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Resumo

A navegagao autonoma de robds mdveis tem sido estudada por varios pesquisadores, e
técnicas de Inteligéncia Artificial tém sido amplamente aplicadas a este problema. A
navegacdo de robds moveis pode ser utilizada em varias aplicagdes, como por exemplo,
automagdo em ambientes de Chdo de Fabrica onde os robds podem exercer a fungdo de
transportar pecas. Neste relatorio sera apresentado o desenvolvimento de um sistema que
possibilita que o robé navegue autonomamente, ao longo de uma pista desenhada no chao,
baseando-se em imagens, planejando sua trajetéria para alcangar pontos pré-determinados.
Redes Neurais Artificiais (RNAs), alimentadas por imagens, sdo utilizadas para decidir pelo
movimento do robd em tempo real. Para o planejamento de trajetdria € utilizada uma
representagdo de mapa topoldgico do ambiente e para auxiliar na localizag@o sdo utilizados

marcos artificiais.
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1. INTRODUGAO

A navegagdo autonoma de robds moveis consiste na utilizagdo de técnicas que
possibilitem robds moveis a navegar independentemente por caminhos como corredores,
estradas, etc. Essas técnicas permitem que robds realizem tarefas como, por exemplo,
transporte de materiais.

A navegacao pode ser baseada em informagdes de diversos tipos de sensores como,
por exemplo, sonares, /asers e cameras. A utilizagdo de cameras como fonte de informagao
possibilita que caminhos sejam desenhados no chio para que o robd navegue entre locais
desejados. Por exemplo, em um ambiente de Chao de Fabrica' pode-se tragar caminhos entre
maquinas para que o robd transporte pegas entre elas.

Porém, informagdes provindas de cameras normalmente estdo sujeitas a presenga de
ruidos. Para tratar este problema, utilizar Redes Neurais Artificiais (RNAs) na classificagido
das informacdes de entrada tem sido uma O6tima opgdo. Isso se deve a alta capacidade de
generalizagdo das RNAs, que ¢ muito importante na analise de dados sujeitos a ruidos e
variabilidade (Pomerleau, 1995).

Nesse texto € descrito o desenvolvimento de um sistema para controle de um robd
movel autdbnomo. A finalidade desse sistema € possibilitar que o robd navegue
autonomamente ao longo de uma pista desenhada no chido baseando-se em imagens e
planejando sua trajetoria para alcangar pontos pré-determinados. Uma aplicag@o possivel para
este sistema € o transporte de pegas entre maquinas em um ambiente de Chéo-de-Fabrica.
Redes Neurais Artificiais (RNAs) alimentadas por imagens sdo utilizadas para decidir pelo
movimento do robé em tempo real. Para o planejamento de trajetoria, é utilizada uma
representacdo de mapa topoldgico do ambiente e para auxiliar na localizagdo, sdo utilizados
marcos artificiais.

Esse projeto estd relacionado com um projeto maior, chamado ARMOSH?, que
contou com o apoio da FAPESP. O projeto ARMOSH tem como um de seus objetivos a
implementag@o de diversos algoritmos para roboés moveis tanto em nivel de software quanto
de hardware.

Em (Lorena e Romero 2002) foi realizado um estudo sobre modelos de RNAs
aplicados a navegag@o de robos mdveis por uma pista delimitada por duas faixas brancas. Um

conjunto de imagens da pista foi coletado e, com ele, foram treinadas diversas topologias de

" O Chéo-de-Fabrica consiste em um ambiente que contém um conjunto de maquinas, cada uma destinada a
exercer uma ou mais fungdes em uma linha de produgéo.
? Aprendizado de Robés Moveis via Software e Hardware.



RNAs do tipo Multilayer Perceptron (MLP) para se eleger a topologia mais adequada a
situagdo. A finalidade da RNA ¢ determinar a direg¢do a ser seguida pelo robd a fim manté-lo
dentro dos limites da pista. A representagdo das saidas dessas redes € a 1-de-n onde, de n
saidas, apenas uma ¢ ativada (Pomerleau, 1992). Porém nesse estudo, ndo foi implementado
um sistema para testar e validar a aplicagdo dessas RNAs em um rob6 em tempo real.

No presente trabalho foi desenvolvido um médulo que interliga o robd e a camera, com
a RNA (inicialmente foi utilizada a RNA resultante do trabalho de Lorena e Romero (2002)).
Esse mddulo captura as imagens do ambiente, aplica-lhes um pré-processamento e as submete
a uma RNA que emite uma saida correspondente a dire¢@o que o robd deve seguir. Baseando-
se na resposta da RNA, um comando ¢ enviado para o robd (Medeiros € Romero, 2002).

Com os testes realizados, identificaram-se varias deficiéncias e possiveis
aprimoramentos €, entdo, algumas melhorias e novas funcionalidades foram implementadas e
adicionadas ao sistema. Entre eles estd a adogdo da representag@o gaussiana para a saida da
RNA, (Pomerleau, 1992) (Waldherr, Romero e Thrun, 2000) que permite uma maior
flexibilidade de movimentos ao robd e, conseqiientemente, maior suavidade na navegagao.
Outro exemplo ¢ a adi¢@o de novas imagens ao conjunto de treinamento das RNAs a fim de
possibilitar a navegacao em curvas mais fechadas.

Depois disso as atengdes se voltaram para o pré-processamento das imagens.
Inicialmente as imagens eram convertidas para tons de cinza para evitar que a RNA tenha que
tratar de informacgdes de cor. Porém, mesmo variagdes de niveis de cinza nado sdo informagdes
relevantes para reconhecer a orientagdo da pista. O que importa € a distingdo entre pista e
chdo. Entdo foi implementada uma maneira de binarizar as imagens de forma a converter os
pixels das imagens em brancos (faixa) ou pretos (chdo) pela analise das componentes de cor.
Desta forma, o ruido ¢ reduzido e a dependéncia da cor do piso e da faixa € eliminada.

Uma outra alternativa para binarizar as imagens foi implementada. Trata-se de uma
técnica para separar os pixels das imagens em clusters (agrupamentos), utilizando um modelo
de redes self-organizing chamado Fuzzy Art. Foi utilizada a implementagdo deste modelo
realizada por Damiance Jr. e Liang (2001).

Em seguida foi implementada a funcionalidade de planejamento de trajetoria, para
determinar o caminho a ser seguido pelo robd para alcangar determinados pontos da pista. Foi
utilizada uma representacdo de mapa topoldgico para a pista e o algoritmo de Dijkstra
(Cormen, 2001) foi implementado para o calculo do menor caminho entre dois pontos. Para

auxiliar a localiza¢do do robd, foram utilizados marcos artificiais em pontos estratégicos da

pista.



Por fim, foi desenvolvido um mddulo de coleta e classificagdo automatica de
imagens. Este modulo possibilita a rapida criagdo de um novo conjunto de treinamento,
permitindo, assim, a facil adaptagdo do sistema a possiveis mudangas, por exemplo, angulo de
visdo da camera, tipo de pista, etc. Porém, este modulo ainda ndo foi testado.

Este relatorio esta organizado da seguinte maneira: a Se¢do 2 contém uma visdo
geral do sistema, apresentando suas principais partes a ligagdo entre elas. Na Se¢do 3 sdo
explicadas as abordagens testadas para o pré-processamento das imagens. Na Se¢do 4 sdo
apresentadas as topologias de RNAs treinadas e testadas para serem utilizadas no sistema,
também sdo explicadas as técnicas utilizadas no treinamento. A Se¢do 5 contém uma
descri¢do de como o movimento correto do robd € definido a partir da saida da RNA. Na
Se¢do 6 € mostrado como ¢ feito o planejamento da trajetdria que o robd deve seguir, a fim de
possibilita-lo a alcangar os pontos desejados da melhor maneira. Na Se¢do 7 € descrita a
implementa¢do de um modulo para coleta e classificagdo automatica de imagens para
treinamento de RNAs. A Se¢do 8 contém uma descrigdo sobre os testes em tempo real,
resultados obtidos e dificuldades encontradas. Por fim a Se¢do 9 conclui o texto com algumas

consideragdes sobre os resultados do trabalho.

2. VISAO GERAL DO SISTEMA

Para a tarefa de seguir a pista, as imagens sdo capturadas seqiiencialmente por meio
de uma camera conectada ao computador. Para cada imagem, a RNA gera uma saida, que €
mapeada para um movimento, gerando um comando de dire¢do que € enviado para o robd por
conexdo serial. A rede tem como entrada os pixels das imagens. Antes de serem submetidas a
RNA, as imagens passam por um pré-processamento para que elas assumam caracteristicas
melhores para o desempenho da rede.

A captura das imagens € feita por meio de um componente baseado em Video for
Windows que oferece fungdes para captura de video (Huebler, 2001).

O sistema recebe os pontos do mapa para onde o robd deve seguir. O robo comeca a
seguir suas metas e em cada uma delas calcula o caminho para a préxima. No caminho entre
uma meta e outra, o robd segue a pista normalmente até encontrar um ponto, entdo o sistema
verifica o que fazer para seguir para o préximo ponto.

A estrutura do sistema esta ilustrada na Figura 1.
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Figura 1 — Esquema do funcionamento do sistema
3. PRE-PROCESSAMENTO DAS IMAGENS

Submeter imagens em seu estado original a uma RNA significa exigir da RNA
capacidade de lidar com grande quantidade de informagdo, muitas vezes desnecessaria. Entdo,
se um certo pré-processamento for, antes, aplicado as imagens, pode-se obter um ganho
consideravel no desempenho do sistema.

No trabalho em questdo, como a pista é desenhada no chio, as imagens devem
conservar apenas caracteristicas que permitam distinguir a pista do chéo.

Até o momento, foram treinadas RNAs com imagens de uma pista formada por
duas faixas brancas, pertencentes ao banco de imagens citado anteriormente (Lorena e

Romero, 2002). Um exemplo dessas imagens pode ser visto na Figura 2.

Figura 2 — Exemplo de imagem utilizada no treinamento das RNAs

Se essas imagens forem reduzidas para um certo tamanho, ndo perderdo a
informag¢@o da orientagdo das faixas. Isso torna o processamento da RNA mais rapido devido
ao numero reduzido de entradas. Assim, as imagens sdo reduzidas para 32x24 pixels.

As imagens originais contém 320x240 pixels e, para serem reduzidas, ¢ calculada a
média de cada uma das trés componentes (RGB — Red (vermelho), Green (verde) e Blue
(azul)) de cada cem pixels (areas de 10x10 pixels nas quais a imagem pode ser dividida),

entdo os valores obtidos sdo atribuidos a um tnico pixel.



Para que variagdes de cor nfo tenham que ser tratadas pela RNA, dois métodos para
pré-processamento das imagens foram verificados. O primeiro consiste na conversdo das
cores para escala de cinza ¢ o segundo consiste em binarizagdo, transformando pixels da faixa

em branco e o resto em preto. Esses métodos serdo descritos a seguir.

3.1 Niveis de Cinza

Para cada pixel da imagem, € calculada a média das trés componentes (RGB), ¢ o
resultado ¢ atribuido a cada uma das componentes. Assim, o chdo pode até ser de uma cor
diferente da cor utilizada nas imagens de treinamento (Lorena e Romero, 2002), contanto que
seja escura.

Depois que esse processamento € aplicado, a imagem € normalizada para que seus
pixels assumam valores entre 0 e 1. Isso é feito dividindo-se todos pelo maior deles
(lembrando que nesta etapa cada pixe/ tem um valor Unico para R, G e B). Isso ¢ feito para

que variagdes de luminosidade ndo influenciem o funcionamento da RNA.

3.2 Binarizacdo

Utilizando o método explicado acima, € necessario que o piso s€ja escuro para que
as imagens fiquem parecidas com as imagens do treinamento, apenas com a faixa branca
destacada. Outra desvantagem ¢ que cada tipo de piso, mesmo que escuro, tem um padrdo
diferente, como tacos e pisos ceramicos, que mesmo em niveis de cinza serdo diferentes.

Entd3o, se for possivel reconhecer pixels pertencentes as faixas, pode-se deixar a
imagem com apenas dois niveis de cor, um para as faixas e outro para o chio. Além de
simplificar o processamento da RNA, isso elimina a necessidade de que o chdo seja escuro e
as faixas brancas. So €, entdo, necessario que eles sejam de cores diferentes.

Constatou-se que, nas imagens do conjunto disponivel para treinamento (Lorena e
Romero, 2002), a componente azul (B) € mais intensa que a vermelha (R) nos pixels da faixa.
Também nesses pixels, a componente verde (G) ¢ mais intensa que nos outro pixels da
imagem. Assim, todos os pixels que respeitassem essas regras € 0s que possuissem todas as
componentes proximas do nivel maximo (255) foram transformados em branco, € o resto foi
transformado em preto.

Uma outra possibilidade que surge com essa técnica ¢ a de eliminar ruidos nas
imagens como, por exemplo, reflexos luminosos no chdo. Esses reflexos podem ser vistos na

imagem da Figura 3.



Figura 3 — Imagem com ruido (indicado com circulo).

Nas imagens de treinamento (Lorena e Romero, 2002) a cor da faixa ¢ branca, se
assemelhando muito com a cor dos reflexos, entdo eles ndo foram escondidos com a
transformag@o explicada acima. Porém, se forem utilizadas faixas de outra cor, € possivel
esconder todo o resto, menos as faixas. Para isso, os ruidos foram retirados manualmente das
imagens do conjunto de treinamento, visando utilizar uma cor diferente para a pista durante os
testes, para alcancar o efeito citado.

Foram testadas duas maneiras para binarizar as imagens provindas da camera. Uma
consiste em o usuario analisar as imagens do ambiente e informar os limites das componentes
de cor R, G e B a partir dos quais a imagem sera binarizada. A outra, com a finalidade de
automatizar o processo acima, consiste na “clusteriza¢@o” dos pixels de uma imagem exemplo
e utilizagdo dessa “clusteriza¢do” para classifica¢do dos pixels das imagens em tempo real.

Foi utilizada a rede Fuzzy ART pertencente a familia de redes ART (Vicentini e
Romero, 2003). Essas redes possuem a capacidade de auto-organizagdo, pertencendo a um
grupo de redes chamadas de self-organizing (Carvalho, Braga e Ludemir, 2000).

As redes self-organizing possuem a capacidade de aprender através de exemplos,
sem que exista um supervisor externo, como no paradigma de aprendizado supervisionado
que € o caso do algoritmo de treinamento Back-propagation utilizado para o treinar as RNAs
MLP, onde a RNA ¢ “ensinada” através de pares de entrada e resposta desejada. No caso das
redes self-organizing, as Unicas informagdes fornecidas s@o os exemplos de entrada. A rede
agrupa esses exemplos em clusters, unindo exemplos que compartilham caracteristicas
comuns.

O modelo Fuzzy ART, em particular, aceita como entrada elementos assumindo
valores entre 0 e 1, indicando o nivel de presenga da caracteristica representada pelo
elemento. No trabalho em questdo a entrada é um pixel da imagem e as caracteristicas
medidas sdo suas componentes de cor R, G e B.

Foi utilizada a implementagdo deste modelo realizada por Damiance Jr. e Liang

(2001) que consiste em um conjunto de métodos que permitem:



» Treinar a rede, informando um exemplo de entrada. Esse procedimento pode ser
repetido com exemplos diferentes a qualquer momento sendo que a rede vai
acumulando o conhecimento sem perder o treinamento anterior.

» Alterar o limiar de vigilancia utilizado no treinamento. O valor deste parametro é
proporcional a semelhanga permitida para que exemplos sejam agrupados no
mesmo cluster.

» Classificar um exemplo de entrada, ou seja, informar o cluster ao qual ele
provavelmente pertence.

Depois que essa implementagdo foi adaptada ao sistema, tornou-se possivel que o
usuario ajuste, em tempo de execu¢do, o limiar de vigilancia visualizando o resultado da
“clusteriza¢do”. Para a visualizacdo, cada cluster de pixels é colorido com uma cor diferente
como na Figura 4. Depois de terminado o processo de ‘“clusterizagdo”, o usudrio deve
informar a cor do cluster que contém os pixels da faixa da pista, assim, nas imagens
futuramente capturadas, os pixels classificados pertencentes a esse cluster serdo coloridos em

branco e o resto em preto.

Figura 4 — Exemplo de “clusteriza¢do” de imagem da pista.

Para a “clusterizagdo”, o usuario deve utilizar uma imagem contendo um marco
(auxiliadores da localizagdo, citados anteriormente) como na Figura 5, assim, ele deve
informar também a cor do cluster que contém os pixels do marco, para que eles possam ser
identificados no processo de localizag@o e planejamento de trajetoria.

Utilizando a binarizag¢do como forma de pré-processamento, a conversao das cores ¢
feita antes da reducdo e esta ¢ feita da seguinte forma: se a porcentagem de pixels brancos
dentro da area de 100 pixels que sera reduzida para um for maior que um certo limite, aquela

area sera branca.
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Figura 5 — Exemplo de “clusterizacio” de imagem da pista contendo marco.

4. REDES NEURAIS

RNAs sdo sistemas compostos por elementos de processamento, chamados
neurdnios artificiais, que sdo interconectados. Cada conexdo (sinapse) entre neurdnios estd
associada a um peso, para ponderar as entradas de cada neurdnio. Os pesos sdo determinados
na fase de treinamento da rede e neles esta armazenado o conhecimento da RNA (Carvalho,
Braga e Ludemir, 2000) (Carvalho et al, 1999). As RNAs possuem entrada e saida e, dado um
certo exemplo de entrada, a RNA generaliza este exemplo de acordo com os exemplos vistos
no treinamento. A saida emitida corresponde a classe a que esse exemplo pertence. O modelo
de RNA utilizado neste trabalho é o Multlayer Perceptron (MLP), que € composto por varias
camadas de neurdnios, uma de entrada, uma de saida e uma ou mais camadas intermediarias.
Isso possibilita o aprendizado de tarefas mais complexas como € o caso do projeto em

questdo. Uma ilustragdo deste modelo pode ser vista na Figura 6.

Camada
de Saida
Camadas
Intermediarias ;
@

Camada de wet
Entrada

Figura 6 — Exemplo de Multilayer Perceptron
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O algoritmo de treinamento geralmente utilizado para este modelo é o algoritmo
“Back Propagation” (Carvalho, Braga e Ludemir, 2000). Este algoritmo pertence ao
paradigma de aprendizado supervisionado, onde existe a figura de um “professor”, isto ¢, a
rede € “ensinada” através de um conjunto de pares com entrada e saida desejada.

Para o treinamento das redes foi utilizada a ferramenta SNNS (Stuttgart Neural
Network Simulator) (University of Stuttgart, 1995). Essa ferramenta consiste em um
simulador de RNAs que permite o treinamento de diversos modelos e topologias de redes por
meio de diversos algoritmos de treinamento. O algoritmo de treinamento utilizado ¢ o Back
Propagation.

Os modelos de RNA utilizados neste trabalho foram treinados com um conjunto de
imagens coletadas e classificadas por Lorena e Romero (2002). As imagens deste conjunto
estdo classificadas em oito diferentes classes, correspondentes a agéo correta do robd diante
de tais imagens. Essas classes sdo: curva brusca para esquerda, curva média para esquerda,
curva leve para esquerda, ir em frente, curva leve para direita, curva média para direita, curva
brusca para direita e parar. A cada intensidade de curva estd associado um raio de curvatura.
A classe parar contém as imagens para as quais € dificil determinar um movimento
apropriado, por exemplo, se o robo esta de frente para uma das faixas.

Algumas topologias de RNA MLP foram verificadas por Lorena € Romero (2002).
A representagdo de saida utilizada nesses modelos ¢ a 1-de-n. Nesta representagdo, cada
elemento de saida corresponde a uma classe e apenas um deles € ativado, ou seja, o elemento
correspondente a classe do exemplo de entrada deve possuir valor méximo e os demais, valor
minimo (Pomerleau, 1992) (Mitchell, 1997). A topologia que melhor se adequou a esse caso
tem uma Unica camada intermedidria com 200 elementos.

Porém, essa representacdo permite poucas possibilidades de movimento para o
robd. Um desses modelos foi utilizado na primeira versdo do sistema sendo descrito. Depois
dos testes em tempo real, constatamos que uma pequena variagdo na entrada da rede pode
provocar uma mudanga na saida que comprometerd o restante da trajetoria (Medeiros, e
Romero, 2002).

Entdo partimos para outra representag@o, a gaussiana (Pomerleau, 1992) (Waldherr,
Romero e Thrun, 2000). Nesta representac@o os valores das saidas apresentam-se na forma de
uma fungdo gaussiana (Figura 7), com seu pico centrado na saida correspondente a classe do

exemplo de entrada.
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Figura 7 — llustragdo das saidas de uma RNA com representaciio gaussiana

Houve a necessidade do treinamento de novas RNAs. Foram utilizados os exemplos
de treinamento de todas as classes citadas anteriormente, exceto da classe parar, pois, na
representagdo gaussiana, elementos de saida consecutivos representam agdes parecidas.

A saida desejada para cada exemplo de treinamento foi calculada utilizando a
Equagdo (1). Nesta equagdo, xi € o valor da i-ésima saida, di € a distancia entre a i-ésima saida
e a saida correspondente a classe do exemplo de entrada (onde se situa o centro da gaussiana).

O valor 5 € um parametro determinado empiricamente que controla a abertura da gaussiana.

-d?
5

x =e (1

i

No momento em que a RNA com saida gaussiana é utilizada, seus elementos de
saida formam algo parecido com uma func¢do gaussiana. Para determinar seu centro, que
representa 0 movimento do robo, deve ser calculada a fungdo gaussiana que melhor se ajusta
as saidas (Medeiros e Romero, 2002) (Waldherr, Romero e Thrun, 2000).

O conjunto de exemplos de treinamento € dividido aleatoriamente em trés
subconjuntos: treinamento, validagdo e teste. O conjunto de treinamento contém por volta de
50% dos exemplos e ¢ utilizado para ajustar os pesos da rede. O conjunto de validagdo contém
por volta de 25% dos exemplos e ¢ apresentado durante o ajuste de pesos para avaliar o
desempenho da RNA em treinamento diante de novos exemplos, visando selecionar o
conjunto de pesos com melhor generalizagdo. O conjunto de teste contém os 25% restantes
dos exemplos e é apresentado no final para avaliar a capacidade de generalizagdo da rede.
Trata-se de uma técnica chamada de Cross-Validation (Haykin, 1998), cujo objetivo € testar a
performance de generalizagdo com um conjunto diferente do conjunto de valida¢do, para

evitar o overfitting, isto €, evitar que a rede “vicie” nos conjuntos de treinamento e validag@o.
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Foi implementado um moddulo que gera esses trés subconjuntos aleatoriamente trés
vezes, resultando em trés particionamentos diferentes. Assim, trés redes de cada topologia sdo
geradas, e a performance da topologia é medida pela média das performances de cada rede
(Prechelt, 1994). A ferramenta de simulagdo SNNS anota os erros MSE de cada etapa
(treinamento, validagdo e teste). Este erro € igual a soma dos erros quadraticos (SSE) dividida
pelo nimero de exemplos apresentados a rede. A topologia adequada é escolhida através da
média dos erros MSE de generalizagdo obtidos nas trés vezes que essa topologia é treinada. O
desvio padrdo entre esses trés valores também ¢ analisado. Esta técnica se chama Random
Subsampling (Lorena e Romero, 2002; Bao, 2001) e visa estimar a taxa verdadeira de erro.

Assim, as primeiras RNAs com representagdo gaussiana foram treinadas para

imagens reduzidas e em tons de cinza. Foram testadas as topologias listadas na Tabela 1.

Tabela 1 — Topologias verificadas.

Topologia N°de camadas |N°de elementos na 1* | N° de elementos na 2*
intermediarias | camada intermediaria camada intermediaria

1 ] 5 =

2 1 50 -

3 1 100 -

. l 200 -

° 2 A0 20

¢ 2 100 30

A topologia que melhor se adequou foi a de numero 6 na Tabela 1. Abaixo, na

Tabela 2 sdo apresentadas as taxas de erro MSE observadas durante seu treinamento.

Tabela 2 — Taxas de erro MSE do treinamento da topologia escolhida (P1, P2 e P3 correspondem

aos diferentes particionamentos)

Topologia| Etapa P1 P2 P3 Média |Desvio Padrao
Treinamento | 0,009515 0,009889| 0,009527| 0,009644 0,000213

6 Validagdo | 0,141449( 0,130582( 0,122457 ‘0’,;:13’1‘49- 0,009529
Teste 0,159289| 0,174140| 0,137129| 0,156853 0,018625

E importante ressaltar que esta topologia foi escolhida com uma média de erro de
generalizagdo igual a 0,131. Esse erro € relativamente baixo se comparado ao erro da melhor

topologia, com saida 1-de-n, que € igual a 0,329 (Lorena ¢ Romero, 2002).
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O proximo passo foi dado em diregdo a tratar o problema dos ruidos na imagem,
exemplificados na Figura 3. Entdo, o pré-processamento explicado na Segdo 3.2 foi aplicado
as imagens de treinamento. Os ruidos foram retirados manualmente das imagens, pois, se uma
cor de faixa diferente de branco fosse utilizada, ela poderia ser diferenciada dos reflexos e
outros ruidos de cor branca, e apos o pré-processamento eles seriam eliminados.

Nas entradas dos pares de treinamento os pixels brancos sdo representados por 1 e
0s pretos por —1.

Também foram adicionadas duas classes de exemplos de treinamento para
solucionar dificuldade da RNA em processar imagens de curvas muito fechadas. Essas classes
representam os movimentos: curva mais brusca para a esquerda e para a direita. Foram
utilizadas as imagens originalmente coletadas para representar a classe parar (Lorena e
Romero, 2002; Medeiros € Romero, 2002). Dois exemplos dessas imagens podem ser vistos

na Figura 8.

(b)

Figura 8 — Exemplos de figuras adicionadas ao conjunto de treinamento para formar as classes:

esquerda mais brusca (a) e direita mais brusca (b).

A representagao de saida utilizada para este novo conjunto de pares de treinamento
também foi a gaussiana. Também foi utilizada a Equagao (1), porém o pardmetro que controla
a abertura da gaussiana agora € igual a 9, devido ao maior nimero de saidas na RNA.

Assim, com esse novo conjunto, foram treinadas as mesmas topologias listadas na
Tabela 1. Os erros resultantes do treinamento dessas redes estdo organizados na Tabela 3.

Podemos perceber que a melhor topologia € a de niimero 5, cuja média de erro de
generalizagio ¢ igual a 0,089. E importante salientar que este resultado é melhor que o obtido
do treinamento com imagens em niveis de cinza, encontrado na Tabela 2. Também ¢
importante observar que essa topologia ¢ mais simples que a antiga, contendo menos
elementos por camada. Topologias mais simples sdo mais interessantes, quando aplicadas a

sistemas de tempo real.
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Tabela 3 — Erros MSE resultantes do treinamento das RNAs com imagens em preto e branco
(P1, P2 e P3 correspondem aos diferentes particionamentos)
Topologia Etapa P1 P2 | P3 | Média| Desvio Padrdo

Treinamento | 0,032 | 0,046 | 0,044 | 0,041 0,00750
1 Validagao |0,122]0,152|0,126 | 0,133 0,01633

Teste 0,119 | 0,148 | 0,135 | 0,134 0,01476
Treinamento | 0,004 | 0,004 | 0,004 | 0,004 0,00002
2 Validagao | 0,094 |0,110|0,126 | 0,110 0,01615
Teste 0,103 {0,110 | 0,104 | 0,106 0,00382
Treinamento | 0,004 | 0,004 | 0,004 | 0,004 0,00036
3 Validagao | 0,148 |0,163|0,119 | 0,143 0,02226
Teste 0,134 0,131 {0,114 | 0,126 0,01095
Treinamento | 0,004 | 0,004 | 0,004 | 0,004 0,00018

4 Validagio | 0,161 | 0,163 | 0,142 | 0,155 | 0,01160
Teste | 0,162 0,159 | 0,162 | 0,161 | 0,00199
Treinamento | 0,004 | 0,004 | 0,004 | 0,004 | 0,00016

5 Validagdo | 0,095 | 0,092 | 0,080 | 0,089  0,00784
Teste | 0.098 | 0.089 | 0,070 | 0,086 | 001463
Treinamento | 0,004 | 0,004 | 0,004 | 0,004 0,00008

6 Validagio | 0,085 | 0,109 | 0,105 | 0,100 | 0,01321

Teste 0,080 | 0,098 | 0,101 | 0,093 0,01121

5. INTERPRETAGAO DA SAIDA DA RNA

O controle do robd é feito variando-se sua velocidade angular, enquanto a
velocidade escalar permanece constante. Entdo, a saida da RNA deve ser mapeada para a
velocidade angular correspondente.

Como dito anteriormente, a cada classe foi associado um valor de raio de curvatura
(Lorena e Romero, 2002). Entdo, sabendo o valor do raio ¢ possivel determinar a velocidade
angular através da Equagao (2), onde v € a velocidade escalar atual, @ € a velocidade angular

e R € oraio de curvatura desejado.

v=wxR ()
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Utilizando a RNA com saida 1-de-n, a determinag@o do raio é relativamente simples,
pois sua saida € normalmente apresentada com um de seus elementos possuindo um alto valor
e os restantes com valores baixos, entdo, quando ela estd em operagdo, seus elementos de
saida sdo analisados para se encontrar o de maior valor. Se o maior valor for maior que um
certo limite determinado empiricamente e for suficientemente maior do que os valores dos
outros elementos, a saida ¢ considerada confiavel. Um exemplo de uma situagdo em que a
saida da RNA ¢ confiavel esta ilustrado na Figura 9, onde o movimento correto € uma curva

suave para a direita (neste caso, ainda eram utilizados oito elementos de saida).

Imagem original Saida da RNA

Figura 9 — Ilustragdo de uma saida satisfatéria

Quando as duas condigdes citadas, para que uma saida seja confidvel, ndo sdo
satisfeitas, € concluido que a rede esta confusa. Neste caso, o robd rotaciona para buscar um
melhor angulo de visao.

O raio associado a classe correspondente ao elemento de maior valor ¢ utilizado na
Equagdo (2). Quando esse elemento corresponde a classe parar, o procedimento € o mesmo de
quando a rede esta confusa.

Quando RNAs com representagdo gaussiana sdo utilizadas, existem diversas
possibilidades de diregdo para o robé que variam de acordo com a posi¢do do centro da
gaussiana, que € utilizado para calcular o raio de curvatura.

Primeiro € necessario determinar o centro da func¢do gaussiana que melhor se ajusta
as saidas emitidas pela RNA.

Isso € feito testando diversas posigdes para o centro da gaussiana. Para cada posigao,
¢ calculada a soma dos quadrados das diferengas entre as saidas verdadeiras da rede e valor da
fungdo gaussiana correta naquele ponto. Um resultado deste procedimento ¢ mostrado na
Figura 10.

Uma vez determinado o centro da gaussiana, este deve ser mapeado para o raio de

curvatura correspondente. Anteriormente isto era feito utilizando a Equagdo (3) (quando esta
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equagdo era utilizada, o elemento central era 3 pois existiam sete classes), onde R € o raio e ¢
¢ o centro da gaussiana. O grafico desta equagio ¢ mostrado na Figura 11. Essa ¢ uma
maneira intuitiva de transformar a posi¢do do centro da gaussiana em raio, pois o raio tende

ao infinito quando se aproxima do centro, que representa 0 movimento “ir em frente”, e tende

Posigéo do pico
da gaussiana

a zero quando a curva vai se tornando mais fechada.

Erro: 0,0085871247574687

Imagem
original

Figura 10 - Ilustracio do método utilizado para estimar o centro da fun¢do gaussiana ajustada a
saida da RNA (quando este resultado foi produzido, ainda eram utilizados sete elementos de

saida).

1
R=——,sec#3
|e—3| 3)

R
o NP~ O oo N

T e rrye’y

0 1 2 3 4 < 6
Cc

Figura 11 - Grafico da Equacéo (3)

Porém, com esta equagdo, os movimentos do robd estavam um pouco bruscos.
Entdo, a alternativa foi partir para um mapeamento linear entre o centro da gaussiana e o raio

de curvatura, utilizando a Equagdo (4), cujo grafico ¢ apresentado na Figura 12.
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R=((0,4%¢c)+0,3),se c<4

4)
R=((-0,4%c)+35),se c>4

Figura 12 - Grafico da Equacgdo (4)

6. PLANEJAMENTO DE TRAJETORIA

A navegacdo de robos mdveis por caminhos desenhados no chdo permite que o robd
navegue entre os locais desejados. Por exemplo, em um ambiente de Chao-de-Fabrica pode-se
tracar caminhos entre maquinas para que o robd transporte pegas entre elas. Um exemplo de
tal ambiente encontra-se na Figura 13. Porém, de acordo com a sofistica¢do do ambiente,
pode haver a necessidade de o caminho ser complexo, contendo bifurcagdes e varios trajetos
possiveis para alcangar um determinado ponto. Um caminho de tal tipo pode ser representado
como um grafo, cujos vértices seriam pontos estratégicos, como as maquinas onde o robd
deve parar e as bifurcagdes.

Dessa forma, foi implementado o planejamento de trajetoria utilizando a teoria sobre
grafos.

O mapa ¢ representado como um conjunto de listas, uma para cada vértice, como
esta ilustrado na Figura 14. Nesta representagdo, cada lista contém os vértices adjacentes ao
vértice a que se refere e cada elemento da lista contém o vértice e a distancia até ele.

Quando uma lista contém mais do que um elemento, significa que o vértice de
referéncia corresponde a uma ramificagcdo. Este sistema permite até trés ramos em uma
ramificacdo e, em cada lista, os vértices estdo ordenados de acordo com qual ramo seguir para
chegar até eles, da esquerda para direita. O elemento da lista contendo valor —1 e —1 existe

para o caso de naquele vértice existir ramo para frente e para direita.
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Maql Maq2 Maq3

U O O s
Dg Dg D@

Magé Mag5 Mag4d

MR

Figura 13 (Morandin et al, 2000)
Magq# = Maquinas que depositario ou receberéo as pecas
CD = Local de carga e descarga
MR = Local de manutencéo do robo

As setas indicam as direcdes que o robd pode seguir

0 | 1 i =P 32 4

L= 2 1 | 3 3 4 5
2 || . -1 || 4 2 [—¥»| 3 1
3

4

Figura 14 — Representacéio de grafo em listas

O algoritmo de Dijkstra (Cormen, 2001) foi implementado para buscar, em uma

estrutura como a da Figura 14, o menor caminho entre dois vértices.



O sistema recebe os pontos do mapa para onde o robd deve seguir e comega a
alcangar as metas na ordem em que forem recebidas. A implementagdo do algoritmo de
Dijkstra retorna uma lista de vértices a serem visitados até a meta. O robd segue a pista até
chegar a um vértice. O sistema reconhece que esta em um vértice com o auxilio de marcos
artificiais posicionados no ambiente, como esta ilustrado na Figura 15. Esse tipo de marco €
detectado pela presenca, na imagem, de pixels, pertencentes ao cluster de pixels do marco,

resultante do processo de “clusterizagédo”.

~ P

Figura 15 — Exemplo de marcos artificiais para auxiliar a localiza¢io do robd

Quando um vértice € alcangado, o sistema verifica 0 que fazer para seguir para o
proximo vértice da lista resultante do procedimento de busca no grafo. Pode ser simplesmente
seguir .em frente, no caso de o vértice atual conter apenas um adjacente, ou escolher uma de
algumas diregdes (esquerda ou direita), no caso de ramificagdes. No segundo caso, busca-se a
posigdo do proximo vértice na lista de adjacéncias do vértice atual, o que determinara qual das
pistas, originarias da ramificagdo, o robo devera seguir. Sendo esquerda, o robd realizard uma
curva de 90 graus para a esquerda, sendo direita, procedimento analogo para direita.

Assim que o vértice destino € alcangado, o procedimento € repetido para o proximo,
e assim em diante até que todas as metas tenham sido cumpridas, entdo o robd para e espera

por novas instrugdes.

7. MODULO DE COLETA E CLASSIFICAGAO AUTOMATICA
DE IMAGENS

O conjunto de imagens classificadas para treinamento das RNAs (Lorena, 2002) foi
coletado com a camera posicionada logo em cima do robd, a uma distancia de 21 cm do chio

e, portando, é nesta posi¢ao que a camera dever estar durante a execu¢do do sistema.
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Acreditava-se que este angulo de viso estivesse prejudicando o desempenho do sistema, pois
0 rob6 “enxerga” um pedago da pista que estd bem a frente. Entdo ele pode estar
“enxergando” tanto uma pista reta como uma curva estando em uma posi¢cdo em que deve
continuar para frente, ou seja, duas situagdes diferentes para respostar iguais.

O software de comunicagdo entre o robé e o computador, Saphira, permite que o
robd seja controlado pelas teclas direcionais (setinhas) do teclado. Este software também
possui uma estrutura, sfRobot, que armazena informa¢des de movimento e posi¢do do robd,
entre outras.

Isso possibilitou o desenvolvimento de um moédulo que, enquanto o robd ¢
controlado pelo usuario, captura uma seqiiéncia de imagens € no momento em que cada
imagem € coletada, extrai informagdes do movimento que o robo estava executando.

Essas informagdes s@o extraidas da seguinte forma: no momento em que a imagem ¢
coletada, a orientagdo (em graus) do robd ¢ armazenada e apds um pequeno espago de tempo
¢ verificado quantos graus o robd variou da posi¢do inicial. Assim pode-se calcular sua
velocidade angular (em graus/segundo) para aquela imagem.

Assim € possivel criar, facilmente, novos conjuntos de treinamento, coletados com
diferentes angulos de visdo da camera ou modificando o tipo de pista, por exemplo, com

apenas uma faixa no centro. Porém este modulo ainda ndo foi testado.

8. TESTES E DIFICULDADES ENCONTRADAS

Os testes em tempo real sdo feitos com o robé modvel Pioneer 1 (Figura 16) da
companhia ActivMedia, presente no LABIC®. O robd é conectado a um notebook, onde o
sistema € executado. O notebook, por sua vez, ¢ conectado a uma webcam, de onde as
imagens sdo capturadas. O sistema montado € mostrado na Figura 16.

Os comandos sdo enviados para o robd por meio da ferramenta Saphira (Konolige,
1997) (Medeiros e Romero, 2002), que constitui a interface de comunicagio com o
computador, desenvolvida para o robo Pioneer. Essa ferramenta possui uma biblioteca (API)

que contém diversas fungdes como comandos de locomogdo, leitura de sensores, etc.

3 Laboratério de Inteligéncia Computacional do Instituto de Ciéncias Matematicas e de Computagdo (ICMC) da
USP.
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Figura 16 — Sistema montado para testes em tempo real.

Ao longo do desenvolvimento do projeto foram feitos varios testes em tempo real e
os resultados tém sido cada vez mais satisfatdrios.

No inicio, quando era utilizada a RNA com saida 1-de-n, o rob6 saia muitas vezes da
pista, apesar de apresentar a tendéncia de permanecer dentro dela.

A partir da utilizagdo da representagdo gaussiana, a performance do sistema
apresentou uma melhora muito significativa. Foram gravados dois videos que mostram o

sistema em funcionamento, eles estdo disponiveis em http://grad.icmc.usp.br/~debora.

A performance do sistema aumentou ainda mais depois das ultimas modificagdes
explicadas anteriormente: utilizagdo das imagens em branco e preto, adi¢do das duas classes
para curvas mais pesadas e mapeamento linear entre o centro da gaussiana e o raio de
curvatura, pois, antes, o robd apresentava dificuldades, como centralizar sua posi¢do em
algumas curvas, passando por cima de uma das faixas. Entdo, outros dois videos foram
gravados e disponibilizados no mesmo site.

Quando eram utilizadas imagens em tons de cinza, o tempo de processamento de
uma imagem, desde sua captura até o envio de comandos para o robd (sem o planejamento de
trajetoria), €, em média, 300 milisegundos e, somente o tempo gasto pelo processamento da
Rede Neural, é, em média, 20 milisegundos. Utilizando o processo de binarizagdo através da
comparagdo com limiares das componentes, o tempo total de processamento € por volta de
500 milisegundos e somente a Rede Neural consome em média 5 milisegundos de tempo de
processamento. Utilizando a rede Fuzzy ART para binarizar as imagens, o tempo médio total
de processamento aumenta para 750 milisegundos.

Nio foi possivel testar o sistema, em tempo real, apés a implementagdo do
planejamento de trajetoria e da “clusterizagdo”, devido a falta de equipamento, pois o
notebook utilizado nos testes esteve em conserto durante a implementacido desta parte do

projeto.
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9. CONCLUSOES

Observando o comportamento do robd nos videos, € interessante notar que ele faz
um leve movimento de vai e volta. Isto pode significar que rede tenha aprendido a manter o
robd nos limites da pista, e nao a orientagdo das curvas.

A representagdo gaussiana apresenta-se mais apropriada para esse tipo de aplicagdo,
comparada a saida 1-se-n, devido ao fato de permitir maior flexibilidade de movimento e,
conseqiientemente, evitar que mudangas bruscas entre as diregdes tomadas pelo robd
prejudicam o restante da trajetoria.

Com a modificacdo no pré-processamento das imagens, o processamento da RNA
ficou mais simples, porém, o restante ficou mais custoso, devido a binarizag¢io. Entretanto, o
aumento na performance do sistema e a possibilidade de melhor adaptagdo a novas condi¢des
do ambiente compensam essa desvantagem.

Comparando os dois métodos de binarizagdo percebe-se que, utilizando a rede Fuzzy
ART, o processamento € mais custoso, porém, ela possibilita o ajuste automatico do sistema a
cor do chio e das faixas que compdem a pista. Outra vantagem € que a resposta emitida pela
RNA, relativa a uma imagem de entrada pré-processada com essa técnica, apresenta-se mais
préxima a uma gaussiana perfeita, com um erro de até 75% menor do que a gaussiana obtida
utilizando a outra técnica. A performance em tempo real ainda deve ser testada.

Pretende-se, também aplicar a “clusterizagdo” ao conjunto de imagens de
treinamento e treinar novas RNAs. Verificar a performance ao clusterizar, ndo pixels isolados,
e sim 4reas de pixels, reduzindo a imagem nesta etapa. E, por fim, testar o modulo de coleta e
classificagdo automatica de imagens, que pode possibilitar uma adapta¢do mais rapida do

sistema a novas configuragdes de pista.

O conhecimento adquirido durante o curso de graduagdo influenciou bastante no
sucesso do projeto, principalmente em termos de técnicas de programagao.

O desenvolvimento deste projeto, sem duvida nenhuma, foi fundamental para a
experiéncia e seguranga que a aluna atualmente possui. A convivéncia com outras pessoas
envolvidas com pesquisa no LABIC e os desafios encontrados durante o desenvolvimento do
projeto contribuiam para o desenvolvimento de uma afinidade com a pesquisa e de uma maior

capacidade de resolver problemas por parte da aluna.
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