

UNIVERSIDADE DE SÃO PAULO
Instituto de Ciências Matemáticas e de Computação
ISSN 0103-2577

**Iterated Images and the Plane Jacobian
Conjecture**

Ronen Peretz
Nguyen Van Chau
Carlos Gutierrez
Andrew Campbell

Nº 223

NOTAS

Série Matemática

São Carlos – SP
Abr./2005

SYSNO	A40485
DATA	/ /
ICMC - SBAB	

Imagens iteradas e a Conjectura Jacobiana Planar

Ronen Peretz, Nguyen Van Chau, Carlos Gutierrez, L. Andrew Campbell

Resumo

Provamos que as imagens iteradas de um par Jacobiano $f : \mathbb{C}^2 \rightarrow \mathbb{C}^2$ estabilizam; ou seja, para $k \in \mathbb{N}$ suficientemente grande, todos os conjuntos $f^k(\mathbb{C}^2)$ são iguais. Mais geralmente, seja X um subconjunto fechado algébrico de \mathbb{C}^N , e $f : X \rightarrow X$ uma aplicação polinomial aberta tal que $X - f(X)$ é um conjunto finito. Provamos que os conjuntos $f^k(X)$ estabilizam, e para qualquer subconjunto co-finito $\Omega \subseteq X$, com $f(\Omega) \subseteq \Omega$, os conjuntos $f^k(\Omega)$ estabilizam. Aplicamos estes resultados para obter uma nova caracterização da Conjectura Jacobiana Complexa bidimensional relacionada a questões de surjetividade.

ITERATED IMAGES AND THE PLANE JACOBIAN CONJECTURE

RONEN PERETZ, NGUYEN VAN CHAU, CARLOS GUTIERREZ, AND L. ANDREW CAMPBELL

ABSTRACT. We show that the iterated images of a Jacobian pair $f : \mathbb{C}^2 \rightarrow \mathbb{C}^2$ stabilize; that is, all the sets $f^k(\mathbb{C}^2)$ are equal for k sufficiently large. More generally, let X be a closed algebraic subset of \mathbb{C}^N , and $f : X \rightarrow X$ an open polynomial map with $X - f(X)$ a finite set. We show that the sets $f^k(X)$ stabilize, and for any cofinite subset $\Omega \subseteq X$ with $f(\Omega) \subseteq \Omega$, the sets $f^k(\Omega)$ stabilize. We apply these results to obtain a new characterization of the two dimensional complex Jacobian conjecture related to questions of surjectivity.

1. INTRODUCTION

The n -dimensional Jacobian conjecture for a field \mathbf{k} of characteristic 0, which we denote as $JC(\mathbf{k}, n)$, asserts that any polynomial map $f : \mathbf{k}^n \rightarrow \mathbf{k}^n$, for which the Jacobian determinant $J(f)$ is a nonzero constant, is bijective and the inverse map is also polynomial ([BCW82, Ess00]). The full Jacobian conjecture asserts that $JC(\mathbf{k}, n)$ is true for all fields \mathbf{k} of characteristic 0, and all integers $n > 0$; so far, no particular case $JC(\mathbf{k}, n)$ has been proved for any single \mathbf{k} and any single $n > 1$. We consider only the complex case $\mathbf{k} = \mathbb{C}$ (it is known that for each $n > 0$, $JC(\mathbb{C}, n)$ implies $JC(\mathbf{k}, n)$ for any \mathbf{k} of characteristic 0).

Let $f : \mathbb{C}^n \rightarrow \mathbb{C}^n$ be a polynomial map with $J(f)$ a nonzero constant. Then f is an open map (even locally biholomorphic), $f(\mathbb{C}^n)$ is open and simply connected, and $\mathbb{C}^n - f(\mathbb{C}^n)$ is either empty or a closed algebraic subset of \mathbb{C}^n of codimension at least 2 ([Cam73]). In the case $n = 2$ we call f a *Jacobian pair*. For a Jacobian pair f , the coimage $\mathbb{C}^2 - f(\mathbb{C}^2)$ is empty or at most 0-dimensional, hence finite in either case. We prove a general result about open polynomial endomorphisms with finite coimage, and then use that result to provide a recharacterization of $JC(\mathbb{C}, 2)$ as a conjecture about certain polynomial endomorphisms of cofinite subsets of the plane \mathbb{C}^2 .

Let X be a closed complex algebraic subset of \mathbb{C}^N . We equip X with the strong topology that it inherits from the Euclidean topology on \mathbb{C}^N . Let $f : X \rightarrow X$ be a polynomial map. Let f^k denote the iterated map $f^k = f \circ f \circ \dots \circ f$ (k composition factors). The sequence $X, f(X), f(f(X)), \dots, f^k(X), \dots$ of iterated images of X under f is a nested sequence of sets (each set contains the next or is equal to it).

1991 *Mathematics Subject Classification.* Primary 14R15; Secondary 14E09, 14E07.

Key words and phrases. Stable image, polynomial map, étale, Jacobian conjecture.

Ronen Peretz. Adress: Dept. of Math., Ben Gurion University of the Negev, Beer-Sheva, 84105, Israel Email: ronenp@cs.bgu.ac.il.

Nguyen Van Chau. Supported in part by the National Basic Program of Natural Science, Vietnam, ICTP, Trieste, Italy and ICMC, USP, SP, Brazil. Address: Institute of Mathematics, P.O. Box 1078, Hanoi, Vietnam E-mail: nvchau@math.ac.vn.

Carlos Gutierrez. Supported in part by FAPESP and CNPq, grant numbers 03/03107-9 and 306992/2003-5, respectively. Address: ICMC-USP, P.O.Box 668, 13560-970, Sao Carlos, SP, Brazil. E-mail: gutp@icmc.usp.br.

L. Andrew Campbell. Address: 908 Fire Dance Lane, Pal Desert CA 92211, USA Email: landrewcampbell@earthlink.net.

In general, all we can say about the iterated images of X , is that they are constructible. But if f is an open map and $f(X)$ consists of all but finitely many points of X , we will show that the nested sequence $f^k(X)$ eventually stabilizes, with all $f^k(X)$ equal to the same subset of X for k large enough. In addition, we show that if $\Omega \subseteq X$ is a cofinite subset of X that is invariant under f (that is, $f(\Omega) \subseteq \Omega$), then the iterated images $f^k(\Omega)$ also stabilize. The second result reduces to the first when $\Omega = X$, but it is more general, because, if Ω is a proper cofinite subset of X , then Ω is usually not affine ([Har77]), hence cannot be embedded as a closed algebraic subset of \mathbb{C}^N for any N . Combining both results into a single theorem yields

Theorem 1. *Let $f : X \rightarrow X$ be a polynomial map of a closed complex algebraic subset of \mathbb{C}^N to itself. If f is an open map, $X - f(X)$ is finite, and Ω is a cofinite subset of X with $f(\Omega) \subseteq \Omega$, then there is a $K > 0$ such that $f^K(\Omega) = f^{K+1}(\Omega) = f^{K+2}(\Omega) = \dots$ (all $f^k(\Omega)$ are equal for $k \geq K$). The stable image $\bigcap_{k>0} f^k(\Omega)$ is an open cofinite subset of Ω .*

We will use the term *stability of iterated images* for the property that the iterated images are all eventually equal. The restriction of f to $S = \bigcap_{k>0} f^k(\Omega)$ is an open, surjective polynomial map of S to itself. In a slightly more general context, if V is a complex algebraic variety that can be embedded in \mathbb{C}^N as a closed algebraic subset, if f is an open morphism (regular map) of a closed algebraic subset X of V to itself, and if $X - f(X)$ is finite, then stability of iterated images holds for f and any cofinite subset Ω of X satisfying $f(\Omega) \subseteq \Omega$. For an embedding of V induces an embedding of X , and f can be expressed as a polynomial map in the coordinates of \mathbb{C}^N .

Corollary 1. *Let $n > 1$. Then stability of iterated images holds for $f : \Omega \rightarrow \Omega$, if f is an étale regular endomorphism of a cofinite subset Ω of \mathbb{C}^n and $f(\Omega)$ is a cofinite subset of Ω . The stable image of Ω is an open, simply connected, cofinite subset of Ω .*

Proof. \mathbb{C}^n is simply connected; so is the complement in \mathbb{C}^n of any closed complex analytic subset of codimension 2 or more ([Abh63]). If $f : \Omega \rightarrow \Omega$ is a regular map (a morphism of algebraic varieties), it is a rational map defined at all but finitely many points in \mathbb{C}^n , so it is polynomial. Let F be the unique extension of f to a polynomial map from \mathbb{C}^n to \mathbb{C}^n . The meaning of étale in this situation is that f is locally biholomorphic. As is known, this implies that the Jacobian determinant $J(F)$ is nonzero at every point of Ω . $J(F)$ is a polynomial, so it cannot vanish only on a finite set of points. Since Ω is cofinite, $J(F)$ must vanish nowhere. Thus F is open. Further $\mathbb{C}^n - F(\mathbb{C}^n)$ consists of, at most, some of the finitely many points of Ω omitted by f , and some of the images under F of the finitely many points of \mathbb{C}^n not in Ω . So Theorem 1 applies. Since the stable image is cofinite in Ω , it is cofinite in \mathbb{C}^n , hence simply connected. \square

The special case $\Omega = \mathbb{C}^2$ yields

Corollary 2. *The iterated images of a Jacobian pair stabilize. The stable image is an open, simply connected, cofinite subset of \mathbb{C}^2 .*

It is well known that if f is a Jacobian pair, and f is injective, then f is an automorphism (bijective, with polynomial inverse). In fact, there is a general principle that an injective endomorphism of a complex algebraic variety is also surjective ([Ax69, CR91]), so bijectivity is easy. Moreover, f is an automorphism if its restriction $f|_\Omega$ to a dense open subset of \mathbb{C}^2 is injective (the birational case of the Jacobian conjecture; this dates back to the origins of the Jacobian conjecture in [Kel39]). So $JC(\mathbb{C}, 2)$ holds if every Jacobian pair is injective.

In contrast, little is known about surjectivity of Jacobian pairs or general properties of surjective endomorphisms of complex algebraic varieties. However, applying Theorem 1 to Jacobian pairs, we show that

Theorem 2. *JC($\mathbb{C}, 2$) is equivalent to the following assertion*

- *If f is a Jacobian pair and Ω is a cofinite subset of \mathbb{C}^2 , such that $f(\Omega) = \Omega$, then $f|_{\Omega}$ is injective.*

Remark. Note that the requirement $f(\Omega) = \Omega$ means that Ω is invariant under f and $f|_{\Omega}$ is surjective. In fact, using reasoning similar to that in Corollary 1 above, Theorem 2 can be restated as follows.

The two dimensional complex Jacobian conjecture is true if, and only if, every surjective étale endomorphism of a cofinite subset of \mathbb{C}^2 is injective.

2. A LEMMA ON THE DYNAMICS OF A MAP

We begin with the following elementary observations on the dynamics of a map of a set to itself. Neither topology nor algebraic structure are involved.

Let $f : X \rightarrow X$ be a map of a nonempty set to itself. Let $f^0 = \text{Id}$, and $f^{k+1} = f \circ f^k$ for $k \geq 0$. Let E^k denote the set $X - f^k(X)$. Then it is easy to show that

$$\emptyset \subseteq E = E^1 \subseteq E^2 \subseteq E^3 \subseteq \dots \quad (*)$$

and $E^{k+1} \subseteq E^k \cup f(E^k)$. From this it follows easily that if E is finite, so are all the E^k , $k > 1$. Also, if, for some K , $E^K = E^{K+j}$ for any $j > 0$, then all the E^k from K on are the same. If there is such a K , we call the sequence $(*)$ stable. We denote the union of all the E^k by E^∞ ; so $(*)$ is stable if, and only if, $E^K = E^\infty$ for some $K > 0$.

Lemma 1. *Suppose that E is a finite set and $(*)$ is not stable. Then there exists a point $e \in E$, such that all the points $f^k(e)$ for $k > 0$ belong to E^∞ and are distinct. For any such e there is a positive integer $M(e)$, such that the equation $f(x) = f^k(e)$ has exactly one solution for $k \geq M(e)$, namely $x = f^{k-1}(e)$.*

Proof. For $a \in X$ define the backward orbit of a as follows. $O(a)$ is a directed graph, whose vertices are all points $x \in X$ that satisfy $f^i(x) = a$ for some $i \geq 0$, and in which an edge is directed from x to y exactly when $f(y) = x$. Then, if $a \in E^k$, it is clear that $O(a)$ is a tree of maximum path length $k - 1$. Furthermore, if $a \notin E^\infty$, then $O(a)$ may contain directed cycles (arising from periodic points of f) and, in any case, has no maximum path length.

Now assume that $(*)$ is not stable. Then E is nonempty. We claim that there exists an $e \in E$ such that $f^k(e) \in E^\infty$ for all $k \geq 0$. Note that if $x \notin E^\infty$ then $f(x) \notin E^\infty$. So if there is no $e \in E$ for which $f^k(e) \in E^\infty$ for all $k \geq 0$, then for each $e \in E$ there is a finite first value $k(e)$ for which $f^{k(e)} \notin E^\infty$. Since E is finite, we can define $m = \max_{e \in E} k(e)$. If $k > m$ and $a \in E^{k+1} - E^k$ then there is a path of length k starting at $a \in O(a)$ and terminating at some $e \in E$. So $f^k(e) = a \in E^\infty$. That contradicts the definition of m . So if $k > m$, it follows that $E^{k+1} = E^k$. That contradicts the assumed instability. We conclude that some $e \in E$ satisfies $f^k(e) \in E^\infty$ for all $k \geq 0$. For the remainder of this proof, we fix such an e . Note that all the points $f^k(e)$, $k > 0$ are distinct (an equality between any two with different values of k would imply that they are not in E^∞).

Consider the directed graph, Γ , whose set of vertices is the smallest set that contains e and all the points $f^k(e)$, $k > 0$, and contains every $x \in X$ for which $f(x)$ is a vertex. Since $f(x) \in E^{k+1}$ implies $x \in E^k$, all the vertices of Γ are contained in the graphs $O(f^k(e))$. The directed edges of Γ go from x to y exactly when $f(y) = x$. Let A be the set of points $f^k(e)$, $k \geq 0$. We claim that the vertices of Γ are the

disjoint union of A and a finite set B . For suppose that v is a vertex and $v \notin A$. Then v is $f^m(e')$ for some $e' \in E$ that is different from e , and some $m \geq 0$. Since $f^{m+j}(e') = f^k(e)$ for some $j, k > 0$, only finitely many of the points $f^k(e')$, $k \geq 0$ do not belong to A . Since there are only finitely many possible e' , B is finite. For all $k > 0$, the equation $f(x) = f^k(e)$ has the solution $f^{k-1}(e)$, and that is the only solution in A . Any other solution is a vertex of Γ , hence in B . Since B is finite, this can occur for only finitely many $k > 0$ (note that inverses of distinct elements are distinct). Thus there exists an $M(e) \in \mathbb{N}$ such that $f(x) = f^k(e)$ has the unique solution $f^{k-1}(e)$ if $k \geq M(e)$. \square

3. POINTS WITH A LIMITED NUMBER OF INVERSE IMAGES

In this section, let X and Y be closed complex algebraic subsets of \mathbb{C}^N , and $f : X \rightarrow Y$ a polynomial map. For any $n \geq 0$, we define a set $A(f, n)$ as follows.

$$A(f, n) = \{y \in Y \mid \#(f^{-1}(y)) \leq n\}$$

That is, $A(f, n)$ is the set of points of Y which have n or fewer inverse images under f . Note that $A(f, 0) = E = E^1$ in the notation of the previous section.

The following lemma expresses a well known result. For lack of a suitable reference on an elementary level, we provide a simple proof.

Lemma 2. *If $f : X \rightarrow Y$ is an open polynomial map, then each set $A(f, n)$ is a closed algebraic subset of \mathbb{C}^N (and of Y).*

Proof. If we fix n and allow the use of the coefficients of f and those of finite sets of polynomials defining X and Y , then there is a first order formula with free variables z_1, \dots, z_N that is true for precisely those $z = (z_1, \dots, z_N)$ that belong to $A(f, n)$. So each $A(f, n)$ is constructible: it can be represented as a Boolean combination of finitely many closed complex algebraic subsets of \mathbb{C}^N . Furthermore, $A(f, n)$ is closed in \mathbb{C}^N . To see this, suppose $y \in Y$ does not belong to $A(f, n)$. Then there are $n + 1$ distinct points of X that map to y . Since $f : X \rightarrow Y$ is open, there is a neighborhood in Y of y consisting of points with at least $n + 1$ inverse images. Thus $A(f, n)$ is a closed subset of Y and hence of \mathbb{C}^N . But it is classic that a subset of \mathbb{C}^N that is constructible and closed in the Euclidean topology of \mathbb{C}^N is a closed algebraic subset of \mathbb{C}^N (express the set as a disjoint union of finitely many sets of the form $C - D$, where C is closed, algebraic, and irreducible, and D is a proper closed algebraic subset of C ; then observe that each C is the closure of $C - D$, hence the set is a finite union of the sets C). \square

The same holds true if we assume only that $f : X \rightarrow Y$ is an open regular map (a morphism) of closed complex algebraic subsets of varieties that can be embedded in \mathbb{C}^N . For X and Y can then both be embedded in \mathbb{C}^N for a large enough N , and f can be expressed as a polynomial map in the coordinates of \mathbb{C}^N .

4. THE ITERATED IMAGE THEOREM

For many types of mathematical structures, there is a general principle that an endomorphism that is injective as a map of sets is also necessarily bijective. Obvious examples are finite sets and finite dimensional vector spaces. For complex algebraic sets we have

Fact 1. *Let $f : X \rightarrow X$ be a polynomial map of a closed algebraic subset of \mathbb{C}^N to itself and suppose that f is injective. Then f is surjective.*

More general statements can be made ([Ax69, CR91]) but this will suffice.

Proof of Theorem 1. Assume that $f : X \rightarrow X$ is an open polynomial map of a closed algebraic subset of \mathbb{C}^N to itself, that $X - f(X)$ is finite, and that $\Omega \subseteq X$ is a cofinite subset of X with $f(\Omega) \subseteq \Omega$.

For simplicity, we begin by considering the special case $\Omega = X$. Suppose that the sequence $(*)$ is not stable. Then, by Lemma 1, there exist $e \in E$ and $M = M(e) > 0$, such that the points $f^k(e)$, $k \geq M$ are all distinct, they all belong to E^∞ , and each has a single inverse image under f . Let $T = \{f^k(e)\}_{k > M}$. Then $T \subseteq A(f, 1)$. Let \bar{T} be the Zariski closure (in \mathbb{C}^N) of T ; that is, the smallest closed algebraic subset of \mathbb{C}^N containing T . Since $A(f, 1)$ is closed algebraic by Lemma 2, $\bar{T} \subseteq A(f, 1)$. Obviously $f(T) \subseteq T$ and so, by the Zariski continuity of f , we have $f(\bar{T}) \subseteq \bar{T}$. Thus the restriction of f to \bar{T} is a polynomial map of \bar{T} to itself. And it is injective because $\bar{T} \subseteq A(f, 1)$. So it is surjective, and $f(\bar{T}) = \bar{T}$. From this it follows that each $t \in \bar{T}$ has an inverse image under f that is also in \bar{T} . Starting with $f^M(e) \in \bar{T}$, we can therefore construct an infinite sequence $\dots, a_{-3}, a_{-2}, a_{-1}, f^M(e)$ in the backwards orbit $O(f^M(e))$, with $f(a_i) = a_{i+1}$, for $i < -1$. But that contradicts the fact that $f^M(e) \in E^\infty$. We conclude that the sequence $(*)$ must be stable.

Now consider the case in which Ω is a proper subset of X , and suppose that the iterated images of Ω do not stabilize. Apply Lemma 1 to $f|_\Omega : \Omega \rightarrow \Omega$. Let $E_\Omega^k = \Omega - f^k(\Omega)$ and $E_\Omega^\infty = \bigcup_{k > 0} E_\Omega^k$. We obtain an $e \in E_\Omega^1$, such that the points $f^k(e)$ for $k > 0$ are all distinct points of Ω and lie in E_Ω^∞ . Also by Lemma 1, for large enough k , each $f^k(e)$ has exactly one inverse image under f that lies in Ω . If such a point has more than one inverse image under f in X , it must be the image of a point not in Ω . Since there are only finitely many of those, we see that for large enough k , say $k \geq M$, each $f^k(e)$ has exactly one inverse image under f , namely $f^{k-1}(e)$. Take such a point $f^k(e)$, $k \geq M$. It belongs to E_Ω^∞ . Suppose that $f^k(e) \notin E^\infty$ (computed for $f : X \rightarrow X$). Then there is an infinite path in the backward orbit $O(f^k(e))$. All the points in that path are distinct (otherwise some points in the forward orbit would not be distinct). If we go back far enough the points cannot lie in Ω , since $f^k(e) \in E_\Omega^\infty$, and hence must be one of the finitely many points not in Ω . Since the path is infinite, this is a contradiction. Since we now have all $f^k(e) \in E^\infty \cap A(f, 1)$ for $k \geq M$, we are in the same situation as in the case $\Omega = X$. Just take $T = \{f^k(e)\}_{k > M}$ and proceed as before. \square

5. ITERATED IMAGES OF JACOBIAN PAIRS

Let f be a Jacobian pair, Ω a subset of \mathbb{C}^2 with finite complement, and suppose $f(\Omega) \subseteq \Omega$. Then Ω is an algebraic variety, $f|_\Omega : \Omega \rightarrow \Omega$ is open, and $f|_\Omega$ has finite coimage. In this situation, we have

Fact 2. *If $f|_\Omega$ is injective then so is f and f is an automorphism.*

For, since f is injective on a dense open subset of \mathbb{C}^2 , it must have geometric degree 1, hence it is birational and therefore ([Kel39, Ess00]) an automorphism.

Little is known about surjectivity of Jacobian pairs or their $n > 2$ dimensional counterparts. In particular, whether Jacobian pairs are necessarily surjective is an open question of long standing ([Vit75]). It is also not known whether a surjective Jacobian pair must be an automorphism (but see [DM90] for the case in which $f : \mathbb{C}^n \rightarrow \mathbb{C}^n$ is a polynomial map with integer coefficients and $f(\mathbb{Z}^n) = \mathbb{Z}^n$).

Theorem 2 relates the two dimensional complex Jacobian conjecture to surjective polynomial endomorphisms of cofinite subsets of the plane, and shows that $J\mathcal{C}(\mathbb{C}, 2)$ is equivalent to the assumption that certain surjective endomorphisms are injective; thus seemingly turning on its head the usual principle that injectivity implies surjectivity.

Proof of Theorem 2. Let f be a Jacobian pair. If $JC(\mathbb{C}, 2)$ holds then f is an automorphism, which implies that its restriction $f|_{\Omega}$ to any subset whatsoever of the plane is injective. Conversely, let us now assume that $f|_{\Omega}$ is injective if Ω is any cofinite subset of \mathbb{C}^2 with $f(\Omega) = \Omega$. Theorem 1 applies to f , so let Ω be the stable image of f . By assumption, f is injective on Ω , hence by Fact 2, f is an automorphism. \square

6. AN EXAMPLE

For concreteness, we illustrate the application of Theorem 1 with a simple example. It is taken, with thanks, from [Ess00, pp. 292–294], where the properties we list below are stated. Let $f : \mathbb{C}^2 \rightarrow \mathbb{C}^2$ be given by

$$f(x, y) = (x - 2(xy + 1) - y(xy + 1)^2, -1 - y(xy + 1))$$

Then f is a flat map, hence open, and the image of \mathbb{C}^2 under f is $\Omega = \mathbb{C}^2 - (0, 0)$.

Since $f(\Omega) = \Omega$, we see that Ω is the stable image of $f : \mathbb{C}^2 \rightarrow \mathbb{C}^2$, as well as the stable image of $f|_{\Omega} : \Omega \rightarrow \Omega$. Note that $f|_{\Omega}$ is an open, surjective endomorphism of $\mathbb{C}^2 - (0, 0)$ that is not injective. It is, of course, not étale.

REFERENCES

- [Abh63] S. S. Abhyankar. *Local Analytic Geometry*. Academic Press Inc., New York, 1963.
- [Ax69] James Ax. Injective endomorphisms of varieties and schemes. *Pacific J. of Math.*, 31:1–7, 1969.
- [BCW82] H. Bass, F. H. Connell, and D. Wright. The Jacobian conjecture: Reduction of degree and formal expansion of the inverse. *Bulletin of the American Mathematical Society (New Series)*, 7(2):287–330, 1982.
- [Cam73] L. Andrew Campbell. A condition for a polynomial map to be invertible. *Math. Ann.*, 205:243–248, 1973.
- [CR91] S. Cynk and K. Rusek. Injective endomorphisms of algebraic and analytic sets. *Annales Polonici Math.*, 56:29–35, 1991.
- [DM90] L. van den Dries and K. McKenna. Surjective polynomial maps and a remark on the Jacobian problem. *Manuscripta Math.*, 67:1–15, 1990.
- [Ess00] Arno van den Essen. *Polynomial automorphisms and the Jacobian conjecture*, volume 190 of *Progress in Mathematics*. Birkhäuser Verlag, Basel, 2000.
- [Har77] Robin Hartshorne. *Algebraic Geometry*, volume 52 of *Graduate Texts in mathematics*. Springer Verlag, 1977.
- [Kel39] O. H. Keller. Ganze Cremona-Transformationen. *Monatshefte der Mathematischen Physik*, 47:299–306, 1939.
- [Vit75] A. G. Vitushkin. On polynomial transformations of C^n . In *Manifolds—Tokyo 1973 (Proc. Internat. Conf., Tokyo, 1973)*, pages 415–417. Univ. Tokyo Press, Tokyo, 1975.

NOTAS DO ICMC

SÉRIE MATEMÁTICA

222/2005 ALARCÓN, B.; GUÍÑEZ, V.; GUTIERREZ, C. - Hopf bifurcation at infinity for planar vector fields.

221/2005 GUTIERREZ, C.; JARQUE, X.; LLIBRE, J.; TEIXEIRA, M.A. – Global injectivity of C^1 maps of the real plane inseparable leaves and the palais-smale condition.

220/2005 NASCIMENTO, A.S.; CREMA, J. – A geometric sufficient condition for existence of stable transition layers for some reaction-diffusion equations.

219/2005 GIMENES, L.P.; FEDERSON, M. – Existence and impulsive stability for second order retarded differential equations.

218/2005 SOLÍS, E.A.; KUSHNER, L. – Finite Determination, finite relative determination and the Artin-Rees Lemma.

217/2005 MENEGATTO, V.A.; PIANTELLA, A.C. – Approximation by weighted spherical harmonics expansions.

216/2005 MOREIRA, G.G.; SMANIA,D. – Metric stability for random walks with applications in renormalization theory.

215/2005 KUSHNER, L.; BULAJICH, R.; MEDRANO, S.L. – The space of quasi-homogeneous maps in two variables.

214/2005 HERNÁNDEZ, E. M.; PROKOPCZYK, A.C.; LADEIRA, L.A.C. – A note on partial functional differential equations with state-dependent delay.surface.

213/2005 HERNÁNDEZ, E.M.; SANTOS, J.P.C. – Asymptotically Almost Periodic and Almost Periodic Solutions for Neutral Integrodifferential Equations.