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Abstract

Finite-dimensional attractors play an important role in finite-dimensional reduction of
PDEs in mathematical modelization and numerical simulations. For non-autonomous
random dynamical systems, Cui and Langa (J Differ Equ, 263:1225-1268, 2017)
developed arandom uniform attractor as a minimal compact random set which provides
a certain description of the forward dynamics of the underlying system by forward
attraction in probability. In this paper, we study the conditions that ensure a random
uniform attractor to have finite fractal dimension. Two main criteria are given, one
by a smoothing property and the other by a squeezing property of the system, and
neither of the two implies the other. The upper bound of the fractal dimension consists
of two parts: the fractal dimension of the symbol space plus a number arising from
the smoothing/squeezing property. As an illustrative application, the random uniform
attractor of a stochastic reaction—diffusion equation with scalar additive noise is stud-
ied, for which the finite-dimensionality in L? is established by the squeezing approach
and that in H& by the smoothing framework. In addition, a random absorbing set that
absorbs itself after a deterministic period of time is also constructed.
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1 Introduction

Attractor theory is known as a useful tool in the study of infinite-dimensional dynamical
systems, especially in numerical simulations and computations. Roughly, if a system
has an attractor, any solution trajectory of the system can be tracked by trajectories
within the attractor, while, in the meanwhile, if the attractor has finite dimension,
finite degrees of freedom are expected to fully determine the asymptotic behavior
of the system, though the phase space of the system is infinite dimensional. This is
known as a finite-dimensional reduction of infinite-dimensional dynamical systems
(Temam 1997; Robinson 2011). In order to describe the long-time behavior of infinite-
dimensional dynamical systems, one often studies the attractors associated to them.
Depending on the setting a problem is proposed, a number of typical attractors have
been introduced and extensively studied: global attractors (Temam 1997; Robinson
2001), exponential attractors (Eden et al. 1994), pullback/cocycle attractors (Kloeden
and Rasmussen 201 1; Carvalho et al. 2013), uniform attractors (Chepyzhov and Vishik
2002; Bortolan et al. 2020), etc., describing in their own way the asymptotic dynamics
of the system under consideration.

Ever since the work of Crauel and Flandoli (1994), the attractor theory has been
extended to random dynamical systems for which stochastic perturbations are taken
into account (Arnold 1998; Chueshov 2002). Particularly for a non-autonomous ran-
dom dynamical system (abbrev. NRDS), i.e., a random dynamical system with in
addition time-dependent terms (e.g., with a time-dependent forcing field), pullback
random attractors have been extensively studied, see, e.g., Wang (2012, 2014), Cui
etal. (2017) and also Caraballo and Sonner (2017) for pullback exponential attractors.
However, the non-autonomous feature of the system prevents one to learn from these
pullback attractors about the forward dynamics of the underlying system, and this is
the motivation of our previous work (Cui and Langa 2017), where a random uniform
attractor was developed, which provides a certain description of forward dynamics of
the system by the property of uniformly forward attracting in probability.

In this paper, we study the random uniform attractors on the conditions that ensure
a random uniform attractor to have finite fractal dimension. Thanks to the pioneering
works of Mallet-Paret (1976) and Maiié (1981), it is well understood that estimating
the fractal dimension of an attractor provides the information that the attractor can be
embedded into an Euclidean space R for some k € N, and this embedding is shown to
be linear with a Holder continuous inverse, see, €.g., Robinson (2011). Hence, estimat-
ing the fractal dimension of an attractor is useful in the finite-dimensional reduction
of an infinite-dimensional dynamical system. However, since the study of uniform
attractors is usually based on a symbol space which contains auxiliary elements that
could not belong to the original system, a uniform attractor is more often infinite
dimensional. In fact, it has been an untouched problem for almost twenty years that
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if a uniform attractor of an infinite-dimensional system could be finite dimensional
under acceptable conditions, and how flexible the conditions could be.

In a previous work (Cui et al. 2021), we studied the finite-dimensionality of deter-
ministic uniform attractors. By a smoothing property of the underlying system, we
established criteria for a uniform attractor to have finite fractal dimension, and the
upper bound consists of two parts: the fractal dimension of the symbol space plus
an auxiliary number arising from the smoothing property. This structure of the upper
bound agrees with the result (Chepyzhov and Vishik 2002, Theorem IX 2.1) of Chep-
yzhov and Vishik established by studying the quasi-differentials of the system. In
addition, we showed in Cui et al. (2021) that the finite-dimensionality of the symbol
space is fully determined by the tails of the non-autonomous term of the original sys-
tem; in other words, the tails of the non-autonomous term are what is crucial for the
finite-dimensionality of a uniform attractor.

In this paper, we change the framework to a random environment, which implies
crucial theoretical and technical differences with previous papers in the literature, and
give an alternative of the smoothing property by a squeezing property. More precisely,
we shall present two general criteria of estimating the fractal dimension of random
uniform attractors. One is based on a smoothing property of the system, which allows
the phase space to be only Banach, but requires an auxiliary space that compactly
embedded into the phase space, see Theorem 3.3; the other is based on a squeezing
property of the system, where no auxiliary space is needed, but the phase space,
in applications, should be Hilbert, see Theorem 3.6. Neither of the two theorems
implies the other. Note that smoothing and squeezing properties have already been
used in the literature to deal with various problems in dynamics, see for instance
(Mdlek et al. 1994) and also later papers (Caraballo and Sonner 2017; Carvalho and
Sonner 2013; Czaja and Efendiev 2011; Efendiev et al. 2000, 2003; Efendiev and
Zelik 2008; Efendiev et al. 2011; Shirikyan and Zelik 2013; Zhao and Zhou 2016)
for smoothing property in estimating the fractal dimensions as well as constructing
exponential attractors, Foias and Temam (1979) and later literature (Debussche 1997;
Eden et al. 1994; Flandoli and Langa 1999; Kloeden and Langa 2007; Zelati and Kalita
2015; Cui et al. 2018a) for the use of squeezing property. Nevertheless, here we need
to carefully overcome the difficulty arising jointly from the three features of problem:

(a) The lack of the invariance of the random uniform attractor;
(b) The superposition of the base flow on the symbol space;
(c) The stochastic nature of the problem.

For the first two problems, our previous work (Cui et al. 2021) provides some
inspiration of solutions. We carefully make use of the relationship

() =] A (). weQ,

oex

between the uniform attractor <7 and the cocycle attractor A of the underlying system,
where ¥ is the symbol space of the system and (€2, F, P) a probability space. This
allows us to decompose the uniform attractor into sets of cocycle attractor sections,
and then the invariance of the cocycle attractor A is useful. Nevertheless, since the
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absorption time of the random absorbing set is usually random, the analysis in this
paper is much more technical than in Cui et al. (2021). Our solution requires the
absorbing set absorbs itself after a deterministic time. This condition is in fact slightly
stronger than needed, but facilitates our analysis. It also appeared in Shirikyan and
Zelik (2013) for the construction of random exponential attractors; our application to
a reaction-diffusion equation in Sect. 4 shows that this condition holds naturally in the
additive noise case. Multiplicative noise case can also have this property, which will
be shown in our future work.

The third problem is the stochastic nature of the setting. Basically, Birkhoff’s
ergodic theorem is frequently used and so the coefficients in the conditions are often
required to have finite expectation which, however, is sometimes difficult to verify
in applications. An example is the coefficient x (w) lying in the smoothing condi-
tion (Hg), for which the finite-expectation is unknown for the application of the
reaction—diffusion system (4.1). However, the squeezing condition (S) for system
(4.1) is verified. In this sense, the squeezing approach seems more applicable than the
smoothing one.

On the other hand, an advantage of the smoothing approach is that, once the finite-
dimensionality of the uniform attractor has been establishd, by the smoothing property
one could easily improve it to more regular spaces, see Theorem 3.8. In addition, the
coefficient in the smoothing property does not need to have finite expectation, so
it does not have the application problem mentioned above. Hence, both the ideas
of smoothing and squeezing are useful in estimating the fractal dimension of random
uniform attractors. In Sect. 4, we develop an application of a reaction—diffusion system
for which the finite-dimensionality of the random uniform attractor in L? is established
by the squeezing method and in H& by the smoothing method. An absorbing set with
a deterministic absorption time for the system is also constructed, which is crucial for
the analysis.

Finally, we note that in Han and Zhou (2019) recently constructed a random uniform
exponential attractor for a stochastic reaction—diffusion equation with quasi-periodic
forcings. Their result was derived by taking into account an extended phase space
and then studying its respective skew-product semiflow, for which the problem is then
reduced to an autonomous problem. In this case, i.e., when the skew-product semiflow
method applies, the random uniform attractor can be studied by the random attractor
of the skew-product semiflow, and, as a particular case, the finite-dimensionality of
random uniform attractors can be derived more directly from the finite-dimensional
theory of random attractors for autonomous RDS. Here, however, as we consider more
general non-autonomous terms than quasi-periodic forcings such that the symbol space
is even no longer a linear space, the skew-product semiflow approach fails. Thus, we
have to treat the random uniform attractor in its own way, and our method has an
advantage that more general non-autonomous terms are allowed.

Notations. Throughout the paper, for any metric space (2", dg°) and real number
r > 0 we denote by By (x, r) the open ball centered at x € .2~ with radius r, and by
By (A, r) ;== UyecaBg (x,r) we denote the open r-neighborhood of any non-empty
subset A of 2. Given a precompact set E C Z°, we denote by £ E the cardinality of
E, by Ny [E; r] the minimal number of open balls of radius r in 2" to cover E, and
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the fractal dimension of E in 2" is defined by

dimp (E: 2) = lim sup 22NV Z LE €]
e—0F —log, ¢

The Hausdorff semi-distance between non-empty sets in 2" is defined by

disty (A, B) := sup inf dy-(a,b), A, B e 27\@.

acAbeB

We denote by B(Z") the Borel sigma-algebra of 2 .

2 Preliminaries on Random Uniform Attractors

Given a separable metric space (E, dg), suppose that ¥ C E is a compact submetric
space endowed with a continuous group {6;};cr acting on it, satisfying that 6po = o
and 6,(050) = 6,450 forall o € %, 1,5 € R, and that the map (t,0) — 6;0 is
(R x X, X)-continuous. Moreover, we assume that X is invariant under {6, };cR, i.e.,
0, = X forallt € R. Foraset A, let 3(A) be the Borel sigma-algebra of A. Denote
by (2, F, IP) a probability space, which need not be P-complete, endowed also with
a flow {9;};cr satisfying the following conditions

¥ = identity operator on £2;

ML=, VteR;

Uy 0 = Oyys, Vi, s €R;

(t, w) = wis (B(]R) x F, F)-measurable;

{0+ }rer is P-preserving: P(¢; F) = P(F), V¢t <Oand F € F;

{U+}rer is ergodic, namely, if F' € F is invariant under v, then P(F) = O or 1.

The two groups {6;};cr and {¥;};cr acting on X and €2, respectively, are called base
flows. As we did not assume the probability space to be complete, we shall not distin-
guish a full measure subspace €2 from €2, that is, by saying that a statement holds for all
o € € we mean that it holds on € almost surely. We denote by E(L) = fQ L(w)P(dw)
the expectation of a random variable L.

Suppose that (X, || - ||x) is a separable Banach space. The definition of non-
autonomous random dynamical systems in X is given as the following.

Definition2.1 Amap ¢ : Rt x Q x ¥ x X — X is said to be a non-autonomous
random dynamical system (abbrev. NRDS) in X (with base flows {9 };cr on € and
{6i}rer on ) if

(i) ¢ is (BRT) x F x B(E) x B(X), B(X))-measurable;

(ii) Foreveryo € X and w € Q, ¢ (0, w, o, -) is the identity on X
(iii) It holds the cocycle property for each fixedo € ¥, x € X and w € Q, i.e,,

¢(t +S7 Cl),o—,x) = ¢(t’ ﬁswveso') O¢(S,a),0’,x), Vt9s € R-"_v

where and throughout the paper, ¢ (¢, ¥5w, 050) o ¢ (s, w, 0, x) = ¢(t, WYOR
9509 ¢(S, w’ 07 x))
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An NRDS ¢ is said to be (¥ x X, X)-continuous if the map (o, x) — ¢(t, w, 0, x)
is continuous from ¥ x X to X.

In applications, an NRDS ¢ is typically generated by an evolution equation with
both a non-autonomous forcing (from the space E) and random perturbations, while
the space ¥ is formulated via all the time translations of the forcing. In this case, the
forcing is called the (non-autonomous) symbol of the equation, and the space X is
called the symbol space of the NRDS ¢.

Definition 2.2 A set-valued map D :  — 2% taking values in the closed subsets of a
Polish space X is said to be measurable if foreach x € X the map w +— distx (x, D(w))
is (F, B(R))-measurable. In this case, D is called a closed random set. If each section
D(w) of D is in addition compact, then D is called a compact random set. D is said
to be an open random set if its complement D¢ is a closed random set.

Due to the attracting property of arandom attractor, the distance between trajectories
and the attractor is expected to be measurable. This is why we follow the measurability
defined above via the distance. Compared with the alternative definition of a closed
random set D as a measurable set in 2 x X with all (or almost all) of its sections D (w)
being closed, Definition 2.2 requires more: a measurable set in  x X with closed
sections is not necessarily a closed random set in the sense of Definition 2.2, and the
two definitions coincide only with respect to the universal sigma algebra of F, see
for instance (Crauel 2002, Proposition 2.4). On the other hand, for an open set-valued
map w — U (w) it does not suffice to conclude that U is an open random set from the
fact of U being a closed random set, i.e., with distx (x, U(-)) being measurable we
cannot say that U is an open random set. A counterexample is given by Crauel (2002,
Remark 2.11).

In the following, a (closed or open) random set D is always mentioned in the sense
of Definition 2.2. D is often identified with its image { D (w)}yecq. Given two random
sets D1 and D», D is said to be inside of D, if Dj(w) C D;(w) for all w € 2.

2.1 Cocycle and Uniform Attractors of Non-autonomous Random Dynamical
Systems

Before the definition of attractors, let us introduce first the attraction universe D which
is a collection of some random sets that are expected to be attracted by an attractor. In
this paper, we consider the universe D of all tempered random sets in X, i.e.,

D= {D : D is a tempered closed random set in X},

where a closed random set D in X is said to be tempered if |D(w)|x :=
SUPyep(w) IXllx < R(w) for some random variable R(-) : € — R which is tem-
pered, i.e.,

In R(¥;w) _

t—+o00 ]

0 (ln~:loge~), Yo € Q. 2.1
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Definition 2.3 (Cui et al. 2017) A family A = {4, (-)}scx of compact random sets
is said to be the D-cocycle attractor of an NRDS ¢, if

e A is D-pullback attracting, i.e., for each D € D,

Jlim distx (¢(7, ¥ 0. 00, D)), As (0)) =0, Yo € Q.0 € ;

e (Minimality) if A" = {A_ (-)}sex is another family of compact random sets satis-
fying the above condition, then Ay (w) € A (w), forall w € Q, 0 € X;
e A is invariant under ¢, that is

P(1, 0,0, As (®)) = Ago (Dw), V1 >0, 0eER, 0 €.

It is observed in applications that every section A, () of a cocycle attractor A can
often belong to the attraction universe, i.e., A, (-) € D for every o € X. This leads to
the possibility of replacing the minimality condition in Definition 2.3 by the condition
that A, () € D for every o € 3. We above follow the definition of Cui et al. (2017),
where a detailed analysis for the existence criteria, characterization and robustness of
cocycle attractors was given.

Definition 2.4 (Cui and Langa 2017) A compact random set <7 € D is said to be the
(random) D-uniform attractor of an NRDS ¢, if

(1) & is uniformly (w.rt. o € ¥) D-pullback attracting, namely, for each D € D,

1—>0o0 oeY

lim [ sup disty (¢(t, V_w,0_s0, D(V_;w)), sz(w))] =0, Yw € Q;

(i1) (Minimality) .o/ is inside of any compact random set satisfying (i).

The random uniform attractor can be regarded as a random generalization of the
deterministic uniform attractor (Haraux 1988; Chepyzhov and Vishik 2002) or a non-
autonomous generalization of the autonomous random attractor (Crauel et al. 1997,
Crauel and Flandoli 1994; Flandoli and Schmalfuss 1996). Since a uniform attractor
describes the dynamics in a uniform way w.r.t. symbols in the symbol space X, the
attraction universe D in consideration consists of some o -independent autonomous
random sets. This is also the case in the deterministic uniform attractor theory, where
the attraction universe is usually the collection of (autonomous) bounded sets in the
phase space.

Due to the nature of random perturbations in general applications, the uniform
attraction of the attractor is defined in the pullback sense, but it implies the forward
attraction in probability as given below; so a random uniform attractor describes also
a forward dynamics of the NRDS ¢.

Proposition 2.5 (Cui and Langa 2017) A random D-uniform attractor </ is forward
uniformly attracting in probability:

lim P{w € Q: sup distx(¢(t,w,a, D(a))),d(t?,a)))>£}=0, Ve >0, DeD.

t—00 cey
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Recall that a closed random set 8 = {AB(w)}weq is said to be a uniformly D-
pullback absorbing set, if for each D € D and w € 2 there is an absorption time
Tp(w) > 0 such that

U o(t. 0. 60_10. DW_10)) € B(w). Vi = Tp(w). 2.2)

oeX

Note that the absorption time 7p(w) in applications is usually a random variable in
w, and is even a deterministic number for some particular random set D. The latter
observation is crucial for our analysis later, see condition (H3) in Theorems 3.3 and
3.6.

Then, we have the following existence conditions for a D-uniform attractor and
also some properties the attractor possesses.

Theorem 2.6 (Cuiand Langa2017) Suppose that ¢ is a (X x X, X)-continuous NRDS.
If ¢ has a compact uniformly D-pullback attracting set K and a closed uniformly D-
absorbing set B € D, then it has a unique random D-uniform attractor </ € D given
by

@) =J U ot 90,000 B0 10). VoeQ.

s>0t>so0eX

Moreover; the following properties hold:

(i) The NRDS ¢ has also a D-cocycle attractor A = { Ay (-)}sex Which satisfies the
relation

() = | As (). YoeQ, (2.3)

oex
and, for each w fixed, the set-valued map o +— Ay (w) is upper semi-continuous:
disty (.A(, (w), Ago(w)) — 0, aso — opinX;
(il)  is negatively semi-invariant in the sense that
A (o) € (1, 0, 7 (), V=0, weQ, (2.4)
where d>(t, w, ﬁf(a})) = Unegcﬁ(t, w, 0o, sz(a))) defines a multi-valued random

dynamical system;
(iii) <7 is characterized by D-complete trajectories, that is,

A (0w) = {é(ﬁla), t) : &€ is a D-complete trajectory of¢}, VieR,we Q,
where a D-complete trajectory of the NRDS ¢ is amap &: Q x R — X for which
there exists o € X such that £ (Vrw,t) = ¢(t — s, V5w, 050, E(Vsw, 5)) for all

t > s and w € Q, and that there exists D € D such that U;crE(-, t) C D(-);
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(iv) o is fully determined by uniformly attracting deterministic compact sets: if we
denote by 2 the random ®-uniform attractor of ¢ with ® the collection of all
non-empty compact sets in X, then

P(of =A) = 1.

Remark 2.7 The random D-uniform attractor &/ of a (£ x X, X)-continuous NRDS
is inside of any uniformly D-pullback absorbing set %, since from the negative semi-
invariance (2.4) of 7 and the uniform pullback absorption of A it follows

A () € (1, V0, 7 (V_0)) € B(w), for1 large enough.

2.2 Conjugate Attractors and Their Structural Relationship

The idea of conjugate dynamical systems has been widely used in, e.g., transforming
a stochastic PDE to a deterministic PDE with random parameters, see, e.g., Chueshov
(2002), Flandoli and Lisei (2004) and Cui et al. (2016). Now we study in a more
abstract framework the attractors under this transformation.

Suppose that X and X are two Banach spaces (where X = X is allowed), and that
¢ and ¢ are two NRDS with the same base flows (9, £) and (9, Q) in phase spaces
X and X, respectively.

Definition 2.8 ¢ and ¢ are said to be conjugate NRDS if thereisamap T : 2x X — X,
which is called a cohomology of ¢ and ¢, with properties

(i) The map x + T(w, x) is a homeomorphism from X onto X for every w € Q;
(i) The map w — T(w, x1) and ® +— T-! (w, xp) are measurable for each x| € X
and x, € )~(;
(iii) Foranyt >0, w € 2, 0 € £, x € X,

d;(t, w, o0, T(o, x)) = T(ﬂtw, o, w,o, x)). (2.5)

Let D and D be collections of tempered closed random sets in X and in X, respec-
tively. In the following, we will need the cohomology T be a bijection between D and
13, i.e., for each D € D there is a unique D € D and foreach D € D thereis a unique
D € D such that 15((1)) = T(w, D(w)) for all € Q. A particular example of such a
cohomology T is given later in the application section, see (4.16).

Theorem 2.9 Suppose that ¢ and ¢ are conjugate NRDS with cohomology T satisfying
(2.5), and that the cohomology T is a bijection between D and D. If ¢ has a D-uniform
attractor o in X, then ¢ has a D-uniform attractor </ in X, and vice versa. Moreover,
the two attractors have the relation

o () = T(w, o (@), weQ. (2.6)

Proof Without loss of generality, we suppose that ¢ has a D-uniform attractor <7, and
then we prove by definition that o (w) = T(w, &/ (w)) defines the D-uniform attractor
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of §. lezalrly,faf~ is compact and measurable, since so is &/ and T is a homeomorphism.
Given D € D, since T is a bijection there is a D € D with D(w) = T(w, D(w)), so

sup dist ((i&(l, Vo, 0,0, D¥_,0)), sz(w))

oex

= sup dist ($(1, -1, 6-10, TW—0, D)), 7 (@) )

oex

= sup dist; (T(a) o(1.9_,60_0, D(ﬁ_ta)))), T(o, Jz{(a))))

og€eX

= dist;((T<w, Upexd(t. 9. 6_0, D(ﬁ_ta)))),T(a), d(w))) )

where the last convergence is because distx (Uyex @ (1, 90, 0_,0, D(9_,0)), & (o))

— O and that T(w, -) is ahomeomorphism. Hence, :Qf is uniformly @—pullback attract-
ing under ¢. In the same way, the minimality of .« follows from that of .<7. O

In the same way, we have the corresponding theorem for conjugate cocycle attrac-
tors.

Theorem 2.10 Suppose that ¢ and ¢ are conjugate NRDS with cohomology T satisfying
(2.5), and that the cohomology T is a bijection between D and D. If ¢ has a D-cocycle
attractor A in X, then (;3 has a ﬁ—cocycle attractor A in X , and vice versa. Moreover,
the two attractors have the relation

A (@) = T(w, As (@), 0 €T, w e Q. 2.7)

Remark 2.11 The structural relationships (2.6) and (2.7) allow one to learn the structure
of an attractor from that of its conjugate attractor. For instance, conjugate attractors
could share the same fractal dimension, e.g., when the cohomology T(w, x) is linear
in x.

3 Finite-Dimensionality of Random Uniform Attractors

In this section, we estimate the fractal dimension of random uniform attractors. Two
approaches will be presented, one by a smoothing property and the other by a squeezing
property of the system. Then in Sect. 3.3, we will improve the finite-dimensionality
to more regular Banach spaces.

First recall that, given a precompact subset E of a Banach space X, the fractal
dimension (also called box-counting dimension or capacity dimension) of E in X is
defined as

logy, Nx[E; €]

dimp(E; X) := lim sup 7
—logy ¢

e—07t
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where Nx[E; r] denotes the minimal number of open ba_lls of radius r_in X that are
necessary to cover E. Note that dimp(E; X) = dimp(E; X), where E denotes the
closure of E.

3.1 Smoothing Approach

Now we present the first approach by a smoothing property of the system. This
approach allows the phase space X to be only Banach, but technically requires an
auxiliary Banach space Y C X with compact embedding / : Y < X. The following
lemma of Sobolev compactness embedding gives examples of such Banach spaces.

Lemma 3.1 (Temam 1997) Let @ C R be a C'-domain which is bounded (or at
least bounded in one direction), N € N. Then the embedding WLP(O) — L1(0O)is
compact for any q1 with q1 € [1,00) if p > N and q1 € [1, q), q_1 = p_1 —N7L
ifl<p<N.

We will need the Kolmogorov e-entropy of the compact embedding I : Y — X,
also called the Kolmogorov e-entropy of Y in X, ¢ > 0, which is defined as

Ke(Y; X) :=log, Nx[By (0, 1); £]. (3.1

For this Kolmogorov g-entropy, the following estimate is useful.

Lemma 3.2 (Triebel 1978, Section 4.10.3) Let © C RY be a bounded C*°-domain,

NeNIfl<p,g<oos— % > —%, and s > 0, then there is a positive constant
o > 0 such that
Ke(W54(0); LP(0)) < ae™ 5 . (3.2)

As a particular case, for some o > 0,
Ke(W'2(0); L*(0)) < ae™™. 3.3)

Now we give our main criterion for a random uniform attractor to have finite fractal
dimension. Suppose that

(Hp) the symbol space X has finite fractal dimension
dimg(X; E) < o0,
and the driving system {6, },cr on X is Lipschitz, satisfying
dz(6;01,0;07) < M(t)dz (o1, 02), VteR, o1,00 € X2, (3.4)
where M (-) is a function with 1 < M(t) < cle’”", t € R, for some constants

ct, u > 0;
(Hy) ¢ is (¥ x X, X)-continuous;
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(H3) ¢ has a tempered uniformly D-pullback absorbing set 8 = {#(w)}yecq Which
pullback absorbs itself after a deterministic period of time, i.e., there exists a
deterministic time 74 > 0 such that for all t > Ty

U o(t. 90,0 10, B0 1)) € Bw), VYoe (3.5)

g€eX

(Hy4) ¢ is Lipschitz continuous in symbols within the absorbing set Z:

l¢(t, w,01,u) —@(t, w,02,u)|x
" L(®5w)ds
< el LSO g (51, 07), V1 > Ty, 01,00 € £, u € Blw),

for a random variable L(-) : 2 — R™ with finite expectation E(L) < oo;
(Hs) Y is a separable Banach space densely and compactly embedded into X, and
for any ¢ > 0 the Kolmogorov e-entropy of Y in X satisfies

Ke(Y; X) =logy Nx[By(0,1); ] < ae™ (3.6)

for positive constants «, y > 0;
(Hg) ¢ is (X, Y)-smoothing within the absorbing set Z: there exist 7 > T and a
random variable « (-) : @ — R™ with finite expectation E(«”) < oo such that

sup (7, w,0,u)—¢(t, ,0,V)|ly <k(@)|u—vlx, Yu,ve Bw),we.
ogeEX

3.7

Under these hypotheses, the random uniform attractor .&f' = {&7 (w)}peq of ¢ has
finite fractal dimension that can be bounded by a deterministic number. More precisely,

Theorem 3.3 Suppose that ¢ is an NRDS in X with D-uniform attractor <. If con-
ditions (H)—(Hg) hold, then the uniform attractor </ has finite fractal dimension in
X: foranyv € (0, 1),

dimp (sz(a)); X) <

2Ya E(k?) <E(L) + 1

1)di ¥, B), VYwe.
—v” log, v * ) lmF( ) ¢

—Inv
(3.8)

In particular, taking v = 1/2,

E(L) +n

dimp (o (0); X) < 4 aE(k") + ( 3

+1>dimF (E;E), Yo € Q.
3.9)

Remark 3.4 Note that

(i) The upper bound given above is deterministic and uniform w.r.t. w € Q;
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(i) The entropy condition (Hs) depends only on the spaces X and Y, and is inde-
pendent of the system. Lemma 3.2 is useful in order to obtain such a property;

(iii) In condition (H3), we required a deterministic absorbing time T, which seems
unusual in the literature. However, this demand can be naturally satisfied by a
broad class of applications. In Sect. 4.3, we will show by a reaction—diffusion
model that in additive noise cases the closed random absorbing set % constructed
in the usual way will be satisfactory, see Proposition 4.5. Multiplicative noises
need some slight modification in constructing the absorbing set, which will be
shown in our future work.

Proof of Theorem 3.3 Let v € (0, 1) be given and fixed, and suppose without loss of
generality that f = T = 1 in hypotheses (H3) and (Hp). Since the absorbing random
set A is tempered, we have

B(w) = Bx(xw, R(w)) N A (w),

for points x, € A(w) and some tempered random variable R(-) satisfying (2.1).
Since Y is compactly embedded into X the unit ball By (0, 1) in Y is covered by a
finite number of #(w)-balls in X, and we denote by N (w) the minimum number of
such balls that are necessary for this, i.e.,

N(w)
v
By(0,1) C B @, “ e By(0,1). 3.10
v0.Hc x<p, Mw)) pY € By (0, 1) (3.10)

i=1

Next, foreachw € Q and o € ¥ we construct sets U" (w, 0) € % (w) by induction
on n € N such that

U'(w,0) € B(w), (3.11)
1" (@, 0) < [[N®-j), (3.12)
j=1
¢(n. 9,040, BO_0) S | ) Bx(u. RO_,0") N Bw). (3.13)
uelU"(w,o)

Note that the bound (3.12) of cardinality is independent of o.
For n = 1, by the smoothing property (3.7) in hypothesis (Hg) we have

91,010,610, B0 1) = ¢(1.9-10,0-10, Bx (x5_10n RO_10)) N BO_ 1))
C By(¢p(1,9_10,0_10,x9_,0), k(@_10)RO_10)) NP(1, 9_ 10, 0_10, BD_ ).
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Let yy,o = ¢ (1, 910, 0-10, x9_,,). From (3.5) (since 1 = f = Tg) and (3.10) we
note that

By (Yo,o. k(@—10)RW_10)) N$(1, 9_10, 0_10, B(D_ 1))

N _ o)
9 10 K@ 10)RO_jw)v
< U Bx<yw,a+K(l9—1w)R(19—1w)P,~ N PRER

i=1
N@_1o)
o R(®_1w)v
U BX (ya),o +K(l97]a))R(l9,10))pi 1(0’ T
i=1
N@-1)
U Bx(g"" R@-10)v) N B()

i=1

) N AB(w)

) N B(w)

N

for some g;”° € %(w), and with this we have

N@_ o)
o(1,0_10, 6_10, B(¥_1w)) C U Bx (g7, RW_10)v) N B(w).

i=1

Let Ulw,0) == {g° i =1,..., N®-1»)} € B(w), then U (w, 0) satisfies

(3.11)-(3.13) forn = 1.

Assuming that the sets Uk (w, o) have been constructed forall 1 <k <n,w € Q
and ¢ € X, we now construct the sets U" ! (w, o). Givenw € Q ando € X, by the
cocycle property of ¢ we have

P(n+ 1, 9_ (1)@, O—(n41y0, BO—(r41y0))
=¢(1,9_10,0_10) 0 ¢(n, V(141 ®, O—(ni-1)0s BO—(n+1)®)),

and by the induction hypothesis

P (1, V— (1@, O—(n-1)0, BO— (1))
= ¢(n, 9D 10, 0_,0_10, BO_,9_10))

- U Bx (u, RO—ynyon™) N BH_ 0),
ueU"(W_1w,0—-10)

where U"(9_10,0-10) € B 1) and fU"(9_10,0-10) < [[N(9—; (- 1))

j=1
n+1
= H N (@ _jw). Moreover, for each u € U"(¥_1w, 6_10), by hypothesis (H3) and
j=2

the smoothing property (Hg) we obtain
¢<1, Y_1w,0_10, Bx(u, R(l?,(nJr])a))vn) N ,@(ﬁ_lw)>
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C By (¢(1, 910, 6_10,u), k(O_10) RO_ 1)V ) N B(w)
N@-1w)
C U Bx(pl‘-‘fu, R(z?_(n+1)w)v"+l) N %(w) for points pi’, € B(w),
i=1

SO

P(n+1,9_ (1@, O—(ns1y0, BO—(ns1)0))

c U ¢(1, 91,010, By (1t, ROy y@)") N 93(0_10)))
ueU"(W_1w,0—10)
N@_1o)
< U U Bx(pfw RO N Bw).

uelUn(9_1w,0_10) i=1

Define U"(w,0) := {pf, 1 u € U'W_10,6-10), 1 < i < NO_10)}.
Then U (w, 0) € PB(w) and tU" (0w, 0) < tU"(9_10,0_10) - N(9_10) =
n+1
l_[ N (¥_jw). Hence, the desired sets {U" (w, o) },en are constructed.
Jj=1

Now, to find a finite cover of the random uniform attractor <7 let us make a decom-
position of it using the structure (2.3). By the compactness of the symbol space X, for
any positive number 1 > 0 there exists a finite cover of X by at least M, := Ng[X; n]

balls of radius 7, i.e., there are centers 0; € X,/ =1, 2, ..., My, such that
M’l
) =UBE(U,,n)m2. (3.14)

=1

Foreach! =1, ..., M, denote by

% =Bz, NE and Ay = ] A @), v, (315

oey;

where A is the D-cocycle attractor of ¢. Then by (2.3), the random uniform attractor
4/ is decomposed as

M'?
() = Az @), oeQ. (3.16)
=1

In the following, we shall find finite covers for each Ay, (w). Note that the constant
M,, is independent of w € 2, and depends only on the symbol space ¥ and the
corresponding given number 7.

For each [, let o7 € ¥; be given as above. Then for any o € %, dz(o, 07) < 7.
From the invariance of the cocyle attractor {4, (-)},<x under ¢, by hypotheses (H)
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and (Hy) we claim that

Az (@) € By (1. 900, 0001, Ao, 5,0 )., M(—melon O
(3.17)

foreach 1 </ < M,,n € Nand w € Q. Indeed, if & € Ay, (w) then h € A;(w)
for some o € %;. Since Ay (w) = ¢(n, V_pw,0_,0, Ap_, o (ﬁ_nw)), we have h =
o(n,9_,w,0_p0,u)forsomeu € Ag_,o(0—,0) € ¥ (V_,0) € B(V_,0). Hence,

I = @, 9. 001, )l x = (1. D0, 630, 1) = (1, V0. 001, )| x
< el O 5 (90, 0_01)
0
< el ML M (—nydz (o, 07)

0
< M(_n)ej;” L(z?,w)dyn’

and thus (3.17) holds. Notice that, since Ag_, 5, (V—,0) C B(_,w), from (3.13) it
follows

Nx[9 (1, 90, 6-101. Ao, 5,(2-0)); RO—v"| = T[N @),
j=1

and then
0
Nx[Bx (61, 90, 0001, Ao_, 5, (9-y0)), M(=m)el =0 HOD8 ) R@o_ 0"

n
0
+ M=l 0y | < TN G- o).
j=1

Hence, from (3.17),
0
Nx[ Az, @) RO-@V" + M(=nyelon Oy |

n
<[[NO jo). [=1.2.... M,
j=1

and then by (3.16) we conclude that
0 n
Nx|[@: RO_yo)" + M=l 04y | < TTN@-jo) | My,

j=1
(3.18)
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Given t > 0, by Birkhoff’s ergodic theorem there is ng € N such that for n > ny we
have

of ) L@s@)ds < ¢EL)+D)n,

and then from (3.18)

Nx[ o @: ROy + Mme®D0my | < [ TIN@-jo) | M,
j=1
(3.19)

foralln > ng and n > 0.
In the following, we establish by (3.19) a finite e-cover of <7 (w) for any small
e > 0. Let

R(O_,w)v"
MNn -

= Mme®Dron  TEN (3.20)

Then ,, — 0% as n — 00, and from (3.19) we have for n sufficiently large that

Nx [ﬂf(w), 2R(19,na))l)n:| = NXI:JZ{(CD)’ R(ﬂinw)v” + M(_n)e(E(LH-‘[)nnn]

n
< ]_[ N@-_jw) | My,.
j=1
Since the random variable R(-) is tempered, for any ¢ € (0, 1) there exists an n, € N
such that
2RO _p, )" < & < 2R(D_(n,_pyw)v" 1, (3.21)

and the numbers n, can be chosen such that n, — oo as ¢ — 0T. Hence, for ¢ > 0
sufficiently small

Nx[ @); ] = Nx| /(@) 2RO, )™ |

ne
= l_[ N(ﬁ_]w) M’Ina ’
j=1

and then
ne

> (logy NW—jw)) +logy My,
log, NX[;zf(a)); 5] _ =

—log, & T —logy [2RW—n,—nw)v]

(3.22)

Now we estimate the fractal dimension of .27 (w) by studying the limit as ¢ — 0.
To begin with, let us handle carefully each term involved in the right-hand side of
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(3.22) to obtain (3.25) bellow. Firstly, by the entropy hypothesis (Hs), Kc(Y; X) =
log; Nx[By (0, 1); €] < ae™? forall e > 0, so

O iw))’
logy N(9_;w) = log, <NX[By(O, 1): 2K(; w)D < “(K((V/Zf)‘:)) . (3.23)
—J

Secondly, for any 8 € (v, 1) fixed, by the temperedness of the random variable R(-)
again there exists n; € N such that

n
1
R(W_,w) (K) < =, foralln > ny,
B 2

that is,
2R(O_,on" < B, foralln > nj. (3.24)

Hence, for all ¢ > 0 small enough such that n, > max{ng; n; + 1}, it follows from
(3.22), (3.23) and (3.24) that

Ne
log, Nx [ (w); €] - ijl (logy N(9—jw)) + logy My,
—logae T —logy [2RW—(u.—1y@)v"e ']
ne y
7 Zj:1 (k- jw))" +logy My, (3.25)
—log, pre~!
Ne v
(v/aZ)V ijl (K(ﬁ—jw)) log, NS[E; nna]
—(ne — 1)log, B —(n; — Dlogy B

IA

Now we take the limit as ¢ — 0" (which leads to n, — oo and n,, — 07). By
Birkhoff’s ergodic theorem since E(x?) < oo, we first obtain

log, Nx[</ (w); €]

dimp (/ (w); X) = lim sup

e 0F —log, ¢
o e 14
G D, (k- jw) log, N2[Z;
< lim sup v Jj=1 + lim sup M (326)
e—07T —(ne — 1) IOgZ B e—07T —(ne — 1) 10g2 :3
E(xY logy, Ng| Z; 1,
aE(?) + Tim sup 125 [ Mn ]

T /2 1oz B enor —(ne — Dlogy B

Then, we consider the last limit in (3.26). Since by (H) the symbol space ¥ has finite

fractal dimension in E and that n,, — 0t ase — 01, for any x > O there exists

g0 = &o(x) € (0, 1) such that

1 dimp (Z; 8)+x
) , Ve <e¢gp. (3.27)

Ng|X; <|\—
[ nnS] <77ng
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From (3.27) and the definition (3.20) of 1, we obtain
10g2 NE[E; nng] _ In NE[Z; nng]
—(ng —Dlog, B —(nz —DInp

1
(dimp(E; 2) + X) In —

< e
- —(ne—1Ing

M (—ng)eEL)+DIne
In

(ln~ = log, )

R@®_p, w)v"e

= (di > B , Ve < e,
( im g ( )+x) o~ D)inp e < &
while from (H;) we have
M (—n,)eBL+TIne e BLI+THns
I ae
TR 0o Ry )"
by (H
o DWE S —m_nmp oY)
Inc; + (E(L) + 1+ ,u)ng In R(V—p, w) nelnv
= — — , Ve <e¢gp.
(e —Dng “(e—DInp  —(m.—DHinp

Hence, since n, — oo as ¢ — 07,

1 Nz Z;
limsupM <

. . E(L)4+t4+u Inv
et —(ne—1logy B~ (dlmF(E’ = X) ( > ’

—Inp Ing

which along with (3.26) we conclude that

.  x) < 2B«
dimp (7 (0); X) < —(v/2)" log, B (3.28)
+ (dimp(2; u)"‘X)( —Inp +1n,3>'

Since the estimate (3.28) holds for all x, 7 > 0 and all 8 € (v, 1) we finally obtain

aE(k7?)

(L
+dimp(3; B) <ﬂ+ 1).
—Inv

3.2 Squeezing Approach

Theorem 3.3 gives a criterion on the finite-dimensionality of random uniform attrac-
tors where, however, the finiteness of the expectation of the coefficient x (w) in the
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smoothing condition (Hpg) is usually not easy to obtain in real applications. To over-
come this, we next propose an alternative method using a squeezing condition instead.
The squeezing, in applications, applies mainly to a Hilbert phase space X, but allows
the coefficients to be an exponential with only the order having finite expectation (the
expectation of the entire exponential does not need to be finite, see (S)).

We first recall the following lemma of finite-coverings of balls in Euclidian spaces.

Lemma 3.5 (Debussche 1997, Lemma 1.2) Let E be an Euclidean space with algebraic
dimension equals tom € N and R > r > 0 be positive numbers. Then for any x € E,
it holds

Ng[Be(x, R);r] <k(R,r) < (Rr_\/'7 + 1) _

In other words, any ball in E with radius R > 0 can be covered by k(R, r) balls of
radius r > 0.

Let ¢ be an NRDS, T > 0 be as in (H3) and suppose in addition the following
squeezing property:

(S) ¢ satisfies a random uniformly squeezing property on 4, i.e., there exist
t > Ty, § € (0, 1/4), an m-dimensional orthogonal projection P : X — PX
(dim(PX) = m) and a random variable ¢(-) : 2 — R with finite expectation
E(¢) < —In (46) such that

sup | P(6G.0.0.10) — §(G. 0.0.0) | < e OO vy (3.29)

oex

and

sup [Q(¢(F. @, 0.u) — $(F, 0, 0,v)) 4 < aeftf“l’sw)dsnu —vllx (3.30)

oeEX

forall u,v € B(w), w € L, where Q :=1— P.

We have then the following criterion for the finite-dimensionality of random uni-
form attractors.

Theorem 3.6 Suppose that ¢ is an NRDS in X with D-uniform attractor . If con-
ditions (Hy)—(Hy) and (S) hold, then </ has finite fractal dimension in X: for any
0<p<In(1/48) —E(),

2min (Y2 +1)

dimp (d(a));X) < p

(3.31)
2(E(L) +
( ( (L) )

+ 1) dimg(X; E), Vo € Q.
0
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Proof Suppose without loss of generality thatf = T = 1inhypotheses (H3) and (S).
Since the random absorbing set 4 is tempered, we have

PB(w) = Bx (X0, R(®)) N B(w),
for points x,, € % (w) and some tempered random variable R(-) satisfying (2.1).
Next, foreachw € Q ando € X we construct sets U" (w, 0) € HB(w) by induction
on n € N such that
U'(w,0) € B(w), (3.32)
m
gU" (w, 0) < ki, where ko := the integral part of <? + 1) , (3.33)
0
$(n. 9w, 0_n0, BO_,0))< | ] Bx (u, (48)" e n 4(1’s“’)dSR(19_na))>ﬂ,@(w).
uelU"(w,o)

(3.34)

Note that the inclusion (3.32) is independent of o and the bound (3.33) of cardinality
is independent of both ¢ and w.
Letn =1,w e Qand o € X. Since dim(P X) = m, from Lemma 3.5 we have

0 0
Nox [Bex(Po(19-10,6-10.x0_10), 1€ PU R @) ); 661 €O R 00|

<(@+1)'",

so there exist kg ( :=the integral part of (JT% —H)m) centers xim ey x(]f}fg € P(AB(w))
such that

0
Brx(Po(1, 0-10,0-10, %9 10), e C PO R 0) )

ko
. 0
(U Brx (v 061 C OO R ).
i=1

Hence, for any u € A(¥_w), since by (3.29)

P(p(1, 91w, 0_10,u) —d(1, O_ 10,010, x9_,0)) | v < 2 §Ws@)ds p(9_ 1 w),
| P( 10))] x
we have

10, c@w)ds
Pop(l, 9 qw,0_10,u) € Bpx| Po (1,0 10,0_10, x9_,0), €'~ R(W_1w)

ko
. 0
U Brx (v 861 €0 R 0),
i=1
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and for some particular ig € {1, 2, ..., ko}
P19 10,0 10.u) € Bpx(x:;?ﬁ, selts g““’vw)‘“‘le(ﬁ,la))). (3.35)
Setting
Vi =X o+ 09,9 10,010, x9 10) € X, i=1,2,... ko,

we obtain from (3.30) to (3.35)

(1, ¥ 1w, 0-10,u) — y;ﬁ)ﬁ lx < I1Pp(1, V10,010, u) —X(iﬁ),(, llx
+10¢ (1,910,010, u)
—0¢(1, 010,010, x9_0) Il x
< 56l E@Od Ry |y 4 5l EDO Ry

0
— (28)e)- 185 Ry 4y,
Hence, since u was taken arbitrarily in (90— w),

ko
¢(1, 9 10,0-10, BW_10)) < | ] Bx (y:;,,(,, 28)el1¢ w-fw)dsm,lw)).

i=1
In addition, as ¢ (1, V_jw, 6_10, B(V_1w)) C HB(w), we finally have

ko
P(1,9-10,0_10, B(D_1w)) S U BX()N)(';J,U, (43)8‘/91 g(ﬂsw)dsR(z?_la))> N B(w)
i=1

for some points &fuﬂ € B(w). Let U (w,0) = {)7(’00 = 1,...,k0} C B(w).
Then, U (w, o) satisfies (3.32)-(3.34) forn = 1.

Assuming that the sets Uk (w, o) have been constructed forall 1 <k <n,w € Q
and o € ¥, we now construct the sets U" 1 (w,0).Givenw € Q and o € X, by the
cocycle property of ¢ we have

(n+ 1, 9_ (1@, O—ui1)0, BO—(111)®))

(3.36)
= ¢(1, DARTON 9_10’) o ¢(n, V(1) @, O—(nt1)0, ﬂ(ﬁf(n+1)a))),
and by the induction hypothesis
¢ (1, 9— (1)@, O—(n-1)0, BO— (1))
=¢(n, 0,0 1w, 0_,0_10, B(O_,0_1w
¢( n 1 nb—1 ( 7ln 1 )) (337)
- U Bx (u, (48)"ef_(n+1> §(’9““’)dSR(z9_(n+1)w)) NABO_1w),

ueU"(W-1w,0_10)
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where U (¥_1w,0_10) € B(V_1) and U" (V- 0, 0_10) < kjj. Combine (3.36)
and (3.37) to obtain

d(n+ 1, 9_(a1)@, O—(n10, BO—(n41y0))

—1
c U (om0 By (u @y el o f 00N RG_ 0 0)
ueU"(W-1w,0-10)
093(0_1@)). (3.38)

Now we cover each term in the right-hand side to obtain (3.40). For each u €
U'(W_jw,0_10) C B(P_1w), we have

0 ;
Brx(Po (1, 0-10, 0-10,0), (48)"el=0en EH0 R _(, 1))

ko
. 0
c (U Brx (v, s¢8) el o (OB R, ),

i=1

where x,i € P(A(w)) since ¢p(1, 91w, 0_10,u) C AB(w) by (Hz), and kg is given
—1

by (3.33). Hence, for any v € By (u (48)" el € (ﬂxw)dsR(ﬁ_(nH)w)) NBO_ 1)

we obtain by (3.29)

Po(1, 9_ 1w, 0_10,v)

0
& Brx(Po(1, 910, 0-10,w), (48)" /00 OV R4 1,0))

ko
. 0
g U BPX(xth, 8(48)nef—(n+l) ¢ (Usw)ds R(ﬁ—(n—}-l)w))

i=1
and then
i n fo L(Dsw)ds
Po(1, 9_1w,0_10,v) € Bpx (xuo, 5(48)" el=n s R(ﬁ,(nﬂ)w)) (3.39)
for some ip € {1, ..., ko}. Setting

yii=xl 4 061, 9 10,0_10,u) € X, i=1,2,..., ko,
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we have from (3.30) to (3.39) that

lp(1, 9_10,0-10,v) — YO llx < |P(1, ¥_1w,0_10,v) — x| x
+ 1Q¢(1, 91w, 6_10, V)
—Q0¢(1,9_1w,0_10,u)|x

0
< 548)" el E PR w)
0
+88) el EPOB R, 0)

0
=28(48)" e/~ EPON R, o),
SO

1.9 10.6_,0, B 45)" el s p g N B
o1,V 10,0_10, Bx(u, (45)"e D —@p+nw) P-1w)

ko ) o
< (U Bx (i 208" el SO Ry y0)) 1 Blw)
i=1

ko ) 0
S (&;, (48)" 1 el~on W-f‘“>d5R<z9_(n+1>w>) N %(w)
i=1

for some points &,i € A(w). Hence, by (3.38) we finally conclude that
P(n+1,9_ (1)@, O—(n41)0, BO—(ns1)0))
ko ) 0
c U Usx(5 @ortlelon @O Rre 4 h0) 0 #@).
uelU"(W_1w,0_10) i=1
(3.40)
Define U”‘H(a), o) = {)7,‘4 cu € U'(W_1w,0_10)and 1 < i < ko}. Then,
U (w,0) € B(w) and gU" (w,0) < k§t!. The desired sets {U"(w, o) }nen
are constructed.

To find a finite cover of the uniform attractor <7, using the idea of Theorem 3.3 we
make the decomposition

MVI
() =|JAs (@), oeQ, (3.41)
=1

where for n > 0 we are denoting M, = Nz[X; n], ¥ = Ulﬂi”l ¥, % = Bg(o;,n)NX
and Ay, (w) = Ugex,; Ao (). Moreover,

Az (@) € By (1. 900, 0001, Ao 5,(D)., M(—melon O
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foreachl </ < M,,n > 0,n € Nandw € ,see (3.17). Given t > 0, by Birkhoff’s
ergodic theorem we have for n € N great that

of ) L@s@)ds < ¢EL)+D)n, (3.42)
getting

Az, (@) € Bx (¢>(n, O nw, 0-n01, Ao_, 5,(D_n)), M(—n)e(E(“”)"n).
(3.43)

Now fix 0 < p < In(1/458) — E(¢) and let y > 0 be sufficiently small such that
E@) +p +y <In(1/46).

Since R(w) is a tempered random variable we have for n large enough that

0
(48) el=n @5 pg ) < (48)1eBOFTIN R w)
— Bty to-In(1/49)n (= p/Dn y(~p/Dn R )

S e(—P/z)”’
and so (3.34) gives

$(n, 9w, 0_yo, BO_0)) < | Bx(u,e<—ﬂ/2>")m,93(w). (3.44)

uelU"(w,o)

Notice that Ag_, 5, (V_,0) S B(V_,w), so from (3.44) it follows for n € N suffi-
ciently large that

Nx[9 (1, 90,0101, Ao 5, (9-0): €127 < i,

and then

NX[BX(¢ (n, O—nw, 0_yo1, Ag_, 5, (D_pw)), M (—n)eEDF0n 77); e~ (P/2n

+ M(—n)e(]E(L)“)”n]

< kg.
Hence, from (3.43),
Nx[ Az @) PP 4 M=me®E ] <k, 1=12,M,,
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and then by (3.41) we conclude that
Ny [sz(a)); e=p/2m M(—n)e<E<L>+f)"n] < k'M, (3.45)

for all n > 0 and n € N large.
In the following, we establish by (3.45) a finite e-cover of &/ (w) for any small
e > 0. Let

e(—p/2n
M -

= M e®Don " € N large. (3.46)

Then n, — 0% asn — oo, and from (3.45) we have

Nx|[ (@) 267727 | = Ny (@); e/ 4 M(=m)e® D50y,
<kyM,,.

Notice that for any ¢ € (0, 1) there exists an n, € N such that
2P/ _ o < 26(—0/2)(%—1)’ (3.47)
and the numbers 7, can be chosen such that n, — oo as ¢ — 0. Hence,

NX[,Q{((U), 8] < NX [ﬂ(w)’ 26(_'0/2)”5]

< kg My,
and then (recall that My, = Nz[%;:n,,])

In Nx [ (w); €] _ nelnko +1n Na[X; iy, ]
—Ineg -~ —_In [26(—17/2)(%—1)]

_nglnko +1In Ng[X; np,]

=2+ (p/D(ne— 1)’

(3.48)

Ve € (0, 1).

Since by (H1) the symbol space X has finite fractal dimension in & and that n,,, —
0T ase — 0T, for any x > O there exists &9 = £9()) € (0, 1) such that
, Ve =< eo. (3.49)

1 )dimF(E;EH—X

Ng|X; <|\—
[ nnS] <77n£
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From (3.49) and the definition (3.46) of n,,, we obtain

. ~ 1
In Nz[Z; ] (dim (%5 8) + x) In e

T2+ (/e — D) = 2+ (/2 — 1)
| [ M(_ng)eaE(Lm)né}
o | McngeEDrone

e—(p/Dne

= (dimp(2; B)+x) NPT Ve <&,
while from (H;) we have
M(_ng)e(lE(LHr)ns Cle(E(L)+r+u)ne
In e‘(ﬂ/z)ng In e_(p/z)"g
by (H
—In2+ (p/2)(ne — 1) = —In2+ (p/2)(ne — 1) (by (#)

_Inep + (E(L) + 7+ p)n, (p/2)ne
T —In2+(p/D(me — 1) —In2+ (p/2)(ne — 1)

for all & < &¢. Hence, since n, — coase — 0T,

InNg[X; .
lim sup nNe[2: ] < (dlmF(E; E)+ x) <

2(E(L) + 7 + 1) o
esor —In2+(p/2)(ne — 1) — '

0

Therefore, by taking the limit in (3.48) as ¢ — 0" we conclude that

In N[ (w);
dimp ('Q{(w); X) = lim sup M
e—0+ —Ine

2Ink
< I; 0 4 (dimp(; E)+x)<

1%

Since the estimate (3.50) holds for all x, T > 0 we finally obtain

dimp (o (0); X) < % + dimp(3; B) (@ + 1) :

which implies (3.31) since kg < (‘/T'W + l)m by definition (3.33). ]

3.3 Fractal Dimension in more Regular Spaces

By Theorems 3.3 and 3.6, we have established the finite-dimensionality of the random
uniform attractor &/ = {</(w)},eq in the phase space X. Now we are interested to
improve the finite-dimensionality to a more regular space ¥ C X. But to be more
general, in the following we study the problem in a Banach space Z for which Z =Y
is a particular case.
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Let (Z, || - ||z) be a Banach space and suppose the NRDS ¢ takes values in Z, i.e.,
foreachu € X, w € Q and o0 € ¥ we have ¢ (¢, w,0,u) € Z fort > 0. Suppose
also that the random uniform attractor is such that &/ (w) € X N Z for all w € Q. In
the following, we shall show that under a (¥ x X, Z)-smoothing property the fractal
dimension in Z of the random uniform attractor can be bounded by the dimension of
it in X plus the dimension of the symbol space ¥ in E.

The (¥ x X, Z)-smoothing condition we need is as follows:

(H7) There is a t > 0 such that for some positive constants 81, § > 0 and a random
variable L(w) > 0 it holds

196G, 01,1) = (G, 0,02, Wz = L@)| (dso1,02)" + Jur = w2} ],

forall oy,07 € X, u,v € & (), w € Q.

Remark 3.7 (i) The random variable L(w) in (H7) does not need to have finite expec-
tation.

(i1) Even for the case Z = Y, (H7) is not implied by (H4) and (Hg), and vice
versa. Nevertheless, (H7) is often more applicable in applications since powers 61 and
8 are allowed but no powers are allowed in (Hg). In fact, it is open whether or not
Theorem 3.3 can be established using a weaker version of (Hg) with condition (3.7)
weakened to: there exists some power § € (0, 1],

sup lp(F, w, 0,u) — (. w, 0, V) |y < k(@)llu—v[%, Yu,veBw), o Q.
g€eX

(3.7)

Theorem 3.8 Let ¢ be an NRDS which is (X x X, X)-continuous and has a D-
uniform attractor of € X N Z. Suppose that </ has finite fractal dimension in X,
ie, dimp (o (w); X) < c(w) < oo. Then if (Hy) and (H7) are satisfied, </ has finite
fractal dimension in Z as well:

dimp (o7 (w); Z) < (%dimp(Z; ) + (SldimF(sz{(ﬁ_;w); X), weQ.
1 2

Remark 3.9 Notice that

(i) Z does not have to be a subset of X and no embedding from Z into X was
required, so the theorem applies to the case of, e.g., X = L?(R) and Z = L?(R)
with p > 2;

(ii) If the fractal dimension of .7 in X is uniformly (w.r.t. € ) bounded, i.e.,
dim p(sz% (w); X ) < d for all w € 2, where d is a deterministic constant, then
the fractal dimension of %7 in Z is also uniformly bounded by a deterministic
number: dimp(xzf/(w); Z) < %dimF(E; E) + %.

Proof of Theorem 3.8 For any ¢ € (0, 1) let M, := Ng[X; ¢]. Then, there exists

M 15 . M 175
a sequence {07}, ' of centers in ¥ such that & = U2 'Y, where &) =

Bg(o1, e/t N x.
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Let w € Q. Since .« (w) is compact in X we have

Nx [ (w);e1/%2]
o (w) = U Bx(xf, ey N (0), xPe (),

i

i=1

and by the negative semi-invariance of .« (see (2.4)) we obtain

() < | ¢(f. 0_jw. 0_j0. 7 (9_jw))

oeEX
Mgl/t?l
= U U ¢(t_, Y_jw, 0_;0, JZf(l?_l‘a)))
=1 o€
Mo1s, (3.51)
= | o0 05, 0751, 7 9_;0))
=1
M 175 Nyl (9_jw);e'/%2]
_ s e ) Vo 1/8) 3
= U U ¢ 0w 0% Bx(x] . ') 0ot (9_j0)).
=1 i=1

where ¢(7, 9_jw, 0_; %), o (9_jw)) := Ugex, ¢ (1, ¥_jw, 0_jo, o (V_jw)).
Let upuz € (70 70, 0_7%, By (x] ™, &'/2) 0 /(2 _j0)). Then, uy =

(7,9 _jw,0_jo1,v1) and uy = ¢(7, ¥_jw, 0_jo, v2) for some 01,07 € %; and

VI, V2 € BX(x?*fw, ') N o (¥_jw), and

lur — uallz = llp(7, ¥_jo, 0_jo1, v1) — ¢(i. ¥_jw, 0_jo2, v2) 2

< L) (d2(@ 701, 6_02))" + o1 = v2?] by (H)
= L0 0)| M(=D" (dz(or,02)" + o = w2l | by G4
< Z(z?,;w)[M(—f)‘sl i 4 2528].

Let 7 (i, ®, 81, 82) 1= L(¥_jw)[M(—1)*12%1 + 2%]. Then,

diamz (9(7, 00,071, Bx (v, '/2) 1./ (9 ) = 1T, 0,61, 82)e,
(3.52)

foralll =1,..., M, andi = 1,..., Nx[& (9_;w); '/%2], so by (3.51) we obtain

Nz[o (@) r(T, ,81,82)e] < Mo, - Nx[of (9 _jw); €'/%2]
= NE[E, 81/31] . NX[%(I?_[(U); 81/82].
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Since r(f, w, 81, 8,) is independent of ¢ and <7 (¥_jw) is finitely dimensional in X
then in a standard way of taking the limit as ¢ — 0% we conclude

dimp(,ga/(a)); Z) < (SidimF(Z; E) + aldimp(%(ﬁ_;a)); X) < o0, Yo e Q.
1 2

3.4 Finite-Dimensional Symbol Space Z of Continuous Functions

In condition (H), the symbol space X is required to be finite dimensional, which is
technical itself in real applications. In fact, even in the deterministic uniform attrac-
tor theory the uniform attractor .«# and the compact symbol space X have a close
relationship, which can be seen from, for instance, the presentation

o = U Ao),

oED

where {A(0)},cx forms the cocycle attractor of the underlying system (Bortolan et al.
2014). This structure provides a view of the uniform attractor .o as the image set of the
mapw : X — &/,0 — A(o).Inasimple case that 7 is single-valued, i.e., each A(o)
is a single point in the phase space, the fractal dimension of .7 can equal that of the
symbol space when, e.g., 7 is Lipschitz continuous. For this reason, we do not expect a
general finite-dimensional result of uniform attractors for infinite-dimensional symbol
spaces.

Now from the application point of view we present some conditions that ensure
a symbol space to be finite-dimensional. Note that for a non-autonomous evolution
equation with time-dependent term g (called the (non-autonomous) symbol of the
equation), the symbol space X is often formulated as the hull H(g) of g with all
the time translations of g being included. More precisely, for g € E with & being a
complete metric space,

dz

T = H(g) = {6:8() : s € R} (3.53)

and 0; : E — E are translation operators on E:
06()=E(s+), seR, Eck.

In our previous work (Cui et al. 2021), taking E as the Fréchet space of continuous
functions we gave conditions on a function g € E that ensure the hull of g to have
finite fractal dimension, which weakened the known condition of quasi-periodicity
needed by Chepyzhov and Vishik (2002) in applications. Now we recall briefly the
main results, since they give us insights about what applications our theorem can apply
to. We begin with two preliminary concepts of almost periodic functions and quasi-
periodic functions. The readers are referred to, e.g., Amerio and Prouse (1971) and
Chepyzhov and Vishik (2002).
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Let (2, d9°) be a complete metric space and £(-) : R — 2" a continuous map.
For any ¢ > 0, a number 7 € R is said to be an e-period of & if

suﬂgd%(é(s +1),6(5)) <e.

If for any ¢ > 0 the e-periods of function & form a relatively dense set in R, i.e., there
is a number [ = I(e) > 0 such that for any « € R the interval [«, @ + /] contains
an e-period t of &, then £ is said to be an almost periodic function. Note that for an
almost periodic function &, the set of values {&(¢) : t € R} is precompact in Z". Also,
& is uniformly continuous on R, and the sum of almost periodic functions is an almost
periodic function. Clearly, periodic functions are almost periodic.

A particular class of almost periodic functions is the quasi-periodic functions. For
k € N, let T = [R mod 27 ]¥ be the k-dimensional torus and denote by C (Tk: 27) the
set of continuous functions ¢ € C (R¥: 27y which are 2m-periodic in each argument,
ie., foreachi =1,...,k

(p(x]5"'7xl.7]9xi +27T7xi+1""7xk) :(p(xlv"'5xi717xiaxi+]5""xk)'
Leta = (q,...,a) € T*, where {aj i =1,...,k}is aset of rationally indepen-
dent real numbers, i.e., if n1, ..., ny € Z are integers such that nyoy +- - - +nro =0
thenny =---=ny =0.For¢p € C(’]I‘k; %), afunction & : R — 2" with the form

E(t) :=p(agt, ..., art) = @(at), teR,

is said to be quasi-periodic (with k frequences) with values in 2. Note that periodic
functions are particular quasi-periodic functions, and quasi-periodic functions are
almost periodic.

For the space E, := Cp(R; Z") of bounded continuous functions with the
supremum metric, Chepyzhov and Vishik (2002) showed that the hull of Lipschitz
continuous quasi-periodic functions has finite fractal dimension. More precisely,

Lemma 3.10 (Chepyzhov and Vishik 2002, Proposition 1X.2.1) If &€ € E, =
Cp(R; Z) is a quasi-periodic function with k frequencies &(t) = ¢(ta) with ¢ Lips-
chitz continuous, then dim g (H;, &); Eh) < k, where Hp,(§) is given as in (3.53) with
the closure taken over the supremum metric.

Moreover, the following lemma indicates that a necessary condition for Hj(€) to
be finite dimensional in Ej is that £ is almost periodic.

Lemma 3.11 (Chepyzhov and Vishik 2002, Theorem V.1.1) A function § € E, =
Cp(R; Z) is almost periodic if and only if the hull Hy(€) of & is compact in Bp.

In order to study evolution equations with more general non-autonomous terms
than quasi-periodic ones, in our previous work (Cui et al. 2021), we considered the
space E = C(R; 2") of continuous functions with the Fréchet metric

— 1 d" &, &) -
dz(§1,82) Z;z—nm &1,5 € &,
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where
d" (&), &) = ,dmax dy (1(5),62(s)), neN.

In this space, the translation operators 6; are Lipschitz but with #-dependent Lipschitz
constants, as indicated by the following lemma.

Lemma 3.12 (Cui et al. 2021, Proposition 4.3) For any t € R the translation operator
6, on 8 = C(R; Z) is Lipschitz:

dz(0:€1, 6,6) < 2" dg (&1, &), V&, & € E.

In addition, the following theorem shows that the finite-dimensionality of the hull
H (&) of a function & in E is fully determined by the tails of the function.

Theorem 3.13 (Cuietal. 2021, Theorem 4.12) Suppose that g+, g— € E =C(R; Z°)
are two functions with finite-dimensional hulls H(gy) and H(g_) in B, respectively.
If g € E is a function such that

(G1) g is Lipschitz continuous from R to Z';
(G2) g converges forward to g+ and backwards to g_ exponentially, i.e., there exist
a time T, > 0 and constants C, > 0 such that

do (8(t), g+())<Ce P and dy (g(~1), g—(—1)) <Ce™" forall t>T,.
(3.54)

Then, the hull H(g) of g is finite dimensional in E with
dim (H(g); E) < max {1, dimp (H(g1); 8), dimp (H(g_); E)}.

Note that, by Lemma 3.10, quasi-periodic functions are examples of g4 and g_.

Theorem 3.13 allows us to consider in applications some non-autonomous terms
that are not almost periodic, for instance, the smoothly switching forcing g € C(R; R)
such that

1, t>1;
1) =
8) [—1, <1,
for which by Theorem 3.13 (with g4+(#) = 1 and g_(f) = —1) we have

dimpg (H(g); C(R; R)) < 1. More examples and comments were given in Cui et al.
(2021).
Finally we recall a useful lemma.

Lemma 3.14 (Cui et al. 2021, Lemma 5.1) Let (2, || - |l.2°) be a Banach space. If

—

g € B:=CMR; Z) and the hull H(g) of g is compact in &, then there is a constant
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¢ = ¢(g) > 0 such that for any o1, 02 € H(g)
! q
/ lo1 (s) — o2(s) 1%, ds < c2q<f—f+‘fl>(d3(al, 02)) . Vi>tandg > 1.
T

In particular,
t 2
/ llo1(s) — 02(5)”23{ ds < c4' (ds(m, 02)) , Vt=0. (3.55)
0

4 Applications to a Stochastic Reaction-Diffusion Equation
In this section, we study a stochastic reaction—diffusion equation as an application of
our theoretical analysis. Note that, under certain conditions, the existence and some
preliminary results of the random uniform attractor have been established recently by
Cui and Langa (2017). Now, with the non-autonomous term strengthened such that the

symbol space is finite dimensional, we show the finite-dimensionality of the random
uniform attractor.

4.1 Preliminary Settings and the Symbol Space

We consider the following reaction—diffusion equation with additive scalar white noise

du + (Au — Aw)dt = f(u)dt + g(x,)dt + h(x)dw, x €O, t>1€R,
“.1D

endowed with the initial and boundary conditions
u(x, D= = u-(x), ulx,nlo =0, 4.2)

where © ¢ RV, N € N, is a bounded smooth domain and A > 0 is a constant. The
nonlinear term f € C! (R, R) is assumed to satisfy the following standard conditions

f(s)s < —ayls|” + B1, 4.3)
£ ()] < onls|?™! + o, 4.4)
|f' )] < kals|P% + 1o, 4.5)
f(s) < —rilslP~* + 14, (4.6)

where all the coefficients are positive constants and the growth order p > 2. Let
h(x) € W22P~2(©) for simplicity. To establish a smoothing property (Hg), we will
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also need the growth order p to satisfy

p=2 N=1.2;

2<p<¥=, N=3. @7

This ensures the continuous embedding HO1 (O) — L2P~2(0) with
lull 2020y < cllVull, Vu € Hy(O), (4.8)
for some constant ¢ > 0, where || - || := || - || 12(0)> See Robinson (2001, Theorem

5.26).
The probability space (€2, F, IP) is defined in a standard way. Let

Q:={we CR;R): () =0},

F be the Borel sigma-algebra induced by the compact-open topology of €2 and PP the
two-sided Wiener measure on (€2, F). Define the translation operators ©%; on 2 by

o =w(-+1t)—w(), VieR, weQ.

Then P is ergodic and invariant under ¥ (see Flandoli and Schmalfuss 1996). Setting

0
z2(w) := —k/ Tw(r)dr, VYo e Q, 4.9)

—00

we have that z(w) is a stationary solution of the one-dimensional Ornstein—Uhlenbeck
equation

dz(%,0) + Az(Dw)dt = do. (4.10)

Moreover, there is a 9-invariant subset Q C €2 of full measure such that z(%;w) is
continuous in ¢ for every w € Q and the random variable |z(-)| is tempered (see Fan
2006, Lemma 1). Hereafter, we will not distinguish Q and Q.

In order to study the finite-dimensionality of the random uniform attractor, we need
the non-autonomous forcing g to have a finite-dimensional hull in some metric space
E. By the analysis in Sect. 3.4, for the current reaction—diffusion equation we take
E:= C(R; Lz((’))) and assume that

(G) g € 8=C(R; L*(0)) and the hull of g

—
H(g) ={6,g :r € R}

has finite fractal dimension in E, i.e., dimp (H(g); E) < oo.
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Note that, by Lemma 3.10, Lipschitz continuous quasi-periodic functions are examples
of such g’s with condition (G), and Theorem 3.13 indicates that Lipschitz continuous
functions with tails eventually exponentially converging to quasi-periodic functions
satisfy condition (G) as well. Some concrete examples were given in Cui et al. (2021).

Now for the reaction—diffusion equation (4.1), we define the symbol space as the
hull of the forcing g in E:

Y = "H(g).

Then condition (G) ensures that ¥ is a finite-dimensional compact subset of E. More-
over, the group {6;};cr of translation operators forms a base flow on X.

4.2 Generating an NRDS and the Random Uniform Attractor

Now for o € X, we consider the following stochastic reaction—diffusion equation

du + (\u — Au)dt = f(u)dt +o(x,t)dt + h(x)dw, x €O, t >

0. 4.11)
u(x, t)|i=0 = uo(x), u(x,yo =0.

By the Ornstein—Uhlenbeck equation (4.10), we transform the equation (4.11) to the
following conjugate random problem

dv
dt
U()C, t)lt:O = UO(X), U(.x, t)|3(9 =0.

Fho = Av = [0+ h@) + 0000+ 2GR,

Denote by
H:=(L*O),|-1), V:i=H0), Z:=L"0),
and let D be the collection of tempered closed random sets in H, i.e.,
D= HD : D is a tempered closed random set in H ]

Then, I : V < H is compact, and by Lemma 3.2 we have the Kolmogorov e-entropy
condition

Ke(ViH) <™, Ve>0, (4.13)

for some constant & > 0.

Following a standard argument by Temam (1997), Chepyzhov and Vishik (2002)
we know that for each initial data v9 € H, problem (4.12) has a unique solu-
tion v(-,w,0,v9) € C([0,00); H) N LY ((0,00),Z) N L? ((0,00); V) with

loc loc
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v(0, w, o, vg) = vg. Moreover, v is (F, B(H))-measurable in w, see, e.g., Cui et al.
(2018b). Hence, setting foreacht > 0, w € 2, 0 € ¥ and vg € H that

o1, w,0,v9) = v(t, w, 0, V), (4.14)

then ¢, generated by solutions of (4.12),isa (¥ x H, H)-continuous NRDS in H (In
fact, ¢ is Lipschitz in both initial data and symbols as indicated by Lemma 4.7 later).
Now, foreacht > 0, w € 2, 0 € ¥ and ug € H, set

u(t,w, o, ug) = v(t, w, o, Uy — hz(a))) + hz(H;w). (4.15)

Then, u(t, w, o, ug) is the solution of (4.11) at time ¢ with initial data ug (at time
t = 0) satisfying Definition 2.1. Hence, qg(t, w,o,up) = u(t, w, o, up), generated
by the solutions of stochastic RD equation (4.11), is also a (¥ x H, H)-continuous
NRDS in H. In fact, ¢ and ¢ are conjugate NRDS, satisfying (2.5) with cohomology

T(w,u) =u+hz(w), we R, ueH. (4.16)

Since the cohomology T is a bijection from D onto D, Theorem 2.10 shows that the
conjugate D- uniform attractors .o/ of ¢ and <7 of ¢ have the translation relation

() =T(w, o () = & (0) + hz(0), e, 4.17)

which indicates that the two attractors have the same fractal dimension.

In the rest, we shall study the finite-dimensionality of 2/ in H by checking the
conditions (H1)—(Hs) and (S) in Theorem 3.6, and in V by checking (H7) in Theo-
rem 3.8. The existence of the random uniform attractor was proved previously by Cui
and Langa (2017), using Theorem 2.6.

4.3 An Admissible Uniformly Absorbing Set %

4.3.1 Estimates of Solutions

The estimates of solutions in this section will be achieved in a standard way as in Cui
and Langa (2017) in spirit, but we need more details that are crucial for us to bound

the fractal dimension of the uniform attractor afterwards. Note that the condition (4.7)
on p is not needed in this section.

Lemma 4.1 (Estimate in H) Let conditions (4.3)—(4.6) hold. Then, any solution v of
(4.12) with initial value vo € H satisfies
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t
ot 910,610, v0) > + / 0 (IVu(s, V-0, 6-10, v0)
0
oG5, V-1, 60—, v0)]15) ds

0
< e Mol + c/ & (1e@@I? + 1+ o)) ds, 120,
—t

where C > 0 is a positive constant independent of vo € H, 0 € X and w € Q2.

Proof Take the inner product of (4.12) with v in H to obtain

1
5:11—t||v||2 +Alvll® + IVv|? = / v(f(v + hz(%w)) + o () + Z(l%w)Ah) dx.
(4.18)

By (4.3), (4.4) and Young’s inequality, we have, since u = v + hz(V;w),

f vf(v+ hz(%w)) dx = /uf(u) dx — /hz(ﬁtw)f(u) dx

< —ot1||u||g +c +/‘otzlhz(ﬂ,a))l(|u|p_1 + l) dx
_ P AT P
< —ajllullp +c+ ) lullp + clz(@rw)|¥ + clz(Prw)|
)
< —?HU”g + c(lz(w)” +1). 4.19)

f v(o (1) + z(0w)Ah) dx < %Hvll2 + %HO’HZ +c(z(w)|P + 1), (4.20)
by (4.18)—(4.20) we conclude that
%nvn2 + A1+ IVOI? + 1ol < c(lz@@)l” + 1+ o)), @21)
Multiply (4.21) by €** and then integrate over (0, ¢) to obtain

t
lv(t. .0, v0)1” + / (1Yo, 0, 0, v0)I1? + 065, @, 0, v) [ ) ds
° (4.22)
<ol +e [ (0@ + 1+ 100 ds.
0
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Replacing w and o by ¥_;w and 6_,0, we have

t
lo@t. 910, 6-10, v0) > + f 0 (IVu(s, V-0, -0, v0)
0
+ llvGs, 90, 0-,0, v0)]1} ) ds

t
<l +e [ SO (0@ + 14 oG 0 d
0

0
= e Mol +c / (2" + 1+ o)) ds,
t

and the proof is complete. O

Lemma 4.2 (Estimatein V') Let conditions (4.3)—(4.6) hold. Then for any € > 0, there

is a constant c¢ such that any solution v of (4.12) with initial value vy € H satisfies
IV, 9@, 60, vo) I

< cee M lvoll* +ce /

0
& (1z@)” + 1+ lo@)I?) ds. Vi = e,
1
where c. is a positive constant depending only on €.
Proof Multiply (4.12) by —Awv and then integrate over O to obtain

1d
ST IVOI2 AVl + | Av|? = —f Av(f(v+hz(z9,a)))+a(t)+z(19ta))Ah)dx.

(4.23)
By (4.4)—(4.6), we have
—/Avf(v—f—hz(l?,a))) dx = —/Auf(u) dx—i—/Ahz(z?;a))f(u) dx
_ 2df(u) /
= / [Vul ™ dx + | Ahz(Drw) f(u)dx 424)

< IVul® + f |Ahz(ﬁ,w)|(a2|u\1’*1 + oz2> dx

< LIVl +clvllh + clz@@)]? +c.

Since

1
—/Av(a(t) + z(Bw)Ah)dx < [|Av]? + §||o||2 +clzw))?, (4.25)
from (4.23) to (4.25) it follows that

d 2 2 p p 2
EHVU(I,CU,G, vo) I <clVulI” + cllvllp + clz(@ro) P +lo|l” + ¢, 1>0.
(4.26)
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Fore > Oand s € (r — €, 1), integrate (4.26) over (s, t) to obtain

t
IV @. 0. 00)* = IVu(s, 0,0, v9) > < ¢ f (IVe@IP + @)l )de
e (4.27)
te [ (@@ +1+I0 @) )dr.
t—€

Then integrating (4.27) with respect to s over (t — €, t) we have

2 lft 2 P
Voo 0wl < (c+2) | (IVo@IP + )7 )de

t
+c/ (|z(z9,w)|1’ F1+ ||U(t)||2)dr,
1—€

and replacing w and o by ¥_;w and 6_;0, respectively, we have
t

1
Vet o-w. 00w = (e+) [
€

t—e

(17005, 910, 610 v0) P+ ][0(s) 1} ) ds

0
T / (2@ P + 1+ o (@) dr.

—€

Since, fort > ¢,

1
| (1906910, 0-10, w0012 + 1065, 910,610, )15 s
r—e

t
= [ (19005010, 0-,0, )P+ 065,900 w)I]) ds
t—e

t
< [ (19005, 010 00, I + 065, 910,00 00)) s
0

0

< ce M ||yo||? + cet€ / e“(|z(z95w)|p +14 ||a(s)||2> ds (by Lemma 4.1),
t

we conclude that

1
1900, 910, 6-10, w)I1? < €1+ = ) g 2
€

1
+ ce)‘e(l + —) f
€

0
& (Zs@)I” + 1+ o)) ds,
t

which completes the proof. O

To establish the (H, V)-smoothing property of the system, we need the following
estimates.
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Lemma 4.3 (Estimate in Z) Let conditions (4.3)—(4.6) hold. Then, any solution v of
(4.12) with initial value vo € H satisfies

& t
ellv(t, D—rw, 013, vo)lI} +/ / M us, 9w, 010, v9) 305 dsdr
o (4.28)
< ce ™M |luol? + ce + 1)f e“(|z(ﬁsw)|2l’—2 +1+ ||a(s)||2)ds, Vi>e>0,
—00

where ¢ > 0 is a positive constant independent of vo € H, 0 € ¥ and w € Q.

Proof Taking the inner product of (4.12) with |v|” —2y in H, we obtain

1d
;Envnz + Allvllh
< (f(v + hz(@w)), V[P 72v) + (o, 0|7 72v) + (2(Fw) Ak, [v]P V)

_ o] 2p—2
= (f0 +hz@0)), 0P 20) + vl 5 + cllo | + elz@ @)

(4.29)

By (4.3) we see that, since u = v + hz($,;w),

f+hz(o))v = fu)(u — hz(%o))

< —ailul? + B1 — fwhz(%w) (by (4.3))

< —aiful? + B + (calul” ™ + @) |hz(9,w)| (by (4.4))
3

< —ailul” + B+ - lul? + clhz(,0)|? + aalhz(3,0)]

<

o
—ZIW + clhz(®0)|” + B1 + aalhz (D).
Hence,

(f W+ hz(@0)), [P 20) = (f (v + hz(P0))v, |v]P~?)

o 2p-2 _
< = Ivligy 5 + clz@ )PP + c.
Then from (4.29), it follows that
d » p 2p—2 2p—2 2
E||U”p+)‘”v”p+ vllz,—3 = clz(drw)] +clol” +ec. (4.30)

Multiply (4.30) by e* and then integrate over (r, t) for r € (0, ¢) to obtain
2p-2

t
o1, + / 0 u(s)llyp 5 ds
r (4.31)

t
< ce MO+ e [ O (2P 1+ o o)1) ds.

r
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Integrating (4.31) over r € (0, ¢) yields

& t
_ 2p—2
elv(t, . 0, vo)||£+/0 / (s, 0, 0, 0) 555 dsdr
r

& &€ t
< c/ M w1 dr + c/ f e)‘(s_t)(lz(ﬂsw)|2p_2 +1+ ||0(s)||2) dsdr
0 0 Jr (4.32)

1 t
¢ /0 M o) |5 dr + e /0 D (I250) PP 1 4 o ()]12) ds

t
<ce Mul® + (1 + e)cfo e}‘(s_t)(lz(ﬁsw)lzl’_z 1+ ||o(s)||2> ds (by (4.22)).

Replacing w and o by 9_;w and 6_,0, respectively, we have the lemma. O

For later purpose, we state the following corollary.

Corollary 4.4 Let conditions (4.3)—(4.6) hold. Then, any solution v of (4.12) with
initial value vy € H satisfies

t t
/ lvGs, @, 0, v0) 11553 ds§c||v0||2+c/ e“(|z(ﬂsw)|21’—2+1+||a(s)||2)ds,(4.33)
1 0

forallt > 1, where ¢ > 0 is a positive constant independent of vo € H, 0 € X and
w € Q.

Proof. By (4.32) with e = 1, fort > 1 we have

! 2p—2 e 2p—2
‘/1 lv(s, w, o, UO)||21,,2 ds < /0 /r lv(s, w, o, ”0)”2p72 dsdr
1 pt
<o [ s 000137 dvar
r

t
< cllvol?+c f e“(|z<z9.yw)|21’*2+1+no<s>||2)ds. o
0

4.3.2 The Absorbing set % with Deterministic Absorption Time

Now we construct an admissible uniformly D-absorbing set Z satisfying (H3). Since
¥ = H(g) is compact in E = C(R; H) we know from Chepyzhov and Vishik (2002,
Proposition V.2.3) that it is bounded in Cp(R; H), i.e., for some constant Cx, > 0

sup [lollc, ®;Hy = sup (Sup IIG(I)H) =Cs. (4.34)

oED oceX \reR

Hence, there exists a uniform bound Cj; > 0 such that

0 0
sup/ & |lo(s)]? ds < sup (||a||%b(R;H)/ e ds> < GCp. (4.35)
geX —0

ceX J—00
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Let us define a random set Z = {#(w)}peq in H by

0
Bw):={ueH: ||u||2§,0(w):=l+C/

—00

c
Nz (O5w)|P ds+ THCC L weQ

(4.36)

where C > 0 is the constant given in Lemma 4.1. Then,

Proposition 4.5 Let conditions (4.3)—(4.6) hold. Then, the random set % defined by
(4.36) is a tempered and closed uniformly D-pullback absorbing set of the NRDS ¢
generated by the reaction—diffusion equation (4.12). In addition, % uniformly absorbs
itself after a deterministic period of time, i.e., there exists a deterministic To > 0 such
that for any t > Ty

U v(t. 010,010, B0 _,0)) € B(), YoeQ.

cex

Proof The temperedness of Z follows from that of p(-). Now we show the uniformly
D-pullback absorbing property. By Lemma 4.1, we know that for any tempered set
D € D (i.e., thereis some tempered random variable R (-) such that || D (w) || 2<R (w)),
the solutions with initial data in D satisfy

sup ||v(t, v_w,0_;0, D(ﬁ_,a))) H2
oex
0
< sup [e_“R(ﬂzw) + C/ e“(lz(ﬁsw)l” +1+ IIG(S)IIZ) dS] (4.37)
oex —t

0

c
;g*mw4@+c/e“mmwww+;+0@(W@%» vi>0.

—t
In addition, since the random variable R(-) is tempered, there exists a random variable
Tp(-) > 0 such that e ™™ R(9_,w) < 1forall t > Tp(w). Hence,
2 0 C
sup Hv(z, Y, 0_;0, D(ﬁftw)) H <1+ C/ M zWsw)|P ds + — + CCp = p(w),
oceEY ) A
(4.38)

for all t > Tp(w), so A is a uniformly D-pullback absorbing set.
Now we show that Z uniformly attracts itself after a deterministic period of time
T#. By (4.37),

2

sup, s [v(t, V-0, 010, BW-,0))|

=< e‘“p(ﬁf,w) +C fgt eM|Z(ﬁsw)|p ds + % +CG
= e (14C [0 @) ds + § + CCy)

+C 2, M 1z@,0)1P ds + € + CCy
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=M (14 % +CCp) + Cf:;o 5|2 (9s) | ds
+C [°, #2007 ds + € + CCy.

Hence, take T4 > 0 such that
, C 1 C
e M7 (14 = 4CCp) =1, e, Tg:=—I|l+—=4+CCy).
A A A
Then, for all t > T,
2 0 2 C
sup v(t, 00, 60_0, BO_w)|" <1+ c/ PR ds + - + CCp = p(@),
oeXx —c0
which by the definition (4.36) indicates that

U v(t. 010,010, B0 0)) € B), Vi= Ty,

oED

as desired. O

4.4 Finite Fractal Dimension of the Random Uniform Attractorin Hand in V
4.4.1 (Z x H, H)-Lipschitz Continuity and (Z x H, V)-Smoothing

Notice that condition (4.5) is in fact equivalent to the following form commonly used
in the literature, e.g., Zelati and Kalita (2015), Zhu and Zhou (2016),

|fsD) = fel <elst =2 (L4 Is11P 7 + 1521772), 51,52 € R (4.39)
In addition, the following result is obtained via a decomposition of f by Cui et al.
(2020) and will facilitate our computations later.
Lemma 4.6 (Cui et al. 2020) For any Cl—function f with conditions (4.3), (4.4) and

(4.6), there are positive constants cy, ¢y > 0 such that

2
—(f(s1) = f(s2))(s1 — s2)Is1 — 52" = cilsi — 2177 = cals) — 52|

foranyr > 0and sy, sy € R.

Now we derive the joint Lipschitz continuity of solutions in symbols and initial data.
For any two solutions v; of (4.12) corresponding to initial data v; o € H and symbols
oj € X, j = 1,2, respectively, with 6 := o1 — 03, the difference v(¢, w, 0, vg) =
vi(t, w, o1, v1,0) — V2(t, @, 02, V2,0) of them satisfies

(:1—'; + 20— AV = f(vi + hz(%w)) — f(v2 + hz(%w)) + 5. (4.40)
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Lemma4.7 ((¥ x H, H)-Lipschitz continuity) The NRDS ¢ is Lipschitz continuous
from ¥ x H to H with time-dependent Lipschitz constant. More precisely, there exist
deterministic constants C1 = C1(||Z|lc,r:m)) > 0 and B = B(c1, c2, A) > 0 such
that for any two solutions v;(t, w, 0}, v;j0) of (4.12) witho; € L and vjo € H,
j =1,2, we have

2 2 2
o1t @, 01, v1.0) = v2(t, @, 02, v2.0) 2 = Cre [0 = w20l + (dz (01, 92))°

forallt >0, w € Q.

Proof Take the inner product of (4.40) with v (= &) in H and we obtain

rd _ _ - _ _
S I + 21812 4+ 1V = (f (01 + hz@) = £ (02 + h2(9). ) + & D)
< —cillilly + e2l@)* + & 1] (by Lemma 4.6)

- =12 ~ 2
< —cillolh +clvli® + a1,

SO
d _ o —P -2 -2 ~ 2
allvll + llvllp + IIVoll” < cllvll” + llo ||

By Gronwall’s lemma, we have

t t
l5)I? + fo I ([5G + 1957 )ds < e l5o] + /O UG (5)? ds.

(4.41)
Since from (3.55), it follows
1 1
[ enaoras <o [MaoRas
< ce ™ (dg oy, 02))2,
the proof is complete. O

Lemma4.8 ((X x H, V)-smoothing) Let A be the tempered uniformly D-pullback
absorbing set defined by (4.36). Then for all v € Q2 the difference of two solutions of
(4.12) with initial data v; o € B(w), j] = 1,2, satisfies

2
IVvi(t, w, 01, v1,0) — Vua(t, @, 02, v2,0) ||

At 2p—2 CA
< PO [EOOETE st (1, o]2 + (ds(01,02)7), Ve =2,
where p(-) is the random variable given in (4.36).
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Proof Taking the inner product of (4.40) with —Av in H, by (4.39) we obtain
1d
ﬁnwu2 + AV + | AD|
= (f(v1 + hz(®0)) — f (2 + hz(%w)), —Aﬁ) + (G, —AD)
< [ (72 + a4 1) 5167 03 + G~ 0D
< ||M||2+c/ (lur P77 + [ua P74 5] dx + c|B)I* + cll5|I?
~12 2p—4 2p—4y\ 152 —2 ~ 12
< 1ADIP + e(lurllyh 5 + luallh 5) 1805, -0 + cllBl* + cll5 1>
Hence,

d 2 2p—4 2p—4
_ p 14 =12 =112 =12
EIIVUII < c(lurliy) = + llu2llyh =) 10113, + cllvl* +clla |

(4.42)
2p—2 2p—2 - - -
< (13573 + 23573 + D)1513,_ + el VIl + ella 1,
and then, by the continuous embedding V — L2P=2ip 4.8),
d - 2p-2 2p-2 _ -
CIVOI? < (35 + luall3) 75 + 1) IVEI2 + el
t
By Gronwall’s lemma, we have
2p—2 2p-2
V)2 < e QMBS+ mIz3+1)dn g g2
292 (4.43)

Lo ( 2p-2 1)d
+/ o1 QB S+ S+ 1)dny 22 g vy s 5o,
N

and integrating over s € (1, 2) we obtain

— _ 2
Vi) I? < ef{c(||u1<n>\|§,”,,§+uuz(n)n§§,§+1)dn/ IVi(s)|2 ds
! (4.44)

2p-2

B t
+ef{c(nul<n>||§$_§+Huz<n>llz,,_z+1)d'7/ o ()| dz, V= 2.
1
Since
2 2
/ Vi) ds < / 297 5(s) | ds
1 1
2
< cllBO)|I* + /0 PG ()7 ds (by (4.41))  (4.45)
2
5c||6(0)||2+c/ 15 ()11 ds,
0
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we have

2p—2 2p-2

t t
||W(z)||2sceflC(”‘”(’”"2p—2+”“2<”)"2P—2+1)d”<||ﬁ(0>||2+ / ||6(s>||2ds>, 122,
0

(4.46)
Notice that for all t > 2
/lt c(llur(n, @, 01, 11,0155 73 + a1, 0, 02,102, 0) 355 + 1) di
< /1 t c(Ilv1(n, @01, 01015575 + 0201, @, 02, v2,0155 75 + 12(@y@) PP =2 +1) d
<c|Bw)|?+ cfol e“(|z(0sw)|2p—2 +1+ C):)ds (by (4.33) & (4.34))
< cp(w) + cet /()t l2(Fs@)|2P 72 ds + ceM,

and by (3.55) we have

cﬁﬁammecﬂﬂﬂ@wm@»%
so, forallt > 2,
IVIOI? < ce?@ e BECORT83 (1507 + (dz (01, 00)°)
The proof is complete. O

4.4.2 Squeezing

Now we prove the squeezing property on the uniformly absorbing set % defined by
(4.36), i.e.,

A@) = ue H: ul? < p@),

with p(w) a tempered random variable given by
0 c
p(w) = C/ M)z(%5w)|P ds + 5 +CCp+1, VYoeQ, (4.47)
—00

for some positive constant C > 0. Before giving the desired squeezing property, we
prove a useful lemma for the random variable p ().

Lemma 4.9 For the random variable p(w) defined above, let

p(w) := magfo]p(z?tw), Yo € Q. (4.48)

te[—
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Then, for all v € Q,
p(w) < e p(w), (4.49)

1
@] < [ (o] ds vy =1, (4.50)

Proof By definition,

0 C
p(®) = max c/ M 1z2(Vs )P ds + —+ CCp+1

rel-1,01  J_oo

0
c
max Ce M / D 2By w)|P ds + — + CCp + 1
te[—1,0] o A

t
C
max Ce‘”[ Mz w)P ds + — + CCp + 1
te[—1,0] —oo A

IA

0
c
Ce)”/ M Nz(%5w)|P ds + e)‘<x +CCp+ 1) =" p(w),
—00

so (4.49) follows. Since for any y > 1, we have

1 14
> [/0 p () ds] =[p@]",

(4.50) is proved. ]
Now we prove the squeezing property needed for condition (). To this end, notice

that for any two solutions v; of (4.12) corresponding to initial data v; o € %(w), the
difference y(t, w, 0, Vo) := v1(t, w, 0, v1,0) — 12(f, @, 0, v2,0) of them satisfies

dy

oAy Ay = f(vi + hz(@®w)) — f(v2 + hz(D)). 4.51)

In addition, since A := —A is a self-adjoint positive operator on D(A) = H 20y N
H(} (O) with compact inverse, there exists a sequence {A j}‘l’.o: | of spectra satisfying

O<A <A <---—> 00,

and a sequence of eigenvectors {e; }j?‘;l forms an orthonormal basis of H and it is such

that
—Aej = Ajej, j=12,....
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Forn € N, set
H, := span{ey, ez, ..., ey},
andlet P, : H — H, and Q, := I — P, be the orthonormal projectors on H. Then,

dns1|QavlI* < [VUIP, Vv eV, nel. (4.52)

Proposition 4.10 (Squeezing property) There exist m € N, 6 € (0, 1/4) and a tem-
pered random variable C (w) with E(C (a))) < —In(496) such that for any two solutions
v1 and v of (4.12) corresponding to initial data v1 o, v2,0 € B(w), respectively, we
have

sup | P (vi (T, @, 0, v10) — v2(Tg, 0,0, v20)) | < elo” Csws

g€EL

lvi,o — v20ll,

(4.53)

112 c9,0)ds
sup || Qm (vi(Tz, @, 0, v1,0) — V2(Tz, w, 0, v2,0))|| < selo lvi,o — v2.0ll,
oex

(4.54)

where T > 0 is the deterministic absorption time of % in Proposition 4.5.

Proof Without loss of generality we let Tz = 1. Take arbitrarily o € X (the following
proof is independent of the choice of o). Then for two initial data v; o € %(w),
by Lemma 4.7 the difference y(¢, w, 0, v9) = vi(¢, @, 0, v1,0) — V2(t, ®, 0, v2,0) of
solutions satisfies

ly(t, @, 0, 5)|* < C1eP"||vol*>  (where g := v1.0 — v2.0 = y(0)), (4.55)
for positive constants C1, § > 0 and all t > 0, and, particularly forz = 1,
ly(1, w, o, o) 1> < CreP||ol* = ™1 5| (4.56)

In addition, for any initial value v(0) € %(w), by Lemma 4.2 the solution v(¢) of
(4.12) for t > 1/4 is bounded by

sup |[Vu(t, w, o, U(O))II2

oED

0
< sup [ce‘“nvm)n2 +e f (@) + 1+ 16,06)1?) ds]
-t

oED

0
< O +¢ / ey ds + 5+ ¢Cy by 439))

—t

1
< v + cp(Bw), Vi > T
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where c is an absolute constant, and p(-) is the tempered random variable given by
(4.47) which also indicates the radius of the absorbing set % in H. Analogously, since
the solution u of (4.1) is in the form u(t) = v(t) + hz(¥;w) with v the solution of
(4.12), we have

sup | Vu(t, w, o, u(0)) || < 2 sup |Vo(t, o, o, v(0)[|> + c|z(9w)|*

oED o€EX

< eI + ep(¥w) + clz(P )] (4.57)

1
< cp(w) +cp(Prw), VYt > T
where
pw) = p(w) + |z(®)|*, Yo € Q. (4.58)

Taking the inner product of (4.51) with y, := Q,y in H, we obtain

1d
S Il 2l + 13l = (£ (v1 + h2(@00)) = £ (02 4+ hz(@:@)). i )-

Since by Holder’s and Young’s inequalities we have the formula

1 p—2 1
2 2p-2 2p—2 2p—2
/abc dx < </ la? dx) < |b| P=2 dx) ! (/ |c|2P—2 dx) !
R o (4.59)
2 2p-2 =
< s</|c|2p—2 dx) " e (/ la|? dx> (/ b P2 dx)p . Ve >0,

where ¢, > 0 is a constant depending on &, then for the nonlinearity term it holds

(f (01 + @) = f (02 + hz@:)). 30

< [ (1l ol 4 1)iylnl dx - oy 439)

2p—4

2p—4 -
= SIal3p + e (13573 + lal3h 3 + 1) IvI2 by (4590,

N =

and finally by the continuous embedding (4.8) of V <> L?’~2 we conclude that

(@1 +hz@i) = f @2+ hz@0), )

1 _ _
< 313l + e (IVu PP~ 4+ Va2 + 1)y P
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Hence, for r > 1/4,

d _ —
5||yn||2 + I Vyal® < c(IIVm 1274 4 || Vi ||2P~* + 1)||y||2
72 - 72
= C([p(“’)]P +[p@w)]" " + 1)Ilyll2 (by (4.57))

= c([p@]" 7+ [6@@)]" ) IyI? Gsince p@) = 1,

and then, by (4.52),

d - - -
Sl + Arslal? < e([p@]" 7 + @] ) IyI% 1> 174,

For r € (1/4,t), by Gronwall’s lemma we have

t
— — — -2
Iy OI <e 10y () + / e 107 ([p(@)]”
r (4.60)

n [ﬁ(z&sw)]p‘z) ly(s)|2 ds,

and then for ¢ > 1/2 integrate (4.60) over r € (1/4, 1/2) to have

1

2
a7 <4 / ey ()2 dr

1

t
+ [ e @] + ] )y ds.
0

Since

1 1

3 2
ﬁ e 1y (|2 dr < et / Ay ()| dr

1

i 1
1

< ot / 2exn+1r(eﬂr||50||2)dr (by (4.55))

1
3 (4.61)
1
7 An+1+8)
e?
<ce Ml — |52
)"n+l+:6
c -2
< 5ol > =,
n+1 2

we have

2 ¢ =2 ! Apt1(s—1) p—2 ~ p—2 2
lynOI” < Iy lvoll” + [ ce (@] + [p(¥s5w)] ly()II© ds
n+1 0

c ! _ - . - _
< ol + / et r 1070 ([p@)]" % + [0s)]” 72 )l 5017 ds by (4.55))
n+1 0
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<

t
- <ol + ceP! 5|12 / 1670 ([p@)]" 7% + [p0s)]” ) ds. (4.62)
+1 0
Since for the last term, we have

ft o1 (5=1) ([,O(a))]p_2 + [ﬁ(ﬁxa))]p_2> ds
0

< [/teﬂnﬂ(s—') ds}z[/t ([p@]" 2 + [5(0‘@)]”‘2)2 dsi|2
0 0

S e e I
Uot (@™ + [p)]™) ds]%

Do (P@PP @) PPHds  (gince 57 < ¢ for s > 0),

)\n—&-l
1

=
)"VH-I

taking in particular r = 1 in (4.62) we obtain

c - _ 1 1 2p—4_ (5 2p—4
||yn(1)||25—A 501> + cllToll? <—r el (P >ds>
n+

n+1

CIB0I? foerpr—++ L 13,0 —4s

= 15oll* + ——
)»n+1 ntl
— o ” 4 2 c||v()|| ﬂ(w)]2p72+fol[ﬁ(ﬁsw)]ZVZdS (4.63)
N )‘n+ )Vn—i-l
_ c||lvo 1A 2p—2 1~ 2p—2
< o ”vo||2+—/—”A ”ff" PO L IDOT by (4.50)
n n+
_ c|lvg 1, 22p=2) 2p—2.1 5 2p—2
< i+ S 1301 r2 oo, 2P 245 PP2)ds (by (4.49)).
n+1 n+1

By the definition of p in (4.58), we have
S @) PP+ [H@)P 7 = PP [p@)PP 7 + [p(@) + lz(@) ]

< (emp*z)+1>[p(a))+|z(a))|2]2p72, w € Q,

and for later purpose set k := ¢*??=2 4+ 1 4 (InC; + B) and

C(w) := k[p(w) + |z(a))|2]2p_2, Yo € Q. (4.64)
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Then, C(-) is a tempered random variable with finite expectation, and, by (4.63),

- 2 .
e L
An+1 An+1
c c 1 -
< ( + )efo CODE 2.
Antl Antl

Clearly, there exists a § € (0, 1/4) such that 4§ < e EC@) or equivalently
E(C(w)) < —In(46). In addition, since A, — o0 as n — o0, we have an m € N
large enough such that

In this way we obtain

lym (D2 < 82200 CO@ 15012 with B(C(w)) < — In(45);
so0 (4.54) is verified. Since 2C(w) > In Cy + B for all w € 2, by (4.56) we have

- 2 InC - 2
ly(1, @, 0, 5o)||I* < ™1 |5y

1
S 62 fO C(l?.yw)ds ” 60 ”2’
and (4.53) is also clear. O

4.4.3 Finite-Dimensionality of the Random Uniform Attractor in H and in V

Now we are ready to conclude that the random uniform attractor </ of (4.12) has a
finite fractal dimension in H and in V.

Theorem 4.11 Suppose the symbol space ¥ = H(g) has finite fractal dimension in
E = C(R; H), i.e., (G) holds. Then, the fractal dimension in H and that in 'V of the
random uniform attractor <f of the NRDS ¢ generated by (4.12) are both finite.

Proof Let us prove first the finite-dimensionality of ./ in the phase space H. Set
X := H and Y := V. From Lemma 4.7, we have conditions (H>) and (Hy); from
Proposition 4.5 it follows (H3) and finally by Proposition 4.10 we obtain (S). Then by
Theorem 3.6, we conclude that the fractal dimension of the random uniform attractor
&7 is uniformly bounded in H, i.e., dimp (JA/(a)); H) < cp, for all w € 2, for some
deterministic constant ¢ > 0.

On the other hand, from Lemma 4.8 it follows the smoothing property (H7) (with
81 = 8 = 1) and since o/ has fractal dimension uniformly bounded in H we
obtain by Theorem 3.8 that <7 is finite dimensional in V as well: dim g (d (w); V) <
dimp(X; E) 4 ¢o for all w € Q. O
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