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Objetivos
Decaimentos do lépton tau oferecem um am-
plo espectro de testes de precisão do Mo-
delo Padrão (MP). Neste sentido, estudar os
decaimentos leptônicos do lépton tau, isto é,
τ− → ντ + ℓ− + ν̄ℓ, em que ℓ− = e−, µ−, per-
mite, por exemplo, verificar a universalidade do
acoplamento dos léptons com o bóson W−, de-
nominada universalidade dos léptons. Buscando
obter esse resultado, neste trabalho tratamos
esse decaimento com correção de massa, recu-
perando resultados clássicos na literatura do MP.
Para isso, foi necessário o cálculo da amplitude
de decaimento utilizando regras de Feynman e
determinar o espaço de fase apropriado sob a
ótica de Teoria Quântica de Campos (TQC), a
fim de obter a largura do decaimento desejado.
Utilizando dessa largura de decaimento calcu-
lada teoricamente e de dados do Particle Data
Group (PDG), visando por fim testar a universa-
lidade dos léptons.

Métodos e Procedimentos
A abordagem canônica no estudo do Modelo
Padrão é a Teoria Quântica Campos (TQC), haja
vista que ela possibilita uma descrição eficiente
de sistemas de duas ou mais partı́culas. No
âmbito da TQC, a largura de decaimento será
dada integrando o módulo quadrado da ampli-
tude do processo, |M̄|2, sobre o espaço de fase
diferencial, dQn, sendo n o número de partı́culas
do estado final. A amplitude é calculada a par-
tir das regras de Feynman, contendo portanto
a dinâmica do processo, enquanto o espaço
de fase é definido inteiramente pela cinemática.
Com isso, a largura de decaimento no referen-
cial da partı́cula que decai, usando unidades na-
turais, e considerando uma média de todas as
possı́veis configurações de spin, é dada por [1]

Γ(a → 1 + 2+ ...+N) =
1

2ma

∫
|M̄|2 dQn, (1)

Figura 1: Diagrama do Decaimento Leptônico do τ .
Fonte: Elaborada pelo autor.

em que ma é a massa da partı́cula que decai, no
nosso caso, a massa do lépton tau.

As regras de Feynman são um conjunto de
passos que permitem, a partir do diagrama de
Feynman do processo, construir a expressão
matemática para a amplitude. No caso do
nosso estudo, o diagrama de Feynman do de-
caimento leptônico do tau está representado na
Figura 1, tal que, definindo os quadrimomentos
das partı́culas como

τ(p1) → ντ (p3) + ℓ−(p4) + ν̄ℓ−(p2) (2)

e aplicando as regras de Feynman apropria-
das para um decaimento envolvendo interações
fracas, obtemos que o módulo da amplitude
ao quadrado em primeira ordem de teoria da
perturbação será

|M̄|2 = 64G2
F (p1 · p2) (p3 · p4) , (3)

sendo GF =
√
2
8

(
gℓ

MW

)2

a Constante de Fermi
e gℓ a constante de acoplamento do lépton
com o bóson W−. Importante perceber que o
módulo da amplitude ao quadrado dependerá
somente dos produtos escalares invariantes de
Lorentz, que podem ser determinados a partir
da cinemática do decaimento, e ainda não de-
pende de configurações especı́ficas de spin das



partı́culas.
Por fim, determinado então o módulo da am-

plitude ao quadrado, dado na Eq. (3), pode-
mos simplesmente integrar sob o espaço de
fase apropriado para o decaimento em três cor-
pos [2], de forma que a largura do decaimento
leptônico do tau é

Γ(τ− → ντ + ℓ− + ν̄ℓ−) =
G2

Fm
5
τ

192π3
f (x) , (4)

em que f (x) =
(
1− 8x+ 8x3 − x4 − 12x2 log x

)
,

x = mℓ/mτ . Assim, reproduzimos um resultado
bem conhecido na literatura do MP [3].

Agora, podemos usar os dados experimentais
do PDG das razões de ramificação dos canais
do decaimento leptônico do tau em múon,

B
[
τ− → µ−ν̄µντ

]
= (0, 1739± 0, 0004), (5)

e em elétron,

B
[
τ− → e−ν̄eντ

]
= (0, 1782± 0, 0004), (6)

e da expressão

B [τ− → µ−ν̄µντ ]

B [τ− → e−ν̄eντ ]
=

Γ (τ− → µ−ν̄µντ )

Γ (τ− → e−ν̄eντ )
, (7)

para evidenciar que as constantes de acopla-
mento, gℓ, serão dadas por

B [τ− → µ−ν̄µντ ]

B [τ− → e−ν̄eντ ]
=

g2µ
g2e

f (mµ/mτ )

f (me/mτ )
. (8)

Desta forma, obtivemos uma expressão na qual
podemos utilizar nossos resultados teóricos da
largura de decaimento e dos valores experimen-
tais do PDG destacados nas equações (5) e (6)
e encontrar a razão entre as constantes de de
acoplamento.

Resultados
Podemos simplesmente calcular os termos de
correção de massa para o decaimento em
elétron e múon e então a razão entre as taxas
de ramificação dada na Eq. (8) para encontrar-
mos a razão entre os acoplamentos dos léptons.

Assim, tendo que a massa do elétron,
me, é 0, 510998950(0) MeV, a do múon, mµ,
105, 65837(5) MeV, e a do lépton tau, mτ ,
(1776, 93 ± 0, 09) MeV [4], podemos calcular a
razão das massas para o múon e para o elétron,

f (mµ/mτ ) = 0, 973, f (me/mτ ) = 0, 999, (9)

onde não foi necessário realizar propagação de
erro nesses termos, haja vista que a medida ex-
perimental é extremamente precisa, de forma
que o erro proveniente das massas é irrisório
no cálculo desenvolvido. Desta maneira, subs-
tituindo esses valores na Eq. (8) e calculando a
razão entre as equações (5) e (6), teremos que a
razão entre as constantes de acoplamento serão

gµ
ge

= (1, 001± 0, 001). (10)

Portanto, vemos que a razão encontrada, den-
tro da margem de erro, calculada a partir da
definição do desvio padrão, corrobora para a
previsão do MP de que o acoplamento dos
léptons com o bóson W− é universal para todos
os léptons.

Conclusões
A partir do exposto, podemos concluir que,
utilizando dos dados experimento do PDG e dos
cálculos teóricos desenvolvidos neste trabalho,
fomos capazes de obter que a razão entre os
acoplamentos do múon, gµ, e do elétron, ge, é
de gµ

ge
= (1, 001± 0, 001), evidenciando a univer-

salidade dos léptons, uma previsão nada trivial
e de extrema importância do Modelo Padrão [5].
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Objectives
Tau lepton decays have a rich phenomenology
which allows for different precision tests of the
Standard Model (SM). In this sense, studying
the leptonic decays of the tau lepton, that is,
τ− → ντ + ℓ− + ν̄ℓ, where ℓ− = e−, µ−, allows,
for example, verification of the universality of the
coupling of leptons with the W− boson, called
lepton universality. Aiming to achieve this result,
in this work, we address this decay with mass
correction, recovering classical results in the SM
literature. It was necessary to calculate the de-
cay amplitude using Feynman rules and deter-
mine the appropriate phase space from the per-
spective of Quantum Field Theory (QFT) in or-
der to obtain the desired decay width. Using this
calculated decay width, combined with data from
the Particle Data Group (PDG), we were able to
test lepton universality.

Materials and Methods
The canonical approach to studying the Stan-
dard Model is Quantum Field Theory (QFT),
as it provides an efficient description of two or
more particle systems. Within the framework
of QFT, the decay width is given by integrating
the squared modulus of the process amplitude,
|M̄|2, over the differential phase space, dQn,
where n is the number of final state particles.
The amplitude is calculated from Feynman rules,
and thus contains the dynamics of the process,
while the phase space is entirely defined by kine-
matics. Hence, the decay width in the rest frame
of the decaying particle, using natural units and
averaging over all possible spin configurations, is
given by [1]

Γ(a → 1 + 2+ ...+N) =
1

2ma

∫
|M̄|2 dQn, (1)

where ma is the mass of the decaying particle, in
our case, the tau lepton mass, mτ .

Figure 1: Diagram of the Leptonic Tau Decays
Reference: Elaborated by the author.

The Feynman rules are a set of steps that al-
low, from the Feynman diagram of the process,
to construct the mathematical expression for the
amplitude. In the case of our study, the Feynman
diagram of the tau leptonic decay is represented
in Figure 1, where, defining the four-momenta of
the particles as

τ(p1) → ντ (p3) + ℓ−(p4) + ν̄ℓ−(p2) (2)

and applying the appropriate Feynman rules for
a decay involving weak interactions, we find that
the squared modulus of the amplitude at first or-
der in perturbation theory is

|M̄|2 = 64G2
F (p1 · p2) (p3 · p4) , (3)

where GF =
√
2
8

(
gℓ

MW

)2

is the Fermi Constant,
and gℓ is the coupling constant of the lepton with
the W− boson. It is important to note that the
squared modulus of the amplitude depends only
on the Lorentz invariant scalar products, which
can be determined from the kinematics of the de-
cay, and, also, the amplitude does not depend on
specific spin configurations of the particles.

Finally, with the squared modulus of the ampli-
tude given by Eq. (3), we can simply integrate
over the appropriate phase space for a three-
body decay [2], so that the tau leptonic decay



width is

Γ(τ− → ντ + ℓ− + ν̄ℓ−) =
G2

Fm
5
τ

192π3
f (x) , (4)

where f (x) =
(
1− 8x+ 8x3 − x4 − 12x2 log x

)
,

x = mℓ/mτ . Thus, we reproduce a well-known
result in the SM literature [3].

Now, we can use the experimental data from
the PDG for the branching ratios of the tau lep-
tonic decay channels into muon

B
[
τ− → µ−ν̄µντ

]
= (0, 1739± 0, 0004), (5)

and into electron,

B
[
τ− → e−ν̄eντ

]
= (0, 1782± 0, 0004), (6)

and the expression

B [τ− → µ−ν̄µντ ]

B [τ− → e−ν̄eντ ]
=

Γ (τ− → µ−ν̄µντ )

Γ (τ− → e−ν̄eντ )
, (7)

to demonstrate that the coupling constants, gℓ,
are given by:

B [τ− → µ−ν̄µντ ]

B [τ− → e−ν̄eντ ]
=

g2µ
g2e

f (mµ/mτ )

f (me/mτ )
. (8)

Thus, we obtain an expression where we can use
our theoretical decay width results and the ex-
perimental PDG values highlighted in equations
(5) and (6) to find the ratio between the coupling
constants.

Results
We can simply calculate the mass correction
terms for the decay into an electron and muon
and then use the ratio between the branching
fractions given in Eq. (8) to find the ratio between
the lepton couplings.

Thus, given that the electron mass, me, is
0.510998950(0) MeV, the muon mass, mµ, is
105.65837(5) MeV, and the tau lepton mass, mτ ,
is (1776.93± 0.09) MeV [4], we can calculate the
mass ratios for the muon and the electron,

f (mµ/mτ ) = 0, 973, f (me/mτ ) = 0, 999, (9)

where it was not necessary to propagate the er-
ror in these terms, since the experimental mea-
surement is extremely precise, meaning that the
error from the masses is negligible in our calcu-
lations. Therefore, substituting these values into
Eq. (8) and calculating the ratio between Eqs.

(5) and (6), we find that the ratio between the
coupling constants is

gµ
ge

= (1, 001± 0, 001). (10)

Thus, we see that the found ratio, within the mar-
gin of error calculated based on the standard de-
viation, supports the SM prediction that the cou-
pling of leptons with the W− boson is universal
for all leptons.

Conclusions
From the above, we can conclude that, us-
ing the experimental data from the PDG and
the theoretical calculations developed in this
work, we were able to obtain that the ratio
between the muon coupling constant, gµ,
and the electron coupling constant, ge, is
gµ
ge

= (1.001 ± 0.001), highlighting the univer-
sality of leptons, a non-trivial and extremely
important prediction of the Standard Model [5].
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