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between quantum speed and energy cost
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The implementation of information processing on a quantum device is a fundamental challenge for
many technologies. As a matter of fact, the faster one wants to implement a quantum operation, the
higher is the thermodynamic cost of realizing the quantum process. Here, we theoretically propose
and experimentally verify a trade-off between quantum speed and energy cost using Schatten 2-norm.
Our findings demonstrate that this trade-off remains tight for any instant of time, whether dealing with
initial eigenstates or initial thermal equilibrium states, as illustrated by the Landau-Zehner model. This
observation underscores the significance of coherence of the evolved states. By extending our
method to open system, we find that quantum speed can be significantly affected by environmental
decoherence effect. These results illuminate the fundamental limits of quantum state dynamics and
hold promise for potential applications in quantum sensing and quantum computing.

Leveraging the unique properties of quantum superposition and entangle-
ment, quantum information processing (QIP) offers significant advantages
for performing tasks that are beyond the reach of usual information pro-
cessing, as can be seen in areas such quantum computation"’, secure
communication’, quantum metrology”, quantum thermodynamics’, and
quantum energy storage’'>. However, even before the arrival of universal
and general-purpose quantum computers", questions about the rate at
which a quantum device could process information or the energy costs
associated with maintaining a certain operational speed were prevalent'*"".
In this sense, the Mandelstam-Tamm (MT) bound'***, described by 7= A7/

(2AE) where AE = +/(H?) — (H)?, delineates the temporal limit on how

fast closed systems can evolve between two orthogonal quantum states,
establishing a trade-off between the time duration and the energy cost in
such process. These constraints are referred to as quantum speed lim-
its (QSL).

Matrix norms are important tools for analyzing the QSL*** and the
associated energy cost rate'>’"* of the dynamic process. Within this con-
text, based on Schatten p-norms, some QSL applicable to arbitrary physical
processes have been theoretically established™ . Additionally, the concept
of energy cost has been linked to the time-averaged Frobenius norm of the
Hamiltonian, tailored to specific scenarios®. In addition, a fundamental
relationship between quantum speed and energy cost rate has been both

theoretically and experimentally studied for transitionless quantum driving
in closed quantum systems™*”’. However, the trade-off relationship is gen-
erally not tight or practically attainable’®”’, which cannot accurately reflect
the true dynamical process of quantum system. Moreover, there are few
experimental analysis in real laboratory scenarios™™ which would be
important to investigate and enhance the performance of, at least, quantum
devices prototypes’.

Here, we establish and experimentally validate a trade-off between
quantum speed and its associated energy cost rate based on Schatten 2-norm
in Hilbert space. This approach offers a versatile method for handling both
unitary and nonunitary dynamics. It distinctly separates the contribution of
populations and coherences of the evolved state, thereby elucidating their
individual roles in driving the evolution. We find for unitary dynamics it is
the creation of quantum coherence in the basis of the generator of the
control Hamiltonian. Noteworthy, for pure states evolving along a geodesic
in Hilbert space, we find that the quantum speed saturates to the energy cost
rate for N-level quantum systems. Particularly, we also have Vo5 = P 0,C for
arbitrary single-qubit states, where P is the polarization of quantum state,
Vst is the quantum speed and 0,C is the energy cost rate. Hence, our result
demonstrate that this trade-off significantly outperforms previous models
that lacks such tightness’*'. We substantiate our results experimentally
using a solid spin in diamond, whose effective dynamics can be described by
the time-dependent Landau-Zener (LZ) model”. Furthermore, when we
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expand our method to encompass open quantum systems, our experimental
investigations reveal how the speed of quantum evolution can be affected by
decoherence effect of environment™””. These findings provide a compre-
hensive and powerful approach to implement solid-state QIP at QSL, with
potential impact on the characterization and control of quantum

technologies” ™.

Results

QSL and energy cost rate for unitary dynamics

We consider general unitary dynamics and seek to determine the minimal
time 7 required for evolution from an initial state p, to a final state p, as
shown in Fig. 1. Hereafter, we set /2 = 1. The dynamics for state p, is governed
by the Liouville-von Neumann equation p, = i[p,, H|, where p, = dp, /dt,
and H is the time-dependent Hamiltonian of the system. In this setting, we
directly define the quantum speed as

Vas. = [loill,/v2 = \/Tr prH? — (p, )z], (1)

where ||o]|, is the Schatten 2-norm***. We note that the quantum speed can

becastas Vg, = /27 (p,, H), where Z, (p,, H) = —(1/4) Tr ([p,, HJ?)is
a quantum coherence measure introduced in Ref. 48. To make Eq. (1) more
explicit, we can write the density operator p; in its spectral decomposition,

pr= AL with 0 < 4 < 1 and T} = 1
1 2 A2
get Vst = 4[5 2 (Ai - Aj) (IH [j)]"

Obviously, there is an intimate relation between QSL and
metrology, in which the best precision in estimating parameter
encoded into a state depends on how quickly the state evolves”.
Specifically, the quantum speed based on Schatten 2-norm serves as a

nontrivial lower bound of the quantum Fisher information (QFI)

A=)
F = %Zlij(/\[+/{j [(ilH []'>|2>V2 s to detect metrologically useful

asymmetry of quantum resources’ 3L For pure states pt |1//t><1//t
with t €[0,7], we will have p? =p, Tr(pH)* = Tr’(pH), and
F = Vi, Particularly, for a given time-dependent pure state, one
finds that Vg, QFL and the Wigner-Yanase skew information (WY)
(p,, H) = —(1/2) Tr ([\/p;, HJ?) are equal to each other except for a
constant factor. However, the measurement of QFI is extremely
challenging for general physical processes™, which is completely
different from our quantity V. Indeed, for open quantum systems,
the quantities Vg, QFI and WY are expected to exhibit different
behaviors as the quantum state loses coherence. Let H = ) E, |n)(n]|
be the Hamiltonian that drives the dynamics of a finite- d1mens1onal
quantum system. The arbitrary instantaneous state p, can be
decomposed into two components with respect to the eigenbasis of
H™: an incoherent part (8,), and a coherence matrix (coh; = p; — &).
The incoherent part is diagonal matrix in the eigenbasis of H. In this
setting, we have [p,, H| = [coh,, H|, with [§,, H] = 0. Therefore, Eq.

(1) reduces to Vg = \/Tr [coh?H? — (coh,H)?]. Importantly, this
result clearly highlights the contribution of the coherences of the
evolved state to our QSL, underscoring the significance of quantum

coherence as a vital resource for maintaining coherent dynamics.

When disregarding the setup constant, the energy cost rate or power' >’

associated with control field H based on Schatten 2-norm can be written in
general as*

and

0,C = |Hl,/v2 =/ Tr (H?) /2. (2)

Next, by rewriting Eq. (2) with respect to the eigenstates of the density

matrix p, we have that 0,C = w/%zi’j|(i|HU>|2. Hence, for N-level

quantum systems, one finds that the quantum speed is upper bounded by

the energy cost rate, i.e., Vg < 0;C. This result shows that the energy cost
rates poses a maximum value to the quantum speed of the system, which
holds for any mixed state. Particularly, for arbitrary two-level systems, we
also have Vg, = Po,C, where P = |A; — A,|is the polarization of the general
single-qubit state. This result shows that, the faster one wants to implement
a quantum operation, the higher the thermodynamic cost of realizing the
quantum process becomes. Next, we discuss the saturation of the above
bound for pure states of N-level systems. In Fig. 1 we depict the evolution of
the state p, along a geodesic path that connects initial p, and final p, states of
the dynamics. In this setting, one finds that the so-called transversality
condition (i|H|i) = 0 issatisfied foralli={1, ..., N}'"****, which implies that

Eq. (2) reduces to 0,C = 4 /%E#ﬂ(”H []'>|2. Therefore, for pure states, it

turns out that the quantum speed and the energy cost rate collapse to the
same value, Vg, = 9,C, thus saturating the above-mentioned bound. And
the tightness of our established bound can be leveraged to eliminate the
redundant information of H, thereby demonstrating that time-optimal
control is realized with low energy cost.

We experimentally validate our findings using a single nitrogen-
vacancy (NV) center in diamond using the time-dependent LZ Hamilto-
nian, characterized by its instantaneous eigenvalues {¢,,(f)} and eigenstates
{n/()}. The spin state is initialized to the ground state and read out via 532
nm laser pumping”. To suppress the photon shot noise of NV center, we
repeated the experimental cycle for 1 x 10’ times (See Experimental Setup in
Method). Our basis states are encoded into |m, = —|—1> =|1) and
|m, = 0) = |0) of ground state. The coherence t1me of qubitis T5 ~ 1.4 ys.
The LZ model is described by H;, = F(t) o, +$o,, where 0, 6,, 0, are the
Pauli matrices. In our study, the scan ﬁeld I'(t) takes a linear shape and Qisa
constant. By adding an ancillary counterdiabatic field (CD) of the form
Hep = i[0,(In,){(n,|), In,){n,|], the quantum system is driven precisely
through the adiabatic manifold of the drift Hamiltonian H; , hence realizing
a transitionless quantum driving (TQD)** on timescales shorter than
decoherence times (T%). It is evident that, in the context of TQD, the
instantaneous cost rate reduces to’d,C = \/(9,1,]9,n,). Thus, the total
Hamiltonian is given by H, = H;; + Hcp. By precisely modulating the
frequency and phase of a microwave (MW) pulse, the LZ model can be
accurately implemented in experiment (See Hamiltonian Engineering in
Method).

In the experiment, we begin by considering a closed quantum system
(T T3), where the 1n1t1al state py undergoes a unitary evolution
p: = U,p, U}, with U, = T _ exp(—i [}, H,dt,), while 7 _ is the time-
ordering operator. The amplitude, frequency, and phase of the MW is
directly generated by an arbitrary waveform generator. After applying the
MW pulses, we measure the quantum system with quantum state tomo-
graphy (QST) and the results are presented in Fig. 2a. We investigate the
trade-off between quantum speed (V) and energy cost rate (9,C) and our
quantum speed reaches the theoretical upper limit over the entire protocol
duration T, as illustrated in Fig. 2b and c. In ref. 37, the researchers define a
quantum speed V,, = | tr (pyp,)| based on relative purity, which deviates
from the curve of energy cost rate as shown in Fig. 2b. It is worth noting that
QSL was investigated using a similar figure of merit that takes into account
the ratio of the Schatten speed || p, I, to the purity || p,lI3 = Tr(p3) of the
probe state”. Hence, our trade-off relationship between quantum speed and
energy rate is tighter than those reported in previous studies™”, thus more
accurately reflecting the actual dynamics. When the quantum system
approaches the avoided crossing point (t = 7/2), both the energy cost rate
and the quantum speed increase when utilizing CD fields. This phenom-
enon can be explained using the Fermi golden rule for time-dependent
perturbations, which indicates that the transition probabilities are propor-
tional to the time-integrated perturbation’®**. Far from the avoided crossing,
the energy cost rate of the CD field remains largely constant with respect to
evolution time, resulting in an instantaneous energy cost rate close to zero.
Figure 2d demonstrates that the energy cost rate scales consistently with the
quantum speed for various passage times, illustrating that faster quantum
control necessitates higher energy consumption.
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We then consider a more complex scenario by examining the trade-off
in the context of an initially prepared mixed state, specifically a thermal
equilibrium state (TES). This initial TES is more intricate compared to a
pure state. Initially, we apply a gate (6), = e~%%+/? to a qubit. Subsequently,
we allow this quantum state to evolve freely in a noisy environment for a
duration of t =3T; to eliminate quantum coherence™”, effectively

removing all off-diagonal elements of the quantum state. Finally, the initial

2
TES p = (COS 5)6/ 2) sin? (0 0 /2)) is well prepared with a degree of
polarization P = | cos 6|. Similar to the procedure for an initially prepared
pure state, we design same operational MW sequences and measure the
quantum tomographic results of p,, see Fig. 3a. The test of our proposed
trade-off is conducted similarly to the case of an initially pure state, except
for the factor of polarization P = 0.9. From the observations in Fig. 3b, ¢, we
can draw the same conclusions as in the case of the initially pure state: 0,C
represents the optimal upper bound of the Vi, thereby achieving the
optimal trade-off. Furthermore, for general initial TES with different

Optimal transport cost

Fig. 1 | Illustration of geometric quantum speed based on Schatten norm. The
blue (L,) and red (L,) curves denote different evolution paths in Hilbert space
representing a generic evolution between an initial state p, and a final state p,,
parameterized by time 7. In particular, the blue curve depicts the geodesic connecting
po to p,. QSL originate from the fact that the geodesic amounts to the path of shortest
length among all physical evolutions between the given initial and final states.

polarizations, a new concise trade-off between the QSL and the energy cost
rate based on Schatten 2-norm can be expressed as Vo5, = Po,C as shown in
Fig. 3d, which implies that only the coherence of the quantum state has a
contribution to the quantum speed for unitary evolution.

QSL and energy cost rate for nonunitary dynamics

We now examine a paradigmatic example of nonunitary physical
processes acting on a single qubit: the Gaussian dephasing
scenario” ™. In such noisy environment, the state evolution is gov-
erned by a master equation given by p, = —i[H, p] + Z(p), where &
describes the environment noise. As shown in Fig. 4a, we further
consider the Hamiltonian H = Aoc,/2, which is pertinent to the
Ramsey interference protocol in quantum sensing**"*. Here, A
denotes the frequency shift that is to be measured. The Gaussian
dephasing noise lets an initial state p, = (|0) + [1))({0] + (1])/2

1 + e—iAt/Z 0
evolve as p, =3 (K;p)K;, where K,= /q 0 o2 )

e—zAt/Z

e

@)/2 with a = e (t/ 7). The effect of Gaussian dephasing is exactly
the same as the one of phase flip and consists in shrinking the Bloch
sphere onto the z axis of states diagonal in the computational basis,
which are instead left invariant. In addition, A describes the rotation
frequency around the z axis. Substituting the aforementioned
expressions into Eq. (1) yields:

/12 2
Vtot,QSL = Vcoh,QSL + Vdec,QSL7 (3)

where Vs = Ae~ W) /2, and Vg gq = te /T )(T5)?  (See
Decoherence Model in Method). However, the energy cost rate based on
Schatten 2-norm does not change in this situation. The first term V., qs. is
the energy fluctuation which characterizes the velocity for a unitary time-
evolution generated by the system Hamiltonian. And the trade-off between
coherent quantum speed and the energy cost rate in the Gaussian dephasing
model is still given by Vi,qs. = @0,C. When the inevitable quantum

?At 1 ) are the Kraus operators, and g, = (1
—e

Fig. 2 | Trade-off between speed and cost for an
initially prepared eigenstate. a The experimental
steps for LZ model starting from the initialization to
the final QST. The state trajectories represented by
P, = tr(p,0;) and n = {x, y, z} under the Hamilto-
nian H,. Discrete points in the figures denote
experimental results, whereas solid lines represent
theoretical predictions. b Time evolution of our
quantum speed Vg, (red dots) and energy cost rate
0,C (solid blue curve, theoretical prediction). The
solid gold line denotes quantum speed based on

Q

Projection (a.u.)

relative purity. ¢ Time evolution of our trade-off
V@s1/9,Cwithin the LZ crossing time window. d The
instantaneous quantum speed (red dots) and energy
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Fig. 3 | Trade-off between speed and cost for a 1.0
the TES. a The TES trajectories with P = 0.9 under
the Hamiltonian H,. b Time evolution of the quan- —~
tum speed Vg (red dots) and energy cost rate (solid S 0.51
blue curves, theoretical prediction) of panel a. The S
gold line denotes the time evolution of quantum S 0.0
speed based on relative purity. ¢ The instantaneous = Y]
quantum speed (red dots) and energy cost rate (solid 8
blue line, theoretical prediction) of TES with P = 0.9 §' -0.51
for t = 0.487as a function of different passage times . o
d The normalized quantum speed as a function of
the polarization of TES, while keeping the para- -1.0 T T ; v - " ;
meters of scan process fixed. The blue dots are 0 10 20 30 40 50 0 10 2? 30 40 50
experimental results and blue line is theoretical c t (ns) d (ns)
prediction. The parameters used in the scan process 1.01 %
are I'=16(t/T — 0.5) MHz and Q = 2 MHz for (a-d). 164 116 8
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Fig. 4 | Trade-off between speed and cost for an open quantum system. a The
modified Ramsey interference protocol for investigating QSL in nonunitary
dynamics with a non-zero detuning A. In this protocol, the first (7/ 2) gate rotates
the qubit from a initiate state |0) into a coherent superposition state (|0) + [1))/~/2,
which then evolves for a given time 7. After evolution, the last 77/2 gate of the standard
Ramsey interference protocol is replaced by QST. The dynamic process is shown
with a Bloch-sphere. b Quantum state evolutions during the Ramsey interference

with A = 0.3 MHz. Experiment results are fitted with different solid lines. ¢ The
instantaneous total quantum speed (red dots) and energy cost rate (solid blue line,
theoretical prediction) for modify Ramsey interference protocol with A = 0.3 MHz.
d, e Similar results of Fig. 4b and Fig. 4c with different detuning A = 2 MHz.
Experiment results are denoted with red dots, while the remaining dashed lines
represent theoretical predictions.

dephasing effect occurs in dissipative open quantum systems, the coherent
quantum speed V., qsz. exhibits a monotonic decay alongside the loss of
quantum coherence. However, an additional term, V.. qs emerges
specifically due to the quantum dephasing effect. Interestingly, Vae.qst

does not change monotonically with the evolution time, which elucidates
the characteristics of the noise spectral density within a limited bandwidth of
the decoherence environment. In experiment, the NV center electron spin
decoherence is not limited by the spin-lattice relaxation, and therefore the

npj Quantum Information | (2025)11:199


www.nature.com/npjqi

https://doi.org/10.1038/s41534-025-01149-z

Article

decoherence effect of phonon scattering can be neglected. The coupling to
electron or dark nuclear spins in diamond can induce faster decoherence.
Since the NV center has a zero-field splitting in the order of GHz, which is
much larger than the typical hyperfine interaction strength (<MHz), the
electron spin can hardly be flipped by the hyperfine interaction. Due to lager
energy mismatching between NV center and dark nuclear spin bath
environment, the dynamics can be regarded as a pure dephasing process. In
the pure dephasing regime, the system-bath coupling operator commutes
with the system Hamiltonian, so the coherent evolution and dephasing
contributions act independently. Hence, V,,,qsz can always be divided into
coherent and incoherent quantum speeds.

Figure 4b illustrates the measurement results of state evolution
during the Ramsey interference protocol. The qubit loses coherence
on the T timescale for quantum sensing process. We then calculate
the total quantum speed Vi, sz, based on Eq. (1) with a numerical
derivative method, and the results are depicted in Fig. 4c. The actual
measured total quantum speed lies between Vi, o5 and Vipr sy in
experiment. We observe a discrepancy between experimental data
and theoretical predictions of the Gaussian dephasing model for
Ramsey interferometry measurement. In fact, the quantum fluctua-
tion caused by the nearby “C spins is comparable to the thermal
fluctuation for a solid single spin system in diamond, and thus
remains hidden within the ensemble average of the conventional
nuclear magnetic resonance experiment****. Consequently, this
observed discrepancy reveals the anisotropic nature of the hyperfine
coupling of spin defect in solid. By increasing the frequency shift A,
the Vion,qst Will increase proportionally and eventually tend to the
total speed Vi,.qsr as shown in Fig. 4d, e. However, the V..qsr»
which is dominated by intrinsic dark nuclear spin bath environment
of NV center, does not change with A in this situation.

Discussion

In summary, we have established an optimal trade-off between the quantum
speed and the energy cost rate of quantum control based on Schatten norm.
Using spin defect in diamond, we have theoretically and experimentally
validated that this new trade-off stands out from previous relations by being
tight in closed quantum systems. Indeed, only quantum coherence con-
tributes to the quantum speed in unitary dynamics. Our bound??s tightness
allows for the removal of control field’s redundant information, indicating
that time-optimal control is realizable at low energy cost. Additionally, we
have identified a new form of incoherent quantum speed in open quantum
systems, driven by quantum decoherence effects. The time-dependent
behavior of this incoherent quantum speed differs significantly from that of
coherent quantum speed. The relative deviation quantifies the extent to
which the dynamical evolution deviates from the Gaussian dephasing
associated with the considered metric. Furthermore, in the future, the solid-
state spin defects could be used to explore the impact of non-Markovian
effects®, such as structured environmental spectral densities, nonlocal
correlations between environmental degrees of freedom, and correlations in
the initial system-environment state, on this trade-off relationship beyond
elaborate engineering quantum systems. And based on our previous
experimental results®, the non-Markovian environment has a non-trivial
effect on the trace distance between two different quantum states. Coin-
cidentally, the QSL can be defined by the change rate of the trace distance™.
Hence, one can realized certain quantum states transformation by the non-
Markovian effect with less energy cost of quantum control, which would
beyound the current theoretical framework.

Methods

Experimental setup

A 532-nm laser (MLL-III-532-nm, New Industries Optoelectronics) is used
to optically excite NV centers and read their states. The optical setup
employed for all the measurements is a homebuilt scanning confocal
microscope. The single crystal (100) diamond sample used in this work is
chemical vapor deposition grown, electronic-grade type Ila-crystal

(Element 6). The NV centers are generated by 40 keV "*N* ion implantation
followed by annealing in high vacuum at 1000 °C. The boiling tri-acid
solution (a balanced mix of nitric, sulfuric, and perchloric acids) is used to
clean the diamond sample and is eventually diluted by deionized water. The
estimated average depth of the NV is about 40 nm. The laser beam is focused
on a spot with a diameter of 400 nm using a Olympus objective with an NA =
0.95. Fluorescence photons are collected into a fiber and detected by the
singlephoton counting module (SPCM-AQRH-15-FC, Excelitas), with a
counting rate of 70 kHz and a signal-to-noise ratio of 50:1. It is separated
from the excitation light by a Semrock dichroic mirror, a long-pass filter
with a 650 nm cutoff, and spatially filtered through a 15 ym pinhole. The
MW pulses for controlling the NV center are generated by an arbitrary
waveform generator (AWG) (Keysight M8190a), and fed into the coplanar
waveguide microstructure on the quartz glass. The driving MW is amplified
by an amplifier (Mini-circuits ZHL-25W-63+-). A SpinCore programmable
pulse generator (Pulse Blaster ESR-PRO 500) controls the MW switch and
acoustic-optic modulator. The position of the NV center is adjusted using a
piezo stage (P-611.3, Physik Instrument). The position of the permanent
magnet is controlled by a 3D motorized translation stage.

Hamiltonian engineering

By tuning the MW frequency resonant with the [0) <> |1) transition, a
pseudo-spin-1/2 system is realized in experiment. The Hamiltonian of a
continuous phase-modulated MW driving field on the NV center is given

by:
H, = ( fi a(t) cos (pl(t))7 @
a(t) cos ¢, (t) 0

where f; = D — y,By, a(t) = y.B(#). After transforming the Hamiltonian to an
appropriate rotating frame defined by the following unitary:

—i [g(t’)dt'
U, = (e Js °> )

0 1

and adopting the rotating-wave approximation (RWA), the Hamiltonian
for the qubit is simplified to the standard form: Hy =
UTH U, +i(aUT /on)U,.

Ifweset f; — g(t) =I'(¥), ff) g(thdt' — ¢, (1) = 0,a(t) = Q(t), we will get

_ (T 0\ Q@0 1
HH_(O 0)+ 2 <1 0)’ ©

which is equivalent to the Landau-Zener (LZ) Hamilto-

nian H;, = @GZ +$Ux.

Decoherence model

The abundance of C in diamond plate is at the nature level of 1%. This
diamond material contains less than 5 ppb nitrogen concentration (P,
centers). The dephasing effect of “C nuclear spin is approximately
equivalent to the decoherence of P; centers with a concentration of 10 ppm.
Therefore, the dephasing effect of P; centers in our experiment can be
neglected. At room temperature, the °C nuclear spins in diamond are totally
unpolarized. Thus the bath can be described by a density matrix

o =2M = Z:Probjl])(ﬂv (7)

with M being the number of °C included in the bath, I is a unity matrix of
dimension 2M, |J) = ®,,j,,,) is an eigenstate of the nuclear spin bath, and
Probyis the probability distribution. We neglect the slow dynamics related to
dipolar interactions between nuclear spins within the bath, which is at most
2 kHz for nearest-neighbor interaction. Indeed, the interaction between the
nitrogen-vacancy center spin and the bath induces decoherence at a much
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faster rate than the dipolar coupling between "*C’s within the bath. Without
the flip-flop dynamics for nuclear spin bath, the nuclear spin ensemble
would be a random distribution of frozen configurations, which, as a
standard multinomial distribution for a large system, leads to a Gaussian
distribution of the nuclear Overhauser field

Prob(Ej) = o BB /G, ()

2nls

where E, denotes the averaged local field and I’ is the width of inhomo-
geneous broadening. This so-called inhomogeneous broadening would
cause a Gaussian decay of the solid spin coherence, e~*/ 3’ with the
dephasing time T%. Usually at high-temperatures, the thermal fluctuations
of nuclear spin bath are much stronger than the quantum fluctuations.
However, in the case of strong system-bath coupling, the quantum
fluctuation can be comparable to the thermal fluctuation. The quantum
fluctuations can induce notable effects on Ramsey interference measure-
ment results even at room temperature (which can be regarded as infinite for
the nuclear spin baths). Hence, the dephasing would be in general non-
Gaussian under the competition between the thermal and quantum
fluctuations.

Data Availability
The data that support the findings of this study are available from the
corresponding author upon reasonable request.
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