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Resumo
A navegação autónoma de robôs móveis tem sido estudada por vários pesquisadores, e

técnicas de Inteligência Artificial têm sido amplamente aplicadas a este problema. A

navegação de robôs móveis pode ser utilizada em várias aplicações, como por exemplo,

automação em ambientes de Chão de Fábrica onde os robôs podem exercer a função de

transportar peças. Neste relatório será apresentado o desenvolvimento de um sistema que

possibilita que o robô navegue autonomamente, ao longo de uma pista desenhada no chão,

baseando—se em imagens, planejando sua trajetória para alcançar pontos pré-determinados.

Redes Neurais Artificiais (RNAs), alimentadas por imagens, são utilizadas para decidir pelo

movimento do robô em tempo real. Para o planejamento de trajetória é utilizada uma

representação de mapa topológico do ambiente e para auxiliar na localização são utilizados

marcos artificiais.
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1. INTRODUÇÃO

A navegação autónoma de robôs móveis consiste na utilização de técnicas que

possibilitem robôs móveis a navegar independentemente por caminhos como corredores,

estradas, etc. Essas técnicas permitem que robôs realizem tarefas como, por exemplo,

transporte de materiais.

A navegação pode ser baseada em informações de diversos tipos de sensores como,

por exemplo, sonares, lasers e câmeras. A utilização de câmeras como fonte de informação

possibilita que caminhos sejam desenhados no chão para que o robô navegue entre locais

desejados. Por exemplo, em um ambiente de Chão de Fábrica[ pode-se traçar caminhos entre

máquinas para que o robô transporte peças entre elas.

Porém, informações provindas de câmeras normalmente estão sujeitas a presença de

ruídos. Para tratar este problema, utilizar Redes Neurais Artificiais (RNAs) na classificação
das informações de entrada tem sido uma ótima opção. Isso se deve à alta capacidade de

generalização das RNAs, que é muito importante na análise de dados sujeitos a ruídos e

variabilidade (Pomerleau, 1995).
Nesse texto é descrito o desenvolvimento de um sistema para controle de um robô

móvel autônomo. A finalidade desse sistema é possibilitar que o robô navegue
autonomamente ao longo de uma pista desenhada no chão baseando-se em imagens e

planejando sua trajetória para alcançar pontos pré-determinados. Uma aplicação possível para
este sistema e' o transporte de peças entre máquinas em um ambiente de Chão-de—Fábrica.

Redes Neurais Artificiais (RNAs) alimentadas por imagens são utilizadas para decidir pelo
movimento do robô em tempo real. Para o planejamento de trajetória, é utilizada uma

representação de mapa topológico do ambiente e para auxiliar na localização, são utilizados

marcos artificiais.

Esse projeto está relacionado com um projeto maior, chamado ARMOSHZ, que

contou com o apoio da FAPESP. O projeto ARMOSH tem como um de seus objetivos a

implementação de diversos algoritmos para robôs móveis tanto em nível de software quanto
de hardware.

Em (Lorena e Romero 2002) foi realizado um estudo sobre modelos de RNAs

aplicados a navegação de robôs móveis por uma pista delimitada por duas faixas brancas. Um

conjunto de imagens da pista foi coletado e, com ele, foram treinadas diversas topologias de

l O Chão-de—Fábrica consiste em um ambiente que contém um conjunto de máquinas, cada uma destinada a
exercer uma ou mais funções em uma linha de produção.
! Aprendizado de Robôs Móveis vía Software e Hardware.



RNAs do tipo Multilayer Perceptron (MLP) para se eleger a topologia mais adequada à

situação. A finalidade da RNA e' determinar a direção a ser seguida pelo robô a fim mantê-lo

dentro dos limites da pista. A representação das saídas dessas redes e' a l-de-n onde, de n

saídas, apenas uma é ativada (Pomerleau, 1992). Porém nesse estudo, não foi implementado

um sistema para testar e validar a aplicação dessas RNAs em um robô em tempo real.

No presente trabalho foi desenvolvido um módulo que interliga o robô e a câmera, com

a RNA (inicialmente foi utilizada a RNA resultante do trabalho de Lorena e Romero (2002)).

Esse módulo captura as imagens do ambiente, aplica-lhes um pré—processamento e as submete

a uma RNA que emite uma saida correspondente à direção que o robô deve seguir. Baseando-

se na resposta da RNA, um comando e enviado para o robô (Medeiros e Romero, 2002).

Com os testes realizados, identificaram-se várias deficiências e possíveis

aprimoramentos e, então, algumas melhorias e novas funcionalidades foram implementadas e
adicionadas ao sistema. Entre eles está a adoção da representação gaussiana para a saída da

RNA, (Pomerleau, 1992) (Waldherr, Romero e Thrun, 2000) que permite uma maior

flexibilidade de movimentos ao robô e, conseqt'ientemente, maior suavidade na navegação.
Outro exemplo é a adição de novas imagens ao conjunto de treinamento das RNAs a fim de

possibilitar a navegação em curvas mais fechadas.

Depois disso as atenções se voltaram para o pré-processamento das imagens.

Inicialmente as imagens eram convertidas para tons de cinza para evitar que a RNA tenha que
tratar de informações de cor. Porém, mesmo variações de níveis de cinza não são informações
relevantes para reconhecer a orientação da pista. O que importa e a distinção entre pista e

chão. Então foi implementada uma maneira de binarizar as imagens de forma a converter os

pixels das imagens em brancos (faixa) ou pretos (chão) pela análise das componentes de cor.
Desta forma, o ruído é reduzido e a dependência da cor do piso e da faixa é eliminada.

Uma outra alternativa para binarizar as imagens foi implementada. Trata-se de uma
técnica para separar os pixels das imagens em clusters (agrupamentos), utilizando um modelo

de redes self-organízíng chamado Fuzzy Art. Foi utilizada a implementação deste modelo

realizada por Damiance Jr. e Liang (2001).

Em seguida foi implementada a funcionalidade de planejamento de trajetória, para
determinar o caminho a ser seguido pelo robô para alcançar determinados pontos da pista. Foi

utilizada uma representação de mapa topológico para a pista e o algoritmo de Dijkstra

(Cormen, 2001) foi implementado para o cálculo do menor caminho entre dois pontos. Para

auxiliar a localização do robô, foram utilizados marcos artificiais em pontos estratégicos da

pista.



Por fim, foi desenvolvido um módulo de coleta e classificação automática de

imagens. Este módulo possibilita a rápida criação de um novo conjunto de treinamento,

permitindo, assim, a fácil adaptação do sistema a possíveis mudanças, por exemplo, ângulo de

visão da câmera, tipo de pista, etc. Porém, este módulo ainda não foi testado.

Este relatório está organizado da seguinte maneira: a Seção 2 contém uma visão

geral do sistema, apresentando suas principais partes a ligação entre elas. Na Seção 3 são

explicadas as abordagens testadas para o pré-processamento das imagens. Na Seção 4 são

apresentadas as topologias de RNAs treinadas e testadas para serem utilizadas no sistema,

também são explicadas as técnicas utilizadas no treinamento. A Seção 5 contém uma

descrição de como o movimento correto do robô é definido a partir da saída da RNA. Na

Seção 6 é mostrado como é feito o planejamento da trajetória que o robô deve seguir, a fim de

possibilita-lo a alcançar os pontos desejados da melhor maneira. Na Seção 7 é descrita a

implementação de um módulo para coleta e classificação automática de imagens para
treinamento de RNAs. A Seção 8 contém uma descrição sobre os testes em tempo real,
resultados obtidos e dificuldades encontradas. Por fim a Seção 9 conclui o texto com algumas

considerações sobre os resultados do trabalho.

2. VISÃO GERAL DO SISTEMA

Para a tarefa de seguir a pista, as imagens são capturadas sequencialmente por meio

de uma câmera conectada ao computador. Para cada imagem, a RNA gera uma saída, que é

mapeada para um movimento, gerando um comando de direção que é enviado para o robô por
conexão serial. A rede tem como entrada os pixels das imagens. Antes de serem submetidas à

RNA, as imagens passam por um pré—processamento para que elas assumam características
melhores para o desempenho da rede.

A captura das imagens é feita por meio de um componente baseado em Vídeo for
Windows que oferece funções para captura de video (Huebler, 2001).

O sistema recebe os pontos do mapa para onde o robô deve seguir. O robô começa a

seguir suas metas e em cada uma delas calcula o caminho para a próxima. No caminho entre

uma meta e outra, o robô segue a pista normalmente até encontrar um ponto, então o sistema

verifica o que fazer para seguir para o próximo ponto.
A estrutura do sistema está ilustrada na Figura 1.
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Figura 1 — Esquema do funcionamentodo sistema

3. PRÉ-PROCESSAMENTO DAS IMAGENS

Submeter imagens em seu estado original a uma RNA significa exigir da RNA

capacidade de lidar com grande quantidade de informação, muitas vezes desnecessária. Então,

se um certo pré-processamento for, antes, aplicado às imagens, pode-se obter um ganho
considerável no desempenho do sistema.

No trabalho em questão, como a pista é desenhada no chão, as imagens devem

conservar apenas características que permitam distinguir a pista do chão.
Ate' o momento, foram treinadas RNAs com imagens de uma pista formada por

duas faixas brancas, pertencentes ao banco de imagens citado anteriormente (Lorena e

Romero, 2002). Um exemplo dessas imagens pode ser visto na Figura 2.

Figura 2 — Exemplo de imagem utilizada no treinamento das RNAs

Se essas imagens forem reduzidas para um certo tamanho, não perderão a

informação da orientação das faixas. Isso torna o processamento da RNA mais rápido devido

ao número reduzido de entradas. Assim, as imagens são reduzidas para 32x24pixels.
As imagens originais contêm 320x240 pixels e, para serem reduzidas, é calculada a

média de cada uma das três componentes (RGB — Red (vermelho), Green (verde) e Blue

(azul)) de cada cem pixels (àreas de 10x10 pixels nas quais a imagem pode ser dividida),

então os valores obtidos são atribuídos a um únicopixel.



Para que variações de cor não tenham que ser tratadas pela RNA, dois métodos para
pré-processamento das imagens foram verificados. O primeiro consiste na conversão das

cores para escala de cinza e o segundo consiste em binarização, transformando pixels da faixa

em branco e o resto em preto. Esses métodos serão descritos a seguir.

3.1 Níveis de Cinza

Para cada pixel da imagem, é calculada a média das três componentes (RGB), e o

resultado é atribuído a cada uma das componentes. Assim, o chão pode até ser de uma cor
diferente da cor utilizada nas imagens de treinamento (Lorena e Romero, 2002), contanto que

seja escura.

Depois que esse processamento é aplicado, a imagem e' normalizada para que seus

pixels assumam valores entre 0 e 1. Isso e' feito dividindo-se todos pelo maior deles

(lembrando que nesta etapa cada pixel tem um valor único para R, G e B). Isso é feito para

que variações de luminosidade não influenciem o funcionamento da RNA.

3.2 Binarização

Utilizando o método explicado acima, é necessário que o piso seja escuro para que

as imagens fiquem parecidas com as imagens do treinamento, apenas com a faixa branca

destacada. Outra desvantagem é que cada tipo de piso, mesmo que escuro, tem um padrão

diferente, como tacos e pisos cerâmicos, que mesmo em niveis de cinza serão diferentes.

Então, se for possível reconhecer pixels pertencentes às faixas, pode-se deixar a

imagem com apenas dois níveis de cor, um para as faixas e outro para o chão, Além de

simplificar o processamento da RNA, isso elimina a necessidade de que o chão seja escuro e

as faixas brancas. Só é, então, necessário que eles sejam de cores diferentes.

Constatou—se que, nas imagens do conjunto disponivel para treinamento (Lorena e

Romero, 2002), a componente azul (B) é mais intensa que a vermelha (R) nos pixels da faixa.

Também nesses pixels, & componente verde (G) é mais intensa que nos outro pixels da

imagem. Assim, todos os pixels que respeitassem essas regras e os que possuissem todas as

componentes próximas do nível máximo (255) foram transformados em branco, e o resto foi

transformado em preto.
Uma outra possibilidade que surge com essa técnica é a de eliminar ruidos nas

imagens como, por exemplo, reflexos luminosos no chão. Esses reflexos podem ser Vistos na

imagem da Figura 3.



Figura 3 — Imagem com ruído (indicado com círculo).

Nas imagens de treinamento (Lorena e Romero, 2002) a cor da faixa é branca, se
assemelhando muito com a cor dos reflexos, então eles não foram escondidos com a

transformação explicada acima. Porém, se forem utilizadas faixas de outra cor, é possivel
esconder todo o resto, menos as faixas. Para isso, os ruídos foram retirados manualmente das

imagens do conjunto de treinamento, visando utilizar uma cor diferente para a pista durante os

testes, para alcançar o efeito citado.

Foram testadas duas maneiras para binarizar as imagens provindas da câmera. Uma

consiste em o usuário analisar as imagens do ambiente e informar os limites das componentes
de cor R, G e B a partir dos quais a imagem será binarizada, A outra, com a finalidade de

automatizar o processo acima, consiste na “clusterização” dos pixels de uma imagem exemplo

e utilização dessa “clusterização” para classificação dospixels das imagens em tempo real.

Foi utilizada a rede Fuzzy ART pertencente à família de redes ART (Vicentini e

Romero, 2003). Essas redes possuem a capacidade de auto-organização, pertencendo a um

grupo de redes chamadas de self-organízíng (Carvalho, Braga e Ludemir, 2000).
As redes self-organízing possuem a capacidade de aprender através de exemplos,

sem que exista um supervisor externo, como no paradigma de aprendizado supervisionado

que é o caso do algoritmo de treinamento Back—propagation utilizado para o treinar as RNAs

MLP, onde a RNA é “ensinada” através de pares de entrada e resposta desejada. No caso das

redes self-organízing, as únicas informações fomecidas são os exemplos de entrada. A rede

agrupa esses exemplos em clusters, unindo exemplos que compartilham caracteristicas

comuns.
O modelo Fuzzy ART, em particular, aceita como entrada elementos assumindo

valores entre 0 e l, indicando o nivel de presença da característica representada pelo

elemento. No trabalho em questão a entrada é um pixel da imagem e as caracteristicas

medidas são suas componentes de cor R, G e B.

Foi utilizada a implementação deste modelo realizada por Damiance Jr. e Liang

(2001) que consiste em um conjunto de métodos que permitem:



> Treinar a rede, informando um exemplo de entrada. Esse procedimento pode ser

repetido com exemplos diferentes a qualquer momento sendo que a rede vai

acumulando o conhecimento sem perder o treinamento anterior.

> Alterar o limiar de vigilância utilizado no treinamento. O valor deste parâmetro e'

proporcional a semelhança permitida para que exemplos sejam agrupados no

mesmo cluster.

> Classificar um exemplo de entrada, ou seja, informar o cluster ao qual ele

provavelmente pertence.

Depois que essa implementação foi adaptada ao sistema, tornou-se possível que o

usuário ajuste, em tempo de execução, o limiar de vigilância visualizando o resultado da

“clusterização”. Para a visualização, cada cluster de pixels é colorido com uma cor diferente

como na Figura 4. Depois de terminado o processo de “clusterização”, o usuário deve

informar a cor do cluster que contém os pixels da faixa da pista, assim, nas imagens

futuramente capturadas, os pixels classificados pertencentes a esse cluster serão coloridos em

branco e o resto em preto.

Figura 4 — Exemplo de “clusterização” de imagem da pista.

Para a “clusterização”, o usuário deve utilizar uma imagem contendo um marco

(auxiliadores da localização, citados anteriormente) como na Figura 5, assim, ele deve

informar também a cor do cluster que contém os pixels do marco, para que eles possam ser

identificados no processo de localização e planejamento de trajetória.

Utilizando a binarização como forma de pré-processamento, a conversão das cores é

feita antes da redução e esta é feita da seguinte forma: se a porcentagem de pixels brancos

dentro da área de 100 pixels que será reduzida para um for maior que um certo limite, aquela

área será branca.
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Figura 5 — Exemplo de “clusterização”de imagem da pista contendo marco.

4. REDES NEURAIS

RNAs são sistemas compostos por elementos de processamento, chamados

neurônios artificiais, que são interconectados. Cada conexão (sinapse) entre neurônios está

associada a um peso, para ponderar as entradas de cada neurônio. Os pesos são determinados

na fase de treinamento da rede e neles está armazenado o conhecimento da RNA (Carvalho,

Braga e Ludemir, 2000) (Carvalho et al, 1999). As RNAs possuem entrada e saída e, dado um

certo exemplo de entrada, a RNA generaliza este exemplo de acordo com os exemplos vistos

no treinamento. A saída emitida corresponde à classe a que esse exemplo pertence. O modelo

de RNA utilizado neste trabalho e' o Multlayer Perceptron (MLP), que e' composto por Várias

camadas de neurônios, uma de entrada, uma de saída e uma ou mais camadas intermediárias.

Isso possibilita o aprendizado de tarefas mais complexas como é o caso do projeto em

questão. Uma ilustração deste modelo pode ser vista na Figura 6.

Cam ada
de Saída

Camadas
Intermediárias

(íam ada de
Entrada

Figura 6 — Exemplo de Multilayer Perceptran
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O algoritmo de treinamento geralmente utilizado para este modelo é o algoritmo
“Back Propagatíon“ (Carvalho, Braga e Ludemir, 2000). Este algoritmo pertence ao

paradigma de aprendizado supervisionado, onde existe a figura de um “professor”, isto é, a

rede é “ensinada” através de um conjunto de pares com entrada e saída desejada.
Para o treinamento das redes foi utilizada a ferramenta SNNS (Stuttgart Neural

Network Simulator) (University of Stuttgart, 1995). Essa ferramenta consiste em um
simulador de RNAs que permite o treinamento de diversos modelos e topologias de redes por
meio de diversos algoritmos de treinamento. O algoritmo de treinamento utilizado e' 0 Back

Propagation.
Os modelos de RNA utilizados neste trabalho foram treinados com um conjunto de

imagens coletadas e classificadas por Lorena e Romero (2002). As imagens deste conjunto
estão classificadas em oito diferentes classes, correspondentes a ação correta do robô diante

de tais imagens. Essas classes são: curva brusca para esquerda, curva média para esquerda,

curva leve para esquerda, ir em frente, curva leve para direita, curva média para direita, curva
brusca para direita e parar. A cada intensidade de curva está associado um raio de curvatura.

A classe parar contém as imagens para as quais é dificil determinar um movimento

apropriado, por exemplo, se o robô está de frente para uma das faixas.

Algumas topologias de RNA MLP foram verificadas por Lorena e Romero (2002).

A representação de saída utilizada nesses modelos e a l-de-n. Nesta representação, cada

elemento de saida corresponde a uma classe e apenas um deles é ativado, ou seja, o elemento

correspondente à classe do exemplo de entrada deve possuir valor máximo e os demais, valor

mínimo (Pomerleau, 1992) (Mitchell, 1997). A topologia que melhor se adequou a esse caso

tem uma única camada intermediária com 200 elementos.

Porém, essa representação permite poucas possibilidades de movimento para o

robô. Um desses modelos foi utilizado na primeira versão do sistema sendo descrito. Depois
dos testes em tempo real, constatamos que uma pequena variação na entrada da rede pode

provocar uma mudança na saída que comprometerá o restante da trajetória (Medeiros, e

Romero, 2002).
Então partimos para outra representação, a gaussiana (Pomerleau, 1992) (Waldherr,

Romero e Thrun, 2000). Nesta representação os valores das saídas apresentam—sena forma de

uma função gaussiana (Figura 7), com seu pico centrado na saída correspondente a classe do

exemplo de entrada.
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Figura 7 — Ilustração das saídas de uma RNA com representação gaussiana

Houve a necessidade do treinamento de novas RNAs. Foram utilizados os exemplos
de treinamento de todas as classes citadas anteriormente, exceto da classe parar, pois, na

representação gaussiana, elementos de saída consecutivos representam ações parecidas.
A saída desejada para cada exemplo de treinamento foi calculada utilizando a

Equação (1). Nesta equação, xi e' o valor da í-ésima saida, di é a distância entre a í-ésima saída

e a saida correspondente à classe do exemplo de entrada (onde se situa o centro da gaussiana).
O valor 5 é um parâmetro determinado empiricamente que controla a abertura da gaussiana.

_d]

x, = e? (1)

No momento em que a RNA com saída gaussiana é utilizada, seus elementos de

saída formam algo parecido com uma função gaussiana. Para determinar seu centro, que

representa o movimento do robô, deve ser calculada a função gaussiana que melhor se ajusta
às saídas (Medeiros e Romero, 2002) (Waldherr, Romero e Thrun, 2000).

O conjunto de exemplos de treinamento é dividido aleatoriamente em três

subconjuntos: treinamento, validação e teste. O conjunto de treinamento contém por volta de

50% dos exemplos e e' utilizado para ajustar os pesos da rede. O conjunto de validação contém

por volta de 25% dos exemplos e e' apresentado durante o ajuste de pesos para avaliar o

desempenho da RNA em treinamento diante de novos exemplos, visando selecionar o

conjunto de pesos com melhor generalização. O conjunto de teste contém os 25% restantes

dos exemplos e e' apresentado no final para avaliar a capacidade de generalização da rede.

Trata-se de uma técnica chamada de Cross-Validation (Haykin, 1998), cujo objetivo e' testar a

performance de generalização com um conjunto diferente do conjunto de validação, para
evitar o overfztting, isto é, evitar que a rede “vicíe” nos conjuntos de treinamento e validação.
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Foi implementado um módulo que gera esses três subconjuntos aleatoriamente três

vezes, resultando em três particionamentos diferentes. Assim, três redes de cada topologia são

geradas, e a performance da topologia e' medida pela média das performances de cada rede

(Prechelt, 1994). A ferramenta de simulação SNNS anota os erros MSE de cada etapa

(treinamento, validação e teste). Este erro é igual a soma dos erros quadráticos (SSE) dividida

pelo número de exemplos apresentados à rede. A topologia adequada é escolhida através da

média dos erros MSE de generalização obtidos nas três vezes que essa topologia e' treinada. O

desvio padrão entre esses três valores também é analisado. Esta técnica se chama Random

Subsamplíng (Lorena e Romero, 2002; Bao, 2001) e visa estimar a taxa verdadeira de erro.

Assim, as primeiras RNAs com representação gaussiana foram treinadas para

imagens reduzidas e em tons de cinza. Foram testadas as topologias listadas na Tabela 1.

Tabela 1 — Topologias verificadas.

Topologia
Nº de camadas Nº de elementos na 1“ Nº de elementos na 2ª

intermediárias camada intermediária camada intermediária

] l 5 _

2 l 50 -

3 1 100 -

4 1 200 _

5 2 50 20

6 2 100 30

A topologia que melhor se adequou foi a de número 6 na Tabela 1. Abaixo, na

Tabela 2 são apresentadas as taxas de erro MSE observadas durante seu treinamento.

Tabela 2 — Taxas de erro MSE do treinamento da topologia escolhida (P1, P2 e P3 correspondem
aos diferentes particionamentos)

Topologia Etapa P 1 P 2 P 3 Média Desvio Padrão
Treinamento 0,009515 0,009889 0,009527 0,009644 0,000213

6 Validação 0,141449 0,130582 0,122457 0,13'1496 0,009529

Teste 0,159289 0,174140 0,137129 0,156853 0,018625

É importante ressaltar que esta topologia foi escolhida com uma média de erro de

generalização igual a 0,131. Esse erro e' relativamente baixo se comparado ao erro da melhor

topologia, com saída l-de-n, que é igual a 0,329 (Lorena e Romero, 2002).
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O próximo passo foi dado em direção a tratar o problema dos ruidos na imagem,
exemplificados na Figura 3. Então, o pré—processamento explicado na Seção 3.2 foi aplicado

as imagens de treinamento. Os ruidos foram retirados manualmente das imagens, pois, se uma

cor de faixa diferente de branco fosse utilizada, ela poderia ser diferenciada dos reflexos e

outros ruídos de cor branca, e após o pré-processamento eles seriam eliminados.

Nas entradas dos pares de treinamento os pixels brancos são representados por 1 e

os pretos por 71.

Também foram adicionadas duas classes de exemplos de treinamento para
solucionar dificuldade da RNA em processar imagens de curvas muito fechadas. Essas classes

representam os movimentos: curva mais brusca para a esquerda e para a direita. Foram

utilizadas as imagens originalmente coletadas para representar a classe parar (Lorena e

Romero, 2002; Medeiros e Romero, 2002). Dois exemplos dessas imagens podem ser vistos

na Figura 8.

(a) (b)

Figura 8 — Exemplos de figuras adicionadas ao conjunto de treinamento para formar as classes:

esquerda mais brusca (a) e direita mais brusca (b).

A representação de saida utilizada para este novo conjunto de pares de treinamento

também foi à gaussiana. Também foi utilizada a Equação (1), porém o parâmetro que controla

a abertura da gaussiana agora é igual a 9, devido ao maior número de saídas na RNA.

Assim, com esse novo conjunto, foram treinadas as mesmas topologias listadas na
Tabela I. Os erros resultantes do treinamento dessas redes estão organizados na Tabela 3.

Podemos perceber que a melhor topologia é a de número 5, cuja média de erro de

generalização é igual a 0,089. É importante salientar que este resultado é melhor que o obtido

do treinamento com imagens em níveis de cinza, encontrado na Tabela 2. Também é

importante observar que essa topologia é mais simples que a antiga, contendo menos

elementos por camada. Topologias mais simples são mais interessantes, quando aplicadas a

sistemas de tempo real.
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Tabela 3 —— Erros MSE resultantes do treinamento das RNAs com imagens em preto e branco
(P1, P2 e P3 correspondem aos diferentes particionamentos)

Topologia Etapa P 1 P 2 P 3 Média Desvio Padrão

Treinamento 0,032 0,046 0,044 0,041 0,00750
l Validação 0,122 0,152 0,126 0,133 0,01633

Teste 0,119 0,148 0,135 0,134 0,01476

Treinamento 0,004 0,004 0,004 0,004 0,00002
2 Validação 0,094 0,110 0,126 0,110 0,01615

Teste 0,103 0,1 10 0,104 0,106 0,00382

Treinamento 0,004 0,004 0,004 0,004 0,00036
3 Validação 0,148 0,163 0,119 0,143 0,02226

Teste 0,134 0,131 0,114 0,126 0,01095

Treinamento 0,004 0,004 0,004 0,004 0,00018
4 Validação 0,161 0,163 0,142 0,155 0,01160

Teste 0,162 0,159 0,162 0,161 0,00199

Treinamento 0,004 0,004 0,004 0,004 0,00016
5 Validação 0,095 0,092 0,080 0,089. 0,00784

Teste 0,098 0,089 0,070 0,080 0,01463

Treinamento 0,004 0,004 0,004 0,004 0,00008
6 Validação 0,085 0,109 0,105 0,100 0,01321

Teste 0,080 0,098 0,101 0,093 0,01121

5. INTERPRETAÇÃO DA SAÍDA DA RNA

O controle do robô é feito variando-se sua velocidade angular, enquanto a

velocidade escalar permanece constante. Então, a saída da RNA deve ser mapeada para a

velocidade angular correspondente.
Como dito anteriormente, a cada classe foi associado um valor de raio de curvatura

(Lorena e Romero, 2002). Então, sabendo o valor do raio é possível determinar a velocidade

angular através da Equação (2), onde v é a velocidade escalar atual, a) é a velocidade angular

e R é o raio de curvatura desejado.

v=wa
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Utilizando a RNA com saída l-de—n, a determinação do raio é relativamente simples,

pois sua saída é normalmente apresentada com um de seus elementos possuindo um alto valor

e os restantes com valores baixos, então, quando ela está em operação, seus elementos de

saída são analisados para se encontrar o de maior valor. Se o maior valor for maior que um

certo limite determinado empiricamente e for suficientemente maior do que os valores dos

outros elementos, a saída e' considerada confiável. Um exemplo de uma situação em que a

saída da RNA é confiável está ilustrado na Figura 9, onde o movimento correto é uma curva

suave para a direita (neste caso, ainda eram utilizados oito elementos de saída).

Imagem original Saída da RNA

Figura 9 — Ilustração de uma saída satisfatória

Quando as duas condições citadas, para que uma saída seja confiável, não são

satisfeitas, é concluído que a rede está confusa. Neste caso, o robô rotaciona para buscar um
melhor ângulo de visão.

O raio associado à classe correspondente ao elemento de maior valor é utilizado na

Equação (2). Quando esse elemento corresponde à classe parar, o procedimento e' o mesmo de

quando a rede está confusa.

Quando RNAs com representação gaussiana são utilizadas, existem diversas

possibilidades de direção para o robô que variam de acordo com a posição do centro da

gaussiana, que é utilizado para calcular o raio de curvatura.

Primeiro e' necessário determinar o centro da função gaussiana que melhor se ajusta
às saídas emitidas pela RNA.

Isso é feito testando diversas posições para o centro da gaussiana. Para cada posição,
é calculada a soma dos quadrados das diferenças entre as saídas verdadeiras da rede e valor da

função gaussiana correta naquele ponto. Um resultado deste procedimento é mostrado na

Figura 10.

Uma vez determinado o centro da gaussiana, este deve ser mapeado para o raio de

curvatura correspondente. Anteriormente isto era feito utilizando a Equação (3) (quando esta
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equação era utilizada, o elemento central era 3 pois existiam sete classes), onde R é o raio e c
é o centro da gaussiana. O gráfico desta equação é mostrado na Figura 11. Essa é uma

maneira intuitiva de transformar a posição do centro da gaussiana em raio, pois o raio tende

ao infinito quando se aproxima do centro, que representa o movimento “ir em frente”, e tende

Posição do pico
da gaussiana

a zero quando a curva vai se tomando mais fechada.

lmagem
original

Em nmnwsusev

Figura 10 - Ilustração do método utilizado para estimar o centro da função gaussiana ajustada à
saída da RNA (quando este resultado foi produzido, ainda eram utilizados sete elementos de

saída).

R=ª3rseci3 (3)

Figura 11 - Gráfico da Equação (3)

Porém, com esta equação, os movimentos do robô estavam um pouco bruscos.

Então, a alternativa foi partir para um mapeamento linear entre o centro da gaussiana e o raio

de curvatura, utilizando a Equação (4), cujo gráfico é apresentado na Figura 12.
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R:((0,4*6)+0,3),se c<4
(4)

R : ((*0,4*c)+3,5), se e > 4

Figura 12 - Gráfico da Equação (4)

6. PLANEJAMENTO DE TRAJETÓRIA

A navegação de robôs moveis por caminhos desenhados no chão permite que o robô

navegue entre os locais desejados. Por exemplo, em um ambiente de Chão—de—Fábrica pode—se

traçar caminhos entre máquinas para que o robô transporte peças entre elas. Um exemplo de

tal ambiente encontra—se na Figura 13. Porém, de acordo com a sofisticação do ambiente,

pode haver a necessidade de o caminho ser complexo, contendo bifurcações e vários trajetos

possíveis para alcançar um determinado ponto. Um caminho de tal tipo pode ser representado

como um grafo, cujos vértices seriam pontos estratégicos, como as máquinas onde o robô
deve parar e as bifurcações.

Dessa forma, foi implementado o planejamento de trajetória utilizando a teoria sobre

grafos.
O mapa é representado como um conjunto de listas, uma para cada vértice, como

está ilustrado na Figura 14. Nesta representação, cada lista contém os vértices adjacentes ao
vértice a que se refere e cada elemento da lista contém o vértice e a distância até ele.

Quando uma lista contém mais do que um elemento, significa que o vértice de

referência corresponde a uma ramiflcação. Este sistema permite até três ramos em uma

ramificação e, em cada lista, os vértices estão ordenados de acordo com qual ramo seguir para
chegar até eles, da esquerda para direita. O elemento da lista contendo valor —1 e —l existe

para o caso de naquele vértice existir ramo para frente e para direita.
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Maq] Maqz Maqõ

Dl Dl [Ilíª 3
LT DT DT

Maqó Muqs Maq4

D,

MR

Figura 13 (Morandiu et al, 2000)
Maq# = Máquinas que depositarão ou receberão as peças

CD = Local de carga e descarga
MR = Local de manutenção do robô

As setas indicam as direções que o robô pode seguir

0-+11—>24
l—pzl—>33—>45
2_>_|.[—>42—>3I
3

4

Figura 14 — Representaçãode grafo em listas

O algoritmo de Dijkstra (Cormen, 2001) foi implementado para buscar, em uma

estrutura como a da Figura l4, o menor caminho entre dois vértices.



O sistema recebe os pontos do mapa para onde 0 robô deve seguir e começa a

alcançar as metas na ordem em que forem recebidas. A implementação do algoritmo de

Dijkstra retoma uma lista de vértices a serem visitados até a meta. O robô segue a pista até

chegar a um vértice. O sistema reconhece que está em um vértice com o auxílio de marcos
artificiais posicionados no ambiente, como está ilustrado na Figna 15. Esse tipo de marco é

detectado pela presença, na imagem, de pixels, pertencentes ao cluster de pixels do marco,
resultante do rocesso de “clusteriza ão”.P Ç

Figura 15 — Exemplo de marcos artificiaispara auxiliar a localização do robô

Quando um vértice é alcançado, o sistema verifica o que fazer para segxir para o

próximo vértice da lista resultante do procedimento de busca no grafo. Pode ser simplesmente

seguir em frente, no caso de o vértice atual conter apenas um adjacente, ou escolher uma de

algumas direções (esquerda ou direita), no caso de ramificações. No segundo caso, busca—se &

posição do próximo vértice na lista de adjacências do vértice atual, o que determinará qual das

pistas, originárias da ramificação. o robô deverá seguir. Sendo esquerda, o robô realizará uma

curva de 90 graus para a esquerda, sendo direita, procedimento análogo para direita.

Assim que o vértice destino e' alcançado, o procedimento é repetido para o próximo,

e assim em diante até que todas as metas tenham sido cumpridas, então o robô para e espera

por novas instruções.

7. MÓDULO DE COLETA E CLASSIFICAÇÃOAUTOMÁTICA
DE IMAGENS

O conjunto de imagens classificadas para treinamento das RNAs (Lorena, 2002) foi

coletado com a câmera posicionada logo em Cima do robô, a uma distância de 21 cm do chão

e, portando, é nesta posição que a câmera dever estar durante a execução do sistema.
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Acreditava-se que este ângulo de visão estivesse prejudicando o desempenho do sistema, pois
o robô “enxerga” um pedaço da pista que está bem à frente. Então ele pode estar

“enxergando” tanto uma pista reta como uma curva estando em uma posição em que deve

continuar para frente, ou seja, duas situações diferentes para respostar iguais.
O software de comunicação entre o robô e o computador, Saphira, permite que o

robô seja controlado pelas teclas direcionais (setinhas) do teclado. Este software também

possui uma estrutura, szobot, que armazena informações de movimento e posição do robô,

entre outras.

Isso possibilitou o desenvolvimento de um módulo que, enquanto o robô é

controlado pelo usuário, captura uma sequência de imagens e no momento em que cada

imagem é coletada, extrai informações do movimento que o robô estava executando.

Essas informações são extraídas da seguinte forma: no momento em que a imagem é

coletada, a orientação (em graus) do robô é armazenada e após um pequeno espaço de tempo
é verificado quantos graus o robô variou da posição inicial. Assim pode-se calcular sua

velocidade angular (em graus/segundo) para aquela imagem.
Assim é possivel criar, facilmente, novos conjuntos de treinamento, coletados com

diferentes ângulos de visão da câmera ou modificando o tipo de pista, por exemplo, com

apenas uma faixa no centro. Porém este módulo ainda não foi testado.

8. TESTES E DIFICULDADES ENCONTRADAS

Os testes em tempo real são feitos com o robô móvel Pioneer I (Figura 16) da

companhia ActívMedia, presente no LABICª. O robô é conectado a um notebook, onde o

sistema é executado. 0 notebook, por sua vez, é conectado a uma webcam, de onde as

imagens são capturadas. O sistema montado é mostrado na Figura 16.

Os comandos são enviados para o robô por meio da ferramenta Saphira (Konolige,

1997) (Medeiros e Romero, 2002), que constitui a interface de comunicação com o

computador, desenvolvida para o robô Pioneer. Essa ferramenta possui uma biblioteca (API)

que contém diversas funções como comandos de locomoção, leitura de sensores, etc.

3 Laboratório de Inteligência Computacional do Instituto de Ciências Matemáticas e de Computação (ICMC) da
USP.

22



Figura 16 — Sistema montado para testes em tempo real.

Ao longo do desenvolvimento do projeto foram feitos vários testes em tempo real e

os resultados têm sido cada vez mais satisfatórios.

No início, quando era utilizada a RNA com saída l-de-n, o robô saía muitas vezes da

pista, apesar de apresentar a tendência de permanecer dentro dela.

A partir da utilização da representação gaussiana, a performance do sistema

apresentou uma melhora muito significativa. Foram gravados dois vídeos que mostram o

sistema em funcionamento, eles estão disponíveis em hªpJ/grad.icmc.usp.br/Ndebora.
A performance do sistema aumentou ainda mais depois das últimas modificações

explicadas anteriormente: utilização das imagens em branco e preto, adição das duas classes

para curvas mais pesadas e mapeamento linear entre o centro da gaussiana e o raio de

curvatura, pois, antes, o robô apresentava dificuldades, como centralizar sua posição em

algimas curvas, passando por cima de uma das faixas. Então, outros dois vídeos foram

gravados e disponibilizados no mesmo site.

Quando eram utilizadas imagens em tons de cinza, o tempo de processamento de

uma imagem, desde sua captura até o envio de comandos para o robô (sem o planejamento de

trajetória), é, em média, 300 milisegundos e, somente o tempo gasto pelo processamento da

Rede Neural, é, em média, 20 milisegundos. Utilizando o processo de binarização através da

comparação com limiares das componentes, 0 tempo total de processamento e por volta de

500 milisegundos e somente a Rede Neural consome em média 5 milisegundos de tempo de

processamento. Utilizando a rede Fuzzy ART para binarizar as imagens, o tempo médio total

de processamento aumenta para 750 milisegundos.
Não foi possivel testar o sistema, em tempo real, após a implementação do

planejamento de trajetória e da “clusterização”, devido à falta de equipamento, pois o

notebook utilizado nos testes esteve em conserto durante a implementação desta parte do

projeto.

23



9. CONCLUSÓES

Observando o comportamento do robô nos vídeos, é interessante notar que ele faz

um leve movimento de vai e volta. Isto pode significar que rede tenha aprendido a manter o
robô nos limites da pista, e não a orientação das curvas.

A representação gaussiana apresenta-se mais apropriada para esse tipo de aplicação,

comparada à saída l-se-n, devido ao fato de permitir maior flexibilidade de movimento e,

consequentemente, evitar que mudanças bruscas entre as direções tomadas pelo robô

prejudicam o restante da trajetória.
Com a modificação no pré-processamento das imagens, o processamento da RNA

ficou mais simples, porém, o restante ficou mais custoso, devido à binarização. Entretanto, o

aumento na perfomance do sistema e a possibilidade de melhor adaptação a novas condições
do ambiente compensam essa desvantagem.

Comparando os dois métodos de binarização percebe-se que, utilizando a rede Fuzzy

ART, o processamento e mais custoso, porém, ela possibilita o ajuste automático do sistema a

cor do chão e das faixas que compõem a pista. Outra vantagem é que a resposta emitida pela

RNA, relativa a uma imagem de entrada pré-processada com essa técnica, apresenta-se mais

próxima a uma gaussiana perfeita, com um erro de ate' 75% menor do que a gaussiana obtida

utilizando a outra técnica, A performance em tempo real ainda deve ser testada.

Pretende-se, também aplicar a “clusterização” ao conjunto de imagens de

treinamento e treinar novas RNAs. Verificar a performance ao clusterizar, não pixels isolados,

e sim áreas de pixels, reduzindo a imagem nesta etapa. E, por fim, testar o módulo de coleta e

classificação automática de imagens, que pode possibilitar uma adaptação mais rápida do

sistema a novas configurações de pista.
O conhecimento adquirido durante o curso de graduação influenciou bastante no

sucesso do projeto, principalmente em termos de técnicas de programação.
O desenvolvimento deste projeto, sem dúvida nenhuma, foi fundamental para a

experiência e segurança que a aluna atualmente possui. A convivência com outras pessoas
envolvidas com pesquisa no LABIC e os desafios encontrados durante 0 desenvolvimento do

projeto contribuíam para o desenvolvimento de uma afinidade com a pesquisa e de uma maior

capacidade de resolver problemas por parte da aluna.
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