplicity [10–12]. Strange
hadrons are found to be mainly produced in the direction transverse to the leading particle,
which is dominated by the UE, where the yields increase significantly with dNch/dη. Instead,
a weaker multiplicity dependence is observed for the production within a rectangular region
around the leading particle, a proxy for the jet axis. Strangeness enhancement with multiplicity,
studied through the ratio of multi-strange baryons to strange mesons, was observed in both
the toward and transverse-to-leading regions with proportional slopes, suggesting it to be
a common feature of both particle production regimes. This effect was further investigated
by studying the event as a whole, selecting isotropic collisions, supposedly driven by large
underlying events, and events characterised by jetty typologies. An enhancement of strange
hadrons is observed in collisions characterised by an isotropic topology with respect to events
with a jet-like topology [13]. Despite a substantial body of high-quality experimental results,
a comprehensive understanding of the underlying mechanisms of strangeness production in
small systems remains unclear, stressing the need for further investigation.

This work exploits a new approach to study strangeness production in pp collisions. For
the first time, the concept of effective energy (Eeff) is introduced in hadronic interactions at
the Large Hadron Collider (LHC). In pp collisions, the effective energy is defined as the energy
available for particle production, which is reduced with respect to the nominal centre-of-mass
energy due to the emission of leading baryons at very-forward rapidity (leading-baryon
effect) [14]. The effective energy was extensively studied by past experiments at the CERN
ISR by investigating its correlation with collision event properties such as the charged-particle
multiplicity, to shed light on the universal features of the QCD. In particular, the results
from several past experiments show that the value of the charged-particle multiplicity at a
given centre-of-mass energy in the case of pp (pp) collisions is systematically lower than in
e−e+ data at the same energy. However, the outcome of the studies performed at the ISR
showed that a universal dependence can be observed if the appropriate definition of the energy
available for particle production (effective energy) is used [15–22]. One way of estimating
the effective energy is by measuring the energy of the leading baryons (Eleading) produced
at forward rapidities in each event hemisphere. The ALICE experiment is well suited to
measure the energy deposited in the very-forward region, which is expected to be mainly due
to baryons with kinematics close to the beam rapidity [23]. This observable can be directly
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connected to the leading-baryon effect, related to the baryon number conservation of incident
hadrons. Assuming the energy deposited at forward rapidity provides an estimation of the
energy of leading baryons, this provides an indirect measurement of the effective energy:

Eeff =
√
s− Eleading ≈

√
s− Eforward . (1.1)

Several phenomenological approaches traditionally employed to model hadronic interac-
tions have been investigated to probe the origin of strangeness enhancement in small collision
systems, including a statistical hadronisation description using the canonical suppression
approach [24], rope hadronisation models including colour reconnection (CR) effects [25],
and two-component (core-corona) models [26]. The general-purpose Monte Carlo generator
PYTHIA [27], in particular, implements colour string fragmentation at its core, and fea-
tures an intrinsic correlation between (multi-)strange hadron production and the number
of multiparton interactions (MPIs) in pp collisions, which are directly connected to the
final-state charged-particle multiplicity at midrapidity. As shown in ref. [28], there is an
anti-correlation between the multiplicity of charged-particles measured at midrapidity and the
energy measured at very-forward rapidity. Within the context of these models, the forward
energy is indicative of the number of MPIs. In particular, a decrease in the average forward
energy is predicted for an increasing number of MPIs. Indeed, the effective energy available
for particle production at midrapidity is expected to be strongly correlated with the number
of parton-parton collisions that occurred in the event.

In this paper, strangeness enhancement is studied by measuring K0
S, Λ + Λ, and Ξ− + Ξ+

in double-differential classes as a function of the charged-particle pseudorapidity density at
midrapidity (dNch/dη) and the very-forward energy (as a proxy for the leading energy). The
ratio of strange hadron yields per charged-particle is related to the forward energy deposit
for similar average dNch/dη values and vice versa. This novel experimental technique is used
to test the traditional paradigm in which strangeness enhancement is found to increase with
midrapidity multiplicity. Such an approach allows for ideal decoupling of the interplay, for
strange hadron production, between global properties of the collision and the produced final
hadronic state, under the assumption that midrapidity multiplicity and leading energy are
independent proxies, given the large η separation.

The paper is organised as follows. Section 2 presents the ALICE experimental apparatus,
and section 3 and 4 discuss the data set and the analysis techniques, respectively. Section 5
presents the studies performed on the phenomenological models, section 6 outlines the tech-
niques used to reconstruct strange hadrons, and section 7 covers the evaluation of systematic
uncertainties. Finally, section 8 presents the results and section 9 reports the conclusions.

2 Experimental apparatus

ALICE is a general-purpose experiment at the LHC dedicated to the study of ultra-relativistic
hadronic collisions. A detailed description of the ALICE apparatus and its performance
can be found in refs. [29] and [30]. In the following, only the sub-detector systems used for
the analysis presented in this paper are described.

Trajectories of charged particles are reconstructed in the ALICE central barrel with the
Inner Tracking System (ITS) [31] and the Time Projection Chamber (TPC) [32]. These
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sub-detectors are located within a large solenoidal magnet, providing a highly homogeneous
magnetic field of 0.5 T parallel to the beam axis. The ITS used during the LHC Run 2
consisted of six cylindrical layers of silicon detectors, concentric and coaxial to the beam
pipe, with a total pseudorapidity coverage |η| < 0.9 with respect to the nominal interaction
point. Three different technologies were used for this detector: the two innermost layers
consisted of silicon pixel detectors (SPD), the two central layers of silicon drift detectors
(SDD), and the two outermost layers of double-sided silicon strip detectors (SSD). The ITS is
used in the determination of primary and secondary vertices, and in the track reconstruction.
For the purpose of this analysis the first two ITS layers were used to provide a midrapidity
multiplicity estimator independent of the ITS track reconstruction.

The TPC is the largest detector in the ALICE central barrel, with a pseudorapidity cov-
erage |η| < 0.9. It is used for charged-particle track reconstruction, momentum measurement,
and particle identification (PID) via the measurement of the specific energy loss (dE/dx) of par-
ticles in the TPC gas. The TPC provides up to 159 spatial points per track for charged-particle
reconstruction. The dE/dx resolution depends on the event multiplicity and is about 5–6.5%
for minimum-ionising particles emerging from the interaction point and reaching the outer
radius of the TPC [30]. For charged-particle tracks reconstructed from their hits in the TPC
and ITS, the transverse-momentum (pT) resolution ranges from about 1% at pT = 1 GeV/c
to about 2% at 10 GeV/c [33]. The resolution in the measurement of the distance of closest
approach (DCA) of primary tracks to the primary collision vertex, projected on the transverse
plane, ranges from about 200 µm at pT = 0.2 GeV/c to about 10 µm at 10 GeV/c [30].

The PID is complemented by the Time-Of-Flight (TOF) system [34]. This detector is
made of Multi-gap Resistive Plate Chambers and is located at a radial distance of 3.7 m
from the nominal interaction point. The TOF detector measures the arrival time of particles
relative to the event collision time provided by the TOF detector itself or by the T0 detectors,
two arrays of Cherenkov counters located at forward and backward rapidities [35]. The TOF
detector is used in combination with the ITS for pile-up rejection, mostly from collisions
which belong to different bunch crossings (out-of-bunch), by requiring that at least one of
the strange hadron decay particles has a reconstructed track with an associated hit in the
TOF detector, as described in section 6.

Collision events are triggered by two plastic scintillator arrays, V0A and V0C [36], located
on both sides of the interaction point, covering the pseudorapidity regions 2.8 < η < 5.1
and −3.7 < η < −1.7, respectively. Each array consists of four concentric rings, each ring
comprising eight cells with the same azimuthal coverage. The V0A and V0C scintillators can
be used to characterise events on collision multiplicity [37]. Given the η-gap with respect
to the midrapidity region, such an estimator can be effectively used to select events with
different activities in the forward region even when the multiplicity at midrapidity is fixed.

The effective energy is accessible by measuring the energy carried by nucleons emitted
at forward rapidities using two zero-degree calorimeters (ZDC) [30, 38]. These identical
detectors, placed at ±112.5 m from the ALICE interaction point, on both sides, consist of a
neutron (ZDC-N) and a proton (ZDC-P) calorimeter. The ZDC-N calorimeters cover the
pseudorapidity range |η| > 8.8, while the geometrical coverage of the ZDC-P calorimeters
is 6.5 < |η| < 7.4. In this work, the effective energy is estimated using only the neutron
calorimeter, as will be discussed in the following sections.
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3 Data sample

The data used for this analysis were collected in 2015, 2017, and 2018 during the LHC pp
runs at

√
s = 13 TeV, in specific data-taking periods where the ZDC detectors were switched

on. A limited half-crossing angle of the beams in the vertical plane was applied in these
runs, corresponding to +45 µrad for 2015 data and +70 µrad for 2017 and 2018 data. This
configuration guarantees that all the neutrons emitted at very forward rapidities fall within
the ZDC-N geometric acceptance. The acceptance of the neutron calorimeter is not affected
provided that the vertical half-crossing angle is smaller than +60 µrad for a nominal vertex
vertical position on the LHC axis (yvtx = 0 mm), and smaller than +79 µrad for a position of
yvtx = −1 mm. The yvtx was equal to 0 mm for 2015 data, and equal to −1 mm for 2017 and
2018 data. A minimum bias (MB) event trigger was used, which requires coincident signals
in the V0 detectors to be synchronous with the bunch crossing time defined by the LHC
clock. In order to ensure full geometrical acceptance of central barrel detectors and reject
background collisions, the coordinate of the primary vertex along the beam axis is required to
be within 10 cm from the nominal interaction point. The contamination from beam-induced
background is removed during the offline analysis using the timing information from the V0
detectors and taking into account the correlation between the number of tracklets, short
track segments reconstructed at midrapidity, and the number of hits in the SPD detector [30].
The data periods used in the analysis are characterised by a µ value (average number of
proton-proton interactions per bunch crossing) which ranges from ∼ 1% to a maximum value
of ∼ 14%. Events with more than one reconstructed primary interaction vertex in the same
bunch crossing (in-bunch pile-up) identified from tracklets in the SPD are tagged as pile-up
and removed from the analysis [30]. In addition, events with pile-up occurring during the
drift time of the TPC are rejected based on the correlation between the number of SDD and
SSD clusters and the total number of clusters in the TPC, as described in ref. [39]. To further
suppress the pile-up contribution, mostly from out-of-bunch collisions, it is requested that at
least one of the tracks from the decay products of the (multi-)strange hadron under study is
matched in either the ITS or the TOF detector. The results are reported for the INEL>0
event class, defined by requiring at least one charged particle within the pseudorapidity
interval |η| <1, corresponding to ∼75% of the total inelastic cross section. A total number of
1.29×108 MB events were selected after applying these requirements.

4 Event classification

The measurement of strange hadron production presented in this paper is performed as
a function of the charged-particle multiplicity density at midrapidity and of the leading
“zero degree” energy. This approach is aimed at investigating the connection of strangeness
production to global properties of the pp collision, experimentally measured through the
forward energy in the event, and to local effects, characterised by the charged-particle
multiplicity at midrapidity. The dynamical range between measured global and local event
properties spans a pseudorapidity gap of 8 units, equivalent to the separation between the
ALICE ZDC and the central barrel.
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Through a two-dimensional analysis in terms of these observables, this approach considers
events with defined global properties, grouping collisions in classes with similar average values
and profile distributions of the zero-degree energy, and explores different local conditions in
terms of charged-particle multiplicity at midrapidity: in this case, strangeness production
can be studied in relation to jet production and local fluctuations in the hadronisation
process. In a complementary way, this work considers events with defined local properties,
i.e. similar multiplicity of particles produced at midrapidity, and explores different forward
energy deposits: in this case, the local environment in which strangeness is produced is fixed
in terms of parton density, while global properties of the event may vary, for example, due to
the available energy in the collision or the number of parton-parton interactions that occurred.

The collision events characterised by defined local-multiplicity and forward energy proper-
ties are selected using an approach which resembles an event-shape engineering technique [40].
While the final results will be presented as a function of dNch/dη and of the zero-degree energy,
the sample of pp collisions is divided into classes defined through two independent estimators:
one covering the forward rapidity region (V0M) and one exploiting information at midrapidity
(SPDClusters). The V0M estimator is based on the signal amplitude measured by the V0
detectors (V0A and V0C), which reflects the total charge deposited in the forward region.
The SPDClusters estimator is based on the number of hits (clusters) measured at midrapidity
by the two SPD layers. The V0M detectors are positioned closer to midrapidity compared to
the ZDC, resulting in a smaller η gap between the SPD and V0M than the 8-unit separation
between the forward calorimeters and the central barrel. Based on the signals measured by the
V0 and SPD detectors, the events are divided into percentile classes, which reflect the fraction
of events in each interval over the total number of events. Figure 1 illustrates the relative po-
sition and pseudorapidity coverage of the detectors used to engineer event classes in this work.

To check if the selections based on the V0M and SPDClusters estimators introduced any
biases which could alter the relative abundances of different hadron species the evolution
of charged- and neutral-kaon abundances with multiplicity was checked using a PYTHIA 8
Monte Carlo sample which includes the simulation of the detector response. The number
of reconstructed charged and neutral kaons were found to be very similar, independently
of the multiplicity, as expected due to their similar masses.

The charged-particle multiplicity density is measured from SPD tracklets in the pseudora-
pidity interval |η| < 0.5 using the technique described in ref. [41]. Note that in the following,
for simplicity, the average charged pseudorapidity density ⟨dNch/dη⟩ is reported as ⟨nch⟩. The
very-forward energy (ZN) is measured as the amplitude of the signal detected only by neutron
calorimeters, to avoid the strong acceptance limitations related to the beam optics deflection
of charged particles, which can lead to underestimating the energy event-by-event in the
ZDC-P calorimeter. As a result, the correlation of ZDC-P energy and the energy of particles
emitted in the forward direction would be affected from larger systematic uncertainties than
the ZDC-N case. Considering acceptance limitations, the ZDC signal in pp collisions is not
very effective to classify events in percentile selections on an event-by-event basis. On the
contrary, it works very well on average to characterise global properties of the collisions,
when event classes are built with independent estimators. In Pb-Pb collisions, the energy
calibrations of ZDC-N spectra are performed using the narrow peaks measured from the
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Figure 1. Illustration of the relative positions and pseudorapidity coverage of the SPD, TPC, ZDC-N,
ZDC-P and V0 detectors used in this study. Dimensions are not to scale.

detection of single neutrons. Instead, in pp collisions there is no reliable way to calibrate
the calorimeter spectra in energy units without introducing model dependencies and large
uncertainties. In this paper, self-normalised quantities are used, namely signals normalised to
their average minimum-bias value, which allow one to overcome this problem and to obtain
results which are directly comparable to model predictions.

Five different types of classifications are defined for the analysis, based on different
combinations of selections on the V0M and SPDClusters percentiles, in order to allow the
study of strange hadron production as a function of particle density at midrapidity and
leading energy. The first type of classification is performed using V0M percentile intervals
and results into event classes with increasing average local multiplicity and by decreasing
average very-forward energy deposits. The event classes are labelled I, II, III, etc., where
class I corresponds to the highest multiplicity and lowest ZN energy class. These selections
will be referred to as “standalone”. The second and third types of classification are performed
by selecting events with similar average values of energy detected in the ZDC-N calorimeters,
but different ⟨nch⟩. This is achieved using a combination of the V0M and SPDClusters
estimators, and, also in this case, class I corresponds to the highest multiplicity class. In
each event class, the distributions of the ZN energy and of the number of raw tracklets
reconstructed at midrapidity were studied. The selections were engineered to ensure not only
a consistent average value of ZN energy in the different classes, but also similar distributions.
Two classifications were built, one consisting of events with high ZN energy and one of
events with low ZN energy. They will be referred to as “high-/low-ZN -energy” selections.
The distributions of the number of tracklets and ZN energy for these classifications are
reported in figure 2. For the fourth and fifth types of classification, the sample is divided
into classes characterised by similar average values of charged-particle pseudorapidity density
at midrapidity and different ZN energies, where class I corresponds to the lowest ZN energy.
In this case, the selections are defined by fixing the SPD clusters in a narrow percentile
range and varying the V0M estimator. Also in this case, the selections are defined so that
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the different classes have not only a consistent average value of local multiplicity, but also
similar distributions. These classifications will be referred to as “high-/low-local-multiplicity”
selections, and the distributions of the number of tracklets and ZN energy in these classes
are reported in figure 3. In this way, a total of five types of event classifications are defined,
summarised in table 1.
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Figure 2. Distributions of raw tracklets and ZN energy for high- (a) and low- (b) ZN -energy
event classes, which are based on different combinations of selections on the V0M and SPDClusters
percentiles (see text for details).
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Figure 3. Distributions of raw tracklets and ZN energy for high- (a) and low- (b) local-multiplicity
event classes, which are based on different combinations of selections on the V0M and SPDClusters
percentiles (see text for details).
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σ/σINEL>0 σ/σINEL>0

Classification type Event Class V0M selection SPDClusters selection ⟨nch⟩|η|<0.5 ⟨ZN⟩|η|>8.8 (a.u.)
INEL>0 0–100.0% 0–100.0% 6.89±0.11 280±8

Standalone I 0–0.90% 0–100.0% 25.75±0.40 80±2
II 0.90–4.5% 0–100.0% 19.83±0.30 106±3
III 4.5–8.9% 0–100.0% 16.12±0.24 136±4
IV 8.9–13.4% 0–100.0% 13.76±0.21 163±5
V 13.4–17.9% 0–100.0% 12.06±0.18 186±6
VI 17.9–26.8% 0–100.0% 10.11±0.15 217±7
VII 26.8–35.8% 0–100.0% 8.07±0.12 254±8
VIII 35.8–44.8% 0–100.0% 6.48±0.09 287±9
IX 44.8–63.5% 0–100.0% 4.64±0.06 327±10
X 63.5–100.0% 0–100.0% 2.52±0.03 369±11

High-ZN -energy I 35.8–54.0% 0–17.9% 13.92±0.34 256±8
II 26.8–63.5% 8.9–26.8% 11.29±0.27 251±8
III 26.8–44.8% 17.9–35.7% 9.05±0.22 254±8
IV 17.9–44.8% 26.8–44.7% 7.27±0.17 256±8
V 0–26.8% 44.7–100.0% 4.28±0.10 255±8

Low-ZN -energy I 17.9–26.8% 0–8.9% 18.73±0.43 180±5
II 8.9–26.8% 8.9–17.9% 13.6±0.31 179±5
III 0–17.9% 17.9–26.8% 10.43±0.23 175±5
IV 0–8.9% 26.8–44.7% 7.74±0.17 173±5

High-local-multiplicity I 0–4.5% 8.9–17.9% 13.97±0.16 121±4
II 4.5–8.9% 8.9–17.9% 13.79±0.17 141±4
III 8.9–17.9% 8.9–17.9% 13.65±0.17 167±5
IV 17.9–26.8% 8.9–17.9% 13.48±0.17 197±6
V 26.8–35.8% 8.9–17.9% 13.35±0.17 224±7
VI 35.8–44.8% 8.9–17.9% 13.24±0.17 251±8
VII 44.8–100.0% 8.9–17.9% 13.15±0.16 286±9

Low-local-multiplicity I 0–17.9% 35.7–44.7% 6.19±0.07 210±6
II 17.9–26.8% 35.7–44.7% 6.15±0.07 239±7
III 26.8–35.8% 35.7–44.7% 6.14±0.07 263±8
IV 35.8–44.8% 35.7–44.7% 6.13±0.08 285±9
V 44.8–54.0% 35.7–44.7% 6.09±0.08 306±9
VI 54.0–63.5% 35.7–44.7% 6.07±0.09 325±9
VII 63.5–100.0% 35.7–44.7% 6.07±0.09 352±11

Table 1. Types of classifications defined according to different combinations of V0M and SPDClusters
estimators (see text for details). For each event class, the third and forth columns summarise the
fraction of the INEL > 0 cross section corresponding to the V0M and SPDClusters estimators,
respectively. The average values of ⟨nch⟩ and ZN energy calculated for each event class are reported
in the fifth and sixth columns, respectively.
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5 Phenomenological models and comparison to the data

Several phenomenological models have been investigated to understand the underlying
mechanisms of strangeness production in hadronic collisions. Some of these models adapt
concepts from heavy-ion physics, such as statistical hadronisation and hydrodynamic expansion
(including core-corona models), to smaller systems. Alternatively, other models extend proton-
proton collision descriptions, based on hard-partonic interactions, underlying event, and
string fragmentation, to higher multiplicity regimes, introducing new production mechanisms.
In this context, PYTHIA [27] is a general purpose Monte Carlo event generator which
implements colour string fragmentation at its core. In the Monash tune of PYTHIA 8,
MPIs have been introduced to describe charged-particle pseudorapidity densities in high
energy hadronic collisions, and colour reconnection [42] mechanisms have been implemented
to account for pT spectra modifications in events featuring a larger or smaller final state
multiplicity. LHC results triggered several new paths of phenomenological investigation,
targeted at reproducing the multiplicity dependence observed for strangeness and baryon
production yields. For this purpose, sophisticated colour reconnection mechanisms allowing
for three-leg junctions [43] were introduced to better describe baryon production yields. In
addition, a modified string tension in dense QCD environments [44] has been proposed to
describe strangeness enhancement in hadronic collisions, allowing for overlapping strings to
interact forming colour ropes. In the following, this upgraded version of PYTHIA 8 will
be referred to as QCD-CR+Ropes. It is worth noting that when switching-on the rope
mechanism, improved CR has to be enabled. Therefore, the features distinguishing the
Monash and QCD-CR+Ropes tunes may come from one of these additional mechanisms,
or from their interplay.

The comparison of phenomenological models to data is performed at the generator level,
i.e. using only the kinematic information of the generated particles, without simulating their
passage through the ALICE detector and reconstructing each event as for real collisions.
The generated samples consist of 2 × 109 pp collision events at

√
s = 13 TeV simulated

with the Monash tune of the PYTHIA 8 generator and 2 × 109 simulated with PYTHIA 8
QCD-CR+Ropes. The analysis procedure reproduces the one used for the data, starting from
the generator-level information. The leading energy is simulated considering the acceptance
of the ZDC-N calorimeter, i.e. as the sum of the energy of neutral primary particles in
the pseudorapidity region |η| > 8.8. The V0M signal is simulated by counting primary
charged particles generated in the detector acceptance. The SPDClusters estimator is
simulated considering both primary and secondary particles from weak decays produced in
the acceptance of the SPD layers. Using a Monte Carlo sample which includes the simulation
of the detector response, the agreement between simulated quantities (percentile estimators
and ZN energy) and reconstructed ones was then checked. The observed differences are
small, with a standard deviation of at most 15%.

5.1 Forward energy as a function of charged-particle production at midrapidity

Figure 4 summarises the relation between the self-normalised ⟨ZN⟩ signal and ⟨nch⟩ for
the event classes listed in table 1. The results obtained in this work with the standalone
selections are in agreement with ALICE results reported in ref. [28], where the forward energy

– 12 –



J
H
E
P
0
3
(
2
0
2
5
)
0
2
9

0 0.5 1 1.5 2 2.5 3 3.5 4
INEL>0

|<0.5η|
〉 

ch
n 〈 / 

|<0.5η|
〉 

ch
n 〈

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

IN
E

L
>

0

|>
8
.8

η|〉 
Z

N
 〈

  
/ 

|>
8
.8

η|〉 
Z

N
 〈 

Standalone 

Low-local-multiplicity 

High-local-multiplicity 

-energy ZNLow-

-energy ZNHigh-

PYTHIA 8 Monash

PYTHIA 8 QCD-CR+Ropes

 = 13 TeVsALICE, pp 

Figure 4. Self-normalised ⟨ZN⟩ signal as a function of the self-normalised charged-particle multiplicity
measured at midrapidity ⟨nch⟩. Statistical errors are negligible, only systematic uncertainties are shown.

detected by the ZDC was studied as a function of the charged-particle multiplicity produced
at midrapidity in pp and p-Pb collisions [28]. The two quantities are anti-correlated: the
higher the activity measured at midrapidity, the smaller the forward energy. This observation
can be interpreted as a positive correlation of charged-particle production with the effective
energy, assuming the deposit in the ZDC calorimeters is proportional to the energy of leading
particles. As discussed in section 4, in this work multi-differential event classes are defined
in order to disentangle the correlation between midrapidity particle production and the
energy measured at forward rapidity. In the high-local-multiplicity classes, events with large
⟨nch⟩ show ZN energy values which cover a range between about 0.4 and 1.0 times the
minimum-bias value, while for the low-local-multiplicity classification, the self-normalised
ZN values range between about 0.7 and 1.3. The total forward energy interval covered by
the standalone selections ranges between about 0.3 and 1.3 times the minimum-bias value.
Therefore, also at fixed multiplicity, this analysis is able to select events covering a significant
portion of the ZN signal interval that is covered by the standalone selections. Similarly, the
self-normalised multiplicity values in the classes selected requiring high ZN energy cover
a range between about 0.5 and 2.0, and between about 1.1 and 2.7 for the low ZN . The
total average multiplicity interval covered by the standalone selection ranges between 0.4 and
3.8 times the minimum-bias value, therefore, also at fixed ZN energy, a significant range of
accessible multiplicities is covered. Data are compared with MC simulations based on the
PYTHIA 8 event generator with the Monash and QCD-CR+Ropes tunes. Both tunes are
able to describe the overall decreasing trend of the standalone selections. In particular, a
good agreement between data and MC is observed at low nch corresponding to high ZN

energies, while at low ZN energies the agreement is worse, with both PYTHIA 8 tunes
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underestimating the forward energy by up to 40%. It is worth noting that the two tunes can
qualitatively describe the behaviour of the data points in all the multi-differential selections.
The high-/low-local-multiplicity classes select simulated collisions with fixed multiplicity,
underestimating by up to 10% the multiplicity values with respect to the data points and
covering a ZN energy range similar to the measurements. The high-ZN -energy and low-ZN -
energy event classes select simulated collisions with forward energy values within ±10% with
respect to the measured ones, covering a range of midrapidity multiplicity similar to the data
points. In general, the agreement between data and MC is found to be slightly better for
PYTHIA 8 with Monash tune, however, one can observe that including the hadronisation
mechanisms implemented in the QCD-CR+Ropes tune does not have a big impact on the
description of the correlation between the multiplicity and the leading energy.

5.2 Sensitivity to global and local effects in PYTHIA 8

According to the PYTHIA 8 event generator, pp collision events with high multiplicity at
midrapidity mainly originate either from multiple semi-hard MPIs occurring within the same
pp collision or from multi-jet final states (hard processes). In particular, the presence of jets
at midrapidity in the final state can be studied in the model by considering, as an example,
the average transverse momentum of charged pions (⟨pπ

T⟩|y|<0.5), proxy for the pT of the hard
parton-scattering process. To investigate the sensitivity of the applied selections to global and
local effects, the correlation of the number of MPIs and of the average pT of pions with the
local charged-particle multiplicity and the leading energy is studied using the multi-differential
approach introduced in this paper. The results presented in this section are obtained with
the PYTHIA 8 event generator with the Monash tune, but qualitatively similar results are
produced with the QCD-CR+Ropes tune. The correlation between the effective energy and
the number of MPIs can provide important insights into the interpretation of the results on
strange hadron production discussed in this paper. In fact, the string hadronisation processes
implemented in PYTHIA are strongly influenced by the number of MPIs occurred in the
collision and the average energy produced at very forward rapidity was found to decrease
with an increasing number of MPIs [28]. Figure 5 shows the average number of parton-parton
interactions as a function of the midrapidity multiplicity (left) and of the forward energy in the
ZDC-N acceptance (right) in the event classes introduced in this work. In the high-/low-local-
multiplicity event classes (orange and red circles), the average number of MPIs increases at
fixed midrapidity multiplicity with decreasing leading energies. On the other hand, once events
with defined leading energy are selected (azure and blue squares), the average number of MPIs
does not change significantly with the midrapidity multiplicity, exhibiting a rather flat trend in
the left panel of figure 5. It is worth noting that the average number of MPIs shows a universal
dependence with the leading energy, i.e. common for all differential selections, as it can be
seen in the right panel of figure 5. These results show that the leading energy is a powerful
observable to probe the dependence of particle production on the number of MPIs in PYTHIA.

Figure 6 shows the average transverse momentum of charged pions as a function of
the charged-particle multiplicity at midrapidity (left) and of the leading energy in the
ZDC-N acceptance (right). Once events with defined leading energy are selected (high-/low-
ZN -energy classes), the average pT is found to increase with the midrapidity multiplicity,
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Figure 5. Average number of MPIs from PYTHIA 8 simulations as a function of the self-normalised
midrapidity multiplicity ⟨nch⟩ (left) and of the self-normalised forward energy ⟨ZN⟩ (right) in the
different multi-differential classes introduced in this work. Statistical uncertainties are shown as
vertical bars, but they are hardly visible in the figures.

following a common trend for all event classes. On the other hand, for similar midrapidity
multiplicities, the (⟨pπ

T⟩|y|<0.5) shows only a very mild dependence with the leading energy.
This observation suggests that local phenomena, such as jets at midrapidity, are correlated
with local observables, such as the charged-particle multiplicity, and rather independent from
global properties of the event, e.g. the available energy in the collision. In summary, the studies
on the output of the PYTHIA 8 event generator indicate that a two-dimensional analysis as
a function of the midrapidity multiplicity and the very-forward energy can disentangle the
connection of a given phenomenon to global and local properties of the collision.

6 Cascade and V0 selection

The pT spectra of K0
S, Λ(Λ), and Ξ−(Ξ+) are measured reconstructing the (multi-)strange

hadrons at midrapidity (|y| < 0.5) using their weak-decay channels:

• K0
S → π+ + π− Branching Ratio = (69.20 ± 0.05)%,

• Λ → p + π− Branching Ratio = (63.9 ± 0.5)%,

• Ξ− → Λ + π− Branching Ratio = (99.887 ± 0.035)%.

along with their charge conjugates [45]. The Λ(Λ) and K0
S candidates are reconstructed using

the standard ALICE weak-decay finder. This algorithm searches for neutral weak-decay
topologies, called V0, by reconstructing oppositely-charged particle tracks originating from a
displaced vertex, as described in refs. [1, 2]. In the case of the Ξ± baryons, the cascade finder is
used, which searches for a pair composed of one reconstructed V0 and one additional charged
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Figure 6. Average transverse momentum of charged pions from PYTHIA 8 simulations as a function
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(right) in the different multi-differential classes introduced in this work. Statistical uncertainties are
shown as vertical bars, but they are hardly visible in the figures.

particle (bachelor), pointing inward to the same displaced vertex. In the case of a V0 decay
vertex located inside the ITS volume, at least one hit in any of the ITS layers is requested in
the reconstruction of the charged tracks originating from the V0 decay. The reconstructed
tracks, selected in the pseudorapidity region |η| < 0.8, are required to fulfil a set of quality
criteria, such as to produce signal in at least 70 TPC readout pads out of a maximum of 159.
Moreover, the fraction of TPC pad rows with a signal over the number of clusters expected
based on the reconstructed trajectory is required to be at least 80%. This condition ensures
that tracks do not have large gaps in the associated hits in the radial direction.

To reduce the combinatorial background, a set of topological selections is applied to the
reconstructed hadrons. The analysis relies on the same set of standard cuts used in ref. [46].
For the measurement of V0s, the distance of closest approach between the V0 daughter tracks
is required to be less than 1 standard deviation, the DCA between each V0 daughter and
the primary collision vertex larger than 0.06 cm and the radial distance between primary
and secondary vertices larger than 0.5 cm. The cosine of the pointing angle, defined as the
angle between the vector connecting the primary and secondary vertices and the total V0

reconstructed momentum, is required to be larger than 0.995. A proper-lifetime selection
is applied to the reconstructed Λ (K0

S) candidates by requiring mL/p to be lower than 20
(30) cm, where m is the candidate mass, L is the linear distance between the candidate
decay point and the primary vertex, p the total momentum. Candidates compatible with
the alternative V0 hypothesis are rejected if they lie within ±5 MeV/c2 (±10 MeV/c2) of the
nominal Λ (K0

S) mass. For cascades, the DCA between the bachelor track and the primary
vertex is required to be larger than 0.04 cm, the DCA between the V0 and the primary
vertex larger than 0.06 cm, while the DCA between the bachelor track and V0 lower than
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1.3 cm. The DCA between the V0 daughter meson (baryon) and the primary collision vertex
is required to be larger than 0.04 (0.03) cm, while the DCA between the V0 daughter tracks
is required to be less than 1.5 standard deviations. In addition, a minimum radial distance of
0.6 (1.2) cm between the primary and cascade (V0) weak-decay vertex is required. The cosine
of the pointing angles of both cascade and V0 is required to be larger than 0.97. The V0

produced in cascade decays are required to match an invariant mass window of ± 8 MeV/c2

with respect to the nominal Λ mass, and a proper-lifetime selection is applied, requiring
mL/p lower than 3cτ , where τ is the mean lifetime of the particle. In addition, in order to
reject the residual out-of-bunch pile-up background on the measured yields, it is requested
that at least one of the tracks from the decay products of the (multi-)strange hadron under
study is matched in either the ITS or the TOF detector. The selection criteria applied for
this measurement are optimised based on detailed studies done on Monte Carlo simulations
and are similar to those already used in previous measurements [1–5, 8, 9].

The particle identification is based on the energy loss per unit of track length (dE/dx)
measured by the TPC. Protons and pions are identified by requiring that their measured
dE/dx is within 5σdE/dx from the expected average calculated using the Bethe-Bloch formula,
where σdE/dx is the dE/dx resolution.

6.1 Signal extraction

The K0
S, Λ, and Ξ± raw yields are extracted in different intervals of strange-hadron pT from

fits to the invariant mass distributions of their decay products. The mass distributions were
first fitted with a Gaussian function, for modelling the signal, and a linear function to model
the background. The peak region is defined within ± 6σ for V0s and ± 4σ for cascades with
respect to the Gaussian mean extracted in each pT interval, being σ the standard deviation
of the Gaussian function. Adjacent background bands, covering a mass interval as wide
as the peak region, are defined on both sides. The symmetric background bands are well
reproduced through a linear function, allowing signal extraction through a bin counting
procedure that subtracts background counts from the signal region. The purity of the strange
hadron candidate samples, defined as the ratio between the signal and the total number of
candidates in the peak region, is larger than 0.9 for K0

S, Λ and Λ, and larger than 0.8 for
Ξ− and Ξ+. Examples of invariant mass distributions and fit functions used for the signal
extraction are shown in figure 7 for K0

S, Λ, and Ξ− in different pT intervals.

6.2 Efficiency and secondary Λ corrections

The raw pT spectra of K0
S, Λ(Λ), and Ξ− (Ξ+) are corrected for the reconstruction efficiency

and the feed-down contribution from higher-mass states. Only the Λ(Λ) are found to be
affected by a significant contamination from feed-down due to the decay of charged Ξ− (Ξ+)
and neutral Ξ0. The contamination from secondary K0

S, Λ(Λ), and Ξ− (Ξ+) originating from
interactions of primary particles and the detector materials is found to be negligible. All
corrections are calculated using Monte Carlo (MC) simulations based on the PYTHIA 8
event generator. The interactions of the generated particles with the experimental apparatus
are modelled by GEANT4 [47]. To reduce the statistical uncertainties on the reconstruction
efficiency of cascades without the need to simulate too many events, dedicated MC productions
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Figure 7. Invariant mass distributions for K0
S (a), Λ (b), and Ξ− (c) in different pT intervals for the

inclusive INEL > 0 class. The candidates are reconstructed in the rapidity interval |y| < 0.5. The red
and grey areas delimited by the short-dashed lines are used for signal extraction in the bin counting
procedure. The red dashed lines represent the fit to the invariant mass distributions used to define
signal and background regions.

enriched by an injected sample of cascades were used, where one charged Ξ and one charged
Ω are added into each PYTHIA 8 event. The reconstruction efficiencies of K0

S, Λ(Λ), and
Ξ− (Ξ+) vary from approximately 2% at low pT to about 30% at high pT. They are found
to be independent of the selection class within 2%. For this reason, the MB efficiency is
applied for all classes and a 2% systematic uncertainty is assigned. In order to estimate the
contamination from secondary Λ(Λ) the measured Ξ− (Ξ+) spectra are used. The fraction of
secondary Λ(Λ) particles in the measured spectrum varies between 10% and 20%, depending
on pT and multiplicity. The input pT distributions of the injected particles are corrected
using multiplicity and pT-dependent weights calculated as the ratios of measured and injected
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pT spectra in the simulation. A Lévy-Tsallis parametrisation [48] is used to describe the
measured pT shape. The parameters of the Lévy-Tsallis functions are obtained in the first
iteration using the efficiency calculated based on the default pT distributions. The obtained
parametrisations in different multiplicity intervals are then used to re-weight the input shape
in MC and these updated efficiencies are used to correct the reconstructed spectra. This
iterative procedure converges already after two iterations. Finally, in order to achieve a
proper normalisation of the spectra, corrections for event loss and signal loss due to the
applied event selection criteria are applied to the measured spectra.

The pT-integrated yields of strange hadrons are then extracted from the transverse
momentum spectra, using extrapolations for the unmeasured regions. For this purpouse, the
pT-distributions are fitted using a Lévy-Tsallis parametrisation, which best describes the
individual spectra for all particles over the full pT range.

7 Systematic uncertainties

Several sources of systematic uncertainties affecting the measured strange-hadron pT-
differential yields are considered. The different contributions for three representative pT
values are summarised in table 2 for the INEL>0 sample.

To evaluate the systematic uncertainty associated with a given selection, the analysis
is repeated by varying the selection criteria on that specific variable within defined ranges.
The results are then compared to the ones obtained with the standard set of cuts. The
systematic uncertainty due to possible imperfections in the Monte Carlo simulations used
to determine the acceptance and efficiency correction factors was estimated by repeating
the analysis varying all track and topological selections. The selection criteria were varied
within ranges that led to a maximum variation of ±10% in the raw signal yield, similar to
the approach used in refs. [1, 2]. The corrected yields were calculated for each variation and
compared with those obtained with the default selections. Only variations giving results
differing from the default ones by more the 1σ of the statistical uncertainty were considered
to define the systematic uncertainty, following the prescription in ref. [49]. The uncertainty
was found to range from about 1% to about 4% depending on the hadron species and pT.

The uncertainty related to the PID selections was evaluated by varying the dE/dx
requirement between 4σ and 7σ. This selection is particularly important to reduce the
combinatorial background in the strange baryon invariant mass distribution. The uncertainty
was found to be at most 1% for all particle species.

The contribution from the competing V0 decay rejection was studied by removing entirely
this condition for Λ and Λ and by varying the mass window down to 3 MeV/c2 and up
to 5.5 MeV/c2 for K0

S. It resulted in a deviation on the corrected yields of at most 3%
for Λ + Λ and 1% for K0

S.
The systematic contribution related to the selection on the proper lifetime of the candidate

was computed by varying the requirements between 2.5 and 5 cτ for strange baryons and
between 5 and 15 cτ for K0

S. The statistically significant deviations were found to be at most
3% for Λ + Λ and negligible (< 1%) for K0

S and Ξ− + Ξ+.
The stability of the signal extraction method was checked by varying the widths used

to define the signal and background regions in the invariant mass distributions in terms
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Hadron K0
S Λ + Λ Ξ− + Ξ+

pT (GeV/c) ≈ 0.5 ≈ 4.8 ≈ 9.0 ≈ 1.0 ≈ 3.5 ≈ 7.0 ≈ 1.3 ≈ 2.8 ≈ 4.7
Topological and track 1.7 2.4 2.3 3.0 3.0 4.3 3.3 1.1 2.0

TPC dE/dx 0.1 0.1 negl. 0.3 0.1 0.6 0.3 0.1 negl.
Competing V0 0.1 0.4 negl. 1.1 0.3 negl. n.a. n.a. n.a.
Proper lifetime 0.1 negl. negl. 2.9 2.6 negl. 0.7 0.2 0.6

Signal extraction 0.5 0.5 2.2 0.3 0.7 1.2 negl. 0.6 0.6
Feed-down n.a. n.a. n.a. 1.0 1.0 1.0 n.a. n.a. n.a.

p abs. cross sect. n.a. n.a. n.a. 0.2 0.2 0.2 0.3 0.4 0.4
In-bunch (IB) pileup 1.6 2.5 2.5 2.0 2.9 2.9 2.0 2.0 2.9

OOB pileup 0.2 0.8 2.6 0.6 2.1 2.9 0.4 1.0 2.5
Material budget 1.1 0.5 0.5 1.4 0.8 0.8 2.9 1.5 0.6

Total 2.7 3.6 5.0 5.1 5.5 5.9 4.9 2.9 4.4

Table 2. Main sources of systematic uncertainties (expressed in %) of the pT differential yields,
reported for low, intermediate, and high pT. These values are calculated for the INEL>0 data sample.
Results in other classes are further affected by an uncertainty originating from the class selection
dependence of the efficiency (2%) and, in the case of the Λ and Λ, of the feed-down contributions (2%).

of the number of sigmas of the signal peak. Moreover, the raw counts are extracted using
a fitting procedure for the background contribution and compared to the standard ones
computed using a bin counting technique. An uncertainty ranging up to 2% depending on
pT is found for V0s and cascades.

A 2% uncertainty is added to account for possible variations of the reconstruction
efficiency with the class selections (section 6.2).

The Λ and Λ pT spectra are also affected by an uncertainty coming from the feed-down
correction, which accounts for the description of the Ξ±/Ξ0 ratio in the MC. The latter was
considered by calculating the feed-down fraction assuming Ξ±/Ξ0 = 1 or using the ratio
provided by the Monte Carlo. The feed-down contribution to the systematic uncertainties
was at most 1%. An additional 2% uncertainty, related to the systematic uncertainty on
the efficiency discussed above, is added to account for possible variations of the feed-down
contribution with the class selections.

The systematic uncertainty on the Λ (Λ) and Ξ± yield due to the (anti-)proton absorp-
tion in the detector material is estimated by varying the default inelastic cross section of
(anti-)protons implemented in GEANT4 by the corresponding experimental uncertainties [50].
This contribution is found to be less than 1% for strange baryons.

Pile-up collisions occurring within the same bunch crossing are removed by rejecting events
with multiple vertices reconstructed with SPD tracklets. The effect of residual contamination
from in-bunch pile-up events was estimated in ref. [2] by varying the pile-up rejection criteria.
In this analysis, the same systematic uncertainties are used.

The contribution from the out-of-bunch pile-up rejection was evaluated by changing the
matching scheme of V0 and cascade daughters using the ITS and TOF detectors. For this
purpose, the following configurations were considered: matching of at least one decay track of
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the reconstructed (multi-)strange hadron with the ITS (TOF) detector below (above) 2 GeV/c,
ITS matching of at least one decay track in the full pT range. Half of the maximum variation
between these configurations and the standard selection was taken as a systematic contribution,
which was found to increase with transverse momentum up to 3% for all particle species.

The systematic uncertainty due to the limited knowledge of the ALICE material budget
is estimated using two MC productions: one with a value of the material density obtained
from the geometrical model of the ALICE experiment implemented in the simulation, and
another where the material density was modified locally to match the measurement obtained
using photon conversions [51]. The material budget uncertainty is calculated as the relative
difference between the efficiencies obtained with these two MC productions.

Most of the sources of systematic uncertainties considered are fully correlated across the
classes of events defined using the V0M and SPDClusters estimators since they determine a
yield variation that does not depend on the specific event class. In this analysis, to illustrate
the evolution of the production of strange hadrons in the multi-differential classes and reduce
the systematics on the final results, the yield ratios to the average value, measured in the
inclusive INEL>0 pp sample, are considered:

⟨h⟩/⟨h⟩INEL>0

where h is the pT integrated yield (dN/dy) of strange hadrons. In order to determine the
fraction of uncorrelated uncertainty, the full analysis chain, up to the extraction of integrated
yields, is repeated for each event class by varying the V0 and cascade selection criteria and
comparing the results with the ones obtained with the default set of cuts. The relative
deviation of yields is then compared to the corresponding one obtained using the INEL > 0
sample. A fully correlated uncertainty is characterised by a ratio of relative deviations between
the event class and the inclusive INEL > 0 sample that is consistent with unity. Deviations
from unity are considered uncorrelated components of the uncertainty. The fraction of
uncorrelated systematic uncertainties due to the analysis selections ranges between 0.1% and
1% for K0

S, between 0.1% and 1.5% for Λ +Λ, and between 1% and 3% for Ξ− +Ξ+. A similar
approach is applied to estimate the fraction of the systematic uncertainty uncorrelated across
selected event classes due to the choice of the fit function for the extrapolation procedure.
The yields obtained using the extrapolation from an alternative function are compared to the
default one, Lévy-Tsallis, in a given selection class. Then, these are compared to the same
results obtained in the inclusive INEL > 0 class. The fit of the spectra is repeated using five
alternative functions (Blast-Wave, Boltzmann, Bose-Einstein, mT-exponential, Fermi-Dirac).
Since these alternative functions do not describe the full pT-distribution, in this case, the
fit range was reduced to obtain a good description of the fitted part of the spectrum. The
fraction of uncorrelated systematic uncertainties due to the choice of the fit function ranges
between 0.5% and 4% for Λ + Λ, and between 1% and 9% for Ξ− + Ξ+. No uncertainty on the
extrapolation is considered for the K0

S meson since the spectra are measured down to pT = 0.
The systematic uncertainty associated with the average ZN value was studied by com-

paring the energy measured in the three data-taking periods (2015, 2017, and 2018). The
measurement was repeated in different double-differential classes defined using SPDClus-
ters and V0M estimators. The error associated with the ⟨ZN⟩ value was defined as the
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largest difference of each period with respect to the mean value, which is found to be at
the level of ∼ 3%.

8 Results and discussion

In the following, the sum of particles and anti-particles, Λ + Λ, Ξ− + Ξ+, will be referred
to as Λ and Ξ, respectively. The fully-corrected pT-differential yields for all particle species
are displayed in figure 8 for the five multiplicity classes defined with the high-ZN -energy
classification and in figure 9 for the seven event classes with the high-local-multiplicity
classification. Qualitatively similar results are obtained for the complementary selections: low-
ZN -energy and low-local-multiplicity. In events with defined ZN energy, the K0

S, Λ, and Ξ
spectra become harder and the yields increase as the local multiplicity increases. This is clearly
visible when looking at the ratio of the distributions with respect to the central class spectrum,
shown in the bottom panel of figure 8. On the other hand, as displayed in figure 9, for similar
values of midrapidity multiplicity, the pT spectra of strange hadrons are found to be similar in
the different classes of events selected on the basis of different forward energy deposits. The
dynamics in terms of the transverse momentum observed with our two-dimensional approach
suggests that the average pT of (multi-)strange hadrons is strongly correlated with the local
multiplicity production. This indicates that, once the activity at forward rapidity is fixed,
the increase of strangeness production with multiplicity at midrapidity is driven by harder
processes, in line with figure 6. To illustrate the evolution of strange hadron production in
the different event classes, the pT-integrated yield ratios to the charged-particle multiplicity
divided by the value measured in the inclusive INEL > 0 pp sample are considered:

⟨h⟩/⟨h⟩INEL>0

⟨nch⟩|η|<0.5/⟨nch⟩INEL>0
|η|<0.5

, (8.1)

where h represents the particle yield per rapidity unit (dN/dy). The uncertainties on the
ratios are propagated assuming the two variables to be uncorrelated. In the following, the
quantity in eq. 8.1 will be referred to as “self-normalised yield ratios”. The yield per charged
particle (h/nch) is a good proxy for the ratio of strange-to-charged-pion yields (h/π).

8.1 Standalone analysis results

The self-normalised yield ratios of K0
S, Λ, and Ξ measured in the event classes defined with

the standalone selections are shown in figure 10 as a function of the average charged-particle
multiplicity ⟨nch⟩ and of the average energy measured in the neutron calorimeter ⟨ZN⟩,
self-normalised to their INEL > 0 value. The left panel shows that the strange hadron yields
per charged particle increase as a function of the charged-particle multiplicity at midrapidity.
The enhancement is larger for Ξ multi-strange baryons than for Λ and K0

S strange hadrons,
showing a hierarchy with the particle strangeness content. The Λ baryon and K0

S meson
ratios are compatible within uncertainties, except for the lowest multiplicity interval. These
observations are consistent with what was observed in previous ALICE publications [1, 2].
To explore the correlation of strangeness production at midrapidity with the very-forward
energy, the ratios are also displayed as a function of the self-normalised ZN signal in the
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Figure 8. Transverse momentum distribution of K0
S (left), Λ (middle), and Ξ (right) in the high-ZN -

energy selections (SPDClusters+V0M classes). The bottom panels show the ratios of the spectra in the
different classes to the central one. The spectra are scaled by different factors to improve the visibility.
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Figure 10. Self-normalised yield ratios of K0
S, Λ, and Ξ in pp collisions at

√
s = 13 TeV in the stan-

dalone selection (V0M classes). The ratios are shown as a function of the average charged-particle multi-
plicity ⟨nch⟩ (left) and the forward energy ⟨ZN⟩ (right) self-normalised to the minimum bias (INEL > 0)
value. Statistical and total systematic uncertainties are shown by error bars and boxes, respectively.

right panel of figure 10. Strange hadron production per charged particle is found to increase
with decreasing forward energy detected in the ZN . This observation demonstrates a positive
correlation of strangeness production with the effective energy. The results are compared
with MC simulations based on the PYTHIA 8 event generator. The Monash tune does
not reproduce the strangeness enhancement observed in the data, showing a flat trend as
a function of multiplicity and leading energy for all particle species, as already discussed in
previous publications [2, 46]. The QCD-CR+Ropes tune strongly improves the agreement of
the model with the data points for the Ξ baryon. However, it overestimates the production of
Λ baryons per charged particle at high multiplicity. In this model, the enhancement observed
for the Ξ and Λ baryons is found to be similar while no enhancement is foreseen for the K0

S
meson, missing the increasing trend observed in the data. The hadronisation mechanisms
implemented in the QCD-CR+Ropes tune result in an enhanced production of strange baryons
with respect to strange mesons, failing to reproduce the hierarchy with the strangeness content
observed in the data. This observation is further confirmed when looking at the predictions of
the QCD-CR+Ropes tune for protons, which show a rising trend with increasing multiplicity
not observed in the data [46]. It is important to note that, even if this tune reproduces
the Ξ/nch enhancement in the standalone event class, it is known that PYTHIA does not
perfectly reproduce the transverse momentum spectral shapes of strange hadrons [52].

8.2 Strangeness production in events with defined leading energy and
multiplicity

The dependence of strange hadron production on the charged-particle multiplicity can be
further investigated in events with similar average forward energy measured in the ZN . For
this purpose, the multiplicity classes defined for the high-/low-ZN -energy categories are
considered. Similarly, the dependence on the leading energy can be studied in events with
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Figure 11. Self-normalised yield ratios of K0
S, Λ, and Ξ in pp collisions at

√
s = 13 TeV in the

high/low multiplicity and high/low ZN selections (V0M+SPDClusters classes). The ratios are shown
as a function of the average charged-particle multiplicity ⟨nch⟩ (left) and the forward energy ⟨ZN⟩
(right), self-normalised to the minimum bias (INEL > 0) value. Statistical and total systematic
uncertainties are shown by error bars and boxes, respectively.

similar average charged-particle multiplicity produced at midrapidity using the high-/low-local-
multiplicity event classes. The self-normalised yield ratios obtained in these selections for all
particle species are displayed in figure 11 as a function of the charged-particle multiplicity (left)
and ZN energy (right), self-normalised to their INEL > 0 value. The standalone selection is
also shown for comparison. Once events with defined leading energy are considered (azure
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and blue squares), the strange baryon enhancement with multiplicity is no longer observed.
Instead, the Λ and Ξ yield ratios show a mild anti-correlation with particle production at
midrapidity. For the K0

S meson a mild-to-no increase with the midrapidity multiplicity is
observed for events with similar ZN energy. In particular, the trend for K0

S is compatible
with the results of the standalone analysis. The decreasing trend with multiplicity observed
for strange baryons could be explained by introducing a simple energy conservation argument:
at fixed effective energy, as the charged-particle multiplicity increases, the remaining energy
available for the production of heavier strange hadrons decreases. In this case, the production
yield of strange baryons at midrapidity may be more strongly correlated to the effective
energy than the production of light mesons. Alternatively, the observed anti-correlation could
be interpreted considering that events with similar effective energy may be characterised by
different topologies in terms of hard scattering processes, associated with the production of
jets, in line with the hardening of the spectra observed in figure 8. In particular, the presence
of one or more jets at midrapidity may result in a large local production of charged particles.

For similar midrapidity multiplicities (orange and red circles), the self-normalised yield
ratios of Λ and Ξ increase with decreasing energy deposited in the neutron calorimeters. For
Ξ baryons, the scaling with the ZN energy is observed to be compatible, within uncertainties,
with the one observed for the standalone classification for both the low- and high-local-
multiplicity selections. In contrast, for Λ baryons, the dependence on the forward energy
is not common among the different types of classifications. The Λ ratios in the high-local-
multiplicity classes are found to be systematically lower than those in the low-local-multiplicity
classes at similar values of ZN energy. This observation implies that, in events with similar
leading energy, a smaller production of Λ baryons per charged particle is observed in events
with larger values of multiplicity at midrapidity. This is in agreement with the decrease
of Λ yield with increasing midrapidity multiplicity observed in the fixed leading energy
classes, discussed above. It is worth noting that in terms of charged-particle multiplicity
the high-ZN -energy classification (azure squares) spans a nch range that encompasses the
values of the low- and high-local-multiplicity classes. In this classification, while the Ξ
production is almost constant within the classes, showing no dynamic once ZN is fixed,
the Λ self-normalised yields vary by about 20% from the lowest to the highest nch values.
Notably, the Λ production per charged particle in the high-/low-local-multiplicity classes
reaches overall higher values with respect to the highest values obtained with the standalone
selections. The K0

S meson, on the other hand, shows very mild-to-no dependence on the ZN
energy once the midrapidity activity is fixed. Comparing the results for the different particle
species provides interesting inputs on the correlation of strange hadron production with the
leading energy once the charged particle multiplicity is defined. The larger effect observed
for Λ with respect to K0

S indicates a stronger correlation of strange baryon production with
the leading energy with respect to mesons, given the two hadrons have the same strangeness
content. This observation is further supported by comparing the results of Λ to Ξ yields,
which show a compatible relative increase at fixed multiplicity. However, it is worth noting
that the dependence of Λ to Ξ yield ratios to the ZN energy differs in these event classes,
suggesting that the hadron strangeness content plays a role in the observed behaviour.
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Figure 12. Self-normalised yield ratios of K0
S in pp collisions at

√
s = 13 TeV in the high-/low-local-

multiplicity, high-/low-ZN -energy selections compared to PYTHIA 8 Monash and QCD-CR+Ropes
predictions. The classes at fixed multiplicity are displayed in the top panels, and the classes at
fixed leading energy are displayed in the bottom panels. The results from PYTHIA 8 with Monash
and QCD-CR+Ropes tunes are shown with dashed and full lines, respectively. Statistical and total
systematic uncertainties are shown by error bars and boxes, respectively.

8.3 Comparison to PYTHIA 8

The results reported in figure 11 are compared with MC simulations based on PYTHIA 8 in
figures 12, 13, and 14 for K0

S, Λ, and Ξ, respectively. In particular, figure 12 shows the self-
normalised yield ratios for the K0

S meson, compared to simulations with PYTHIA 8 with the
Monash tune (dashed line) and the QCD-CR+Ropes tune (full line). The two tunes predict
a very similar behaviour for K0

S, suggesting that including improved colour reconnection
and ropes in the hadronisation process does not have a big impact on the production of
strange mesons. For events with defined average midrapidity multiplicity (top left and right
panels), the two tunes predict a mild and yet significant dependence on the leading energy,
in moderate tension with the measured trend. For similar leading energies (bottom left and
right panels), both PYTHIA 8 tunes predict a very mild decrease of the K0

S yield per charged
particle with the charged-particle multiplicity, not matching the data at low multiplicity.

Figure 13 shows the model comparison to the self-normalised yield ratios for the Λ
baryon in the event classes with high-/low-local-multiplicity and high-/low-ZN -energy. For
similar midrapidity multiplicity values, the two tunes predict an increase of Λ production per
charged particle with decreasing ZN energy. It is worth noting that the PYTHIA 8 Monash
tune predicts no strange hadron enhancement in the standalone event selection, however,
once the multiplicity is fixed, an increase is observed with decreasing leading energy. For
similar leading energy values, the Monash tune predicts a decrease of the Λ yield per charged
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Figure 13. Self-normalised yield ratios of Λ in pp collisions at
√
s = 13 TeV in the high-/low-local-

multiplicity, high-/low-ZN -energy selections compared to PYTHIA 8 Monash and QCD-CR+Ropes
predictions. The classes at fixed multiplicity are displayed in the top panels, and the classes at
fixed leading energy are displayed in the bottom panels. The results from PYTHIA 8 with Monash
and QCD-CR+Ropes tunes are shown with dashed and full lines, respectively. Statistical and total
systematic uncertainties are shown by error bars and boxes, respectively.

particle with increasing local multiplicity, similarly to what is observed in the data points,
but struggling to reproduce the measured values quantitatively. The QCD-CR+Ropes tune
predicts small-to-no dynamics with multiplicity once the leading energy is fixed.

Finally, figure 14 shows the model comparison to the self-normalised yield ratios for the
Ξ baryon for the different event classes. In this case, the PYTHIA 8 event generator including
improved colour reconnection and ropes does an excellent job in reproducing the data points
in the standalone selection, as discussed above. For similar midrapidity multiplicities, the
QCD-CR+Ropes tune qualitatively describes the increase of Ξ production per charged particle
with decreasing leading energy, also reproducing the universal trend observed in the data
points with the ZN energy. However, the model struggles to reproduce the measured data
points quantitatively. The Monash tune fails to reproduce the strangeness enhancement in
the standalone event selection (see figure 10), however, once the multiplicity is defined, an
increase is observed with decreasing leading energy qualitatively similar to the measured
trend, although it predicts a difference between the high and low-local-multiplicity classes
for the same ZN energy, which is not observed in the data.

Given the anti-correlation between the forward energy and the number of MPIs, the
PYTHIA 8 predictions for the Λ and Ξ baryons may indicate that also at fixed midrapidity
multiplicity an increase in strange baryon production is expected at increasing number of
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Figure 14. Self-normalised yield ratios of Ξ in pp collisions at
√
s = 13 TeV in the high-/low-local-

multiplicity, high-/low-ZN -energy selections compared to PYTHIA 8 Monash and QCD-CR+Ropes
predictions. The classes at fixed multiplicity are displayed in the top panels, and the classes at
fixed leading energy are displayed in the bottom panels. The results from PYTHIA 8 with Monash
and QCD-CR+Ropes tunes are shown with dashed and full lines, respectively. Statistical and total
systematic uncertainties are shown by error bars and boxes, respectively.

MPIs, regardless of the hadronisation mechanism at play. On the other hand, this is not
foreseen for strange K0

S mesons. The largely different predictions for Λ and K0
S hadrons

obtained including the rope formation mechanism in the model suggest that the interplay
between MPIs and colour rope hadronisation may have a stronger impact on the enhancement
of (strange) baryons, rather than on the enhancement of strangeness itself. This interpretation
is further supported by comparing the results of Λ and Ξ baryons, for which similar trends
are predicted by the tune with QCD-CR+Ropes, despite the different strangeness content.

In conclusion, to produce an enhancement of strange baryon yields in PYTHIA 8 the
interplay between the MPIs and the hadronisation mechanism appears to be essential, with
MPIs increasing the string density and rope formation mechanism effectively enhancing the
string tension. While the interaction between MPIs and rope hadronisation mechanisms
provides valuable insights on strange baryon production, discrepancies are observed in the
data between baryons with different strangeness content, for instance Λ and Ξ.

9 Conclusions

This article presented a comprehensive multi-differential study of the production of K0
S strange

mesons, Λ strange baryons, and Ξ multi-strange baryons in pp collisions at
√
s = 13 TeV

measured with the ALICE detector at the LHC. Using a novel approach, for the first time
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the production of strange hadrons at midrapidity is characterised not only as a function
of the local particle multiplicity, but also as a function of the energy detected in ALICE
Zero-Degree Calorimeters. Assuming the deposit in the calorimeters is proportional to the
energy of collision remnants, the ZDC provide an estimation of the effective energy available
for particle production in the early stages of the collision.

Transverse momentum spectra of K0
S, Λ, and Ξ are significantly affected by local multi-

plicity at fixed leading energy, whereas leading energy itself has a very limited effect on the
pT distribution once similar midrapidity multiplicities are selected. Strangeness enhancement
is observed with decreasing ZDC deposits, which implies a positive correlation of strange
hadron production with the effective energy. This work complements previous studies on
strange hadron production at midrapidity, by disentangling the correlation between the local
charged-particle multiplicity and the ZDC energy through a multi-differential technique. Once
the energy measured at forward rapidity is fixed, the Λ and Ξ enhancement with multiplicity
is no longer observed. Instead, the strange baryon yield ratios show a mild anti-correlation
with particle production at midrapidity. For similar midrapidity multiplicities, the production
of Λ and Ξ strange baryons per charged particle is enhanced with increasing effective energy
(anti-correlated with the ZDC energy). These effects are not observed for K0

S mesons, which
display a very weak correlation with the effective energy. The largely different trends observed
in this multi-differential analysis for Λ and K0

S hadrons suggest that the production of strange
baryons and mesons in pp collisions may be driven by different mechanisms. The enhancement
of strange baryons appears to be strongly correlated with the effective energy; on the other
hand, the hadronisation of strange quarks into K0

S mesons does not seem to be strongly
influenced by the energy available in the early stages of the collision. It is worth noting
that the dependence of the yield ratios to the ZN energy differs between Λ and Ξ baryons,
suggesting that the strangeness content plays a role in the observed behaviour.

The higher integrated luminosity collected by ALICE in Run 3 will allow us to extend this
novel approach to baryons with larger strangeness content, such as the Ω, for which the statis-
tical precision obtained with the Run 2 samples did not allow for a double-differential analysis.

The results are compared to Monte Carlo simulations based on two tunes of the PYTHIA
8 event generator: the Monash tune and the one including the improved colour reconnection
and rope hadronisation mechanisms (QCD-CR+Ropes). In general, the effective energy is
observed to be strongly correlated with the number of MPI in PYTHIA. The data-model
comparison of the predicted strange-particle production yields with the measured ones
suggests that the interplay between the MPI and the CR+Ropes hadronisation mechanism is
required to reproduce the observed enhancement of strange baryons Λ and Ξ. However, when
selecting events with similar effective energy these mechanisms fail to reproduce the measured
multiplicity dependence of Λ and Ξ production. No dynamics in terms of multiplicity and
effective energy is predicted by both tunes for the production of K0

S mesons, suggesting that
the CR+Ropes hadronisation mechanism results in an enhanced production of (strange)
baryons, rather than of strangeness itself.
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