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Abstract. Abel equations of the first and second kind have been widely stud-

ied, but one question that never has been addressed for the Abel polynomial

differential systems is to understand the behavior of its solutions (without
knowing explicitly them), or in other words, to obtain its qualitative behavior.

This is a very hard task that grows exponentially as the number of parameters

in the equation increases. In this paper, using Poincaré compactification we
classify the topological phase portraits of a special kind of quadratic differ-

ential system, the Abel quadratic equations of third kind. We also describe

the maximal number of polynomial solutions that Abel polynomial differential
equations can have.

1. Introduction and statement of the main results. Generalized polynomial
Abel differential equations of the form

C(x)ymẏ = A(x) +B(x)y (1)

(here the dot denotes derivative with respect to the independent variable x and
m ≥ 0), appear in all textbooks of ordinary differential equations as examples of
nonlinear equations and in many mathematical and applied problems, see [10, 13, 14]
and the references therein.

If m = 0 or m = 1 equations (1) become the well-known Abel equations of the
first and second kind that have been widely studied. Here we will focus in the case
in which m = 2, known as Abel equations of the third kind, and when the functions
A,B,C are polynomials in x. More precisely we will work with the polynomial
differential equations

C(x)y2 dy

dx
= A(x) +B(x)y, (2)

or equivalently to the polynomial differential system

ẋ = c(x)y2,
ẏ = a(x) + b(x)y,
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where A(x) = a(x)/c(x), B(x) = b(x)/c(x), C(x) = c(x), and the dot denotes
derivative with respect to the independent variable t.

The first motivation of this paper comes from works about the existence of poly-
nomial solutions for another kind of polynomial differential systems that appears
in applied problems known as Riccati differential systems. Such systems can be
written as a(x)ẏ = b0(x) + b1(x)y + b2(x)y2, where a, b0, b1 and b2 are polyno-
mial in the variable x and many papers about them can be found. For instance,
Rainville [14] proved the existence of one or two polynomial solutions for a subclass
of such systems. Bhargava and Kaufman [2, 3] obtained some sufficient condi-
tions for such equations to have polynomial solutions. Campbell and Golomb [4, 5]
provided some criteria determining the degree of polynomial solutions of such equa-
tions. Bhargava and Kaufman [1] also considered a more general form of such
equations and got some criteria on the degree of polynomial solutions of the equa-
tions. Giné, Grau and Llibre [9] proved that polynomial differential equations of the
form a(x)ẏ = b0(x) + b1(x)y + .. + bn(x)yn with n ≥ 1, bi(x) ∈ R[x], i = 0, 1, ..., n
and bn(x) = 0 and a(x) = 1 have at most n polynomial solutions and they also
prove that this bound is sharp. More recently, Gasull, Torregrosa and Zhang in [7]
proved that the maximum number of polynomial solutions of the equations studied
in [9] when a(x) is nonconstant is n+ 1 when n ≥ 1 and these bounds are sharp. In
short, to be best of our knowledge, the question of knowing the maximum number
of polynomial solutions of some polynomial differential equations like (1) when C(x)
is nonconstant is open. This is also interesting because it is similar to a question of
Poincaré about the degree and number of algebraic solutions of autonomous planar
polynomial differential equations in terms of their degrees, when these systems have
finitely many algebraic solutions.

The first theorem of the paper is the following.

Theorem 1.1. The following statements hold for the Abel polynomial differential
equation of third kind (2) with C 6≡ 0 and either A 6≡ 0 or B 6≡ 0.

(a) it has at most 1 constant solution and there are examples with exactly 1 con-
stant solution.

(b) If it has a polynomial solution then it has infinitely many polynomial solutions.

The proof of Theorem 1.1 is given in Section 2.
Another question that never has been addressed for the Abel polynomial dif-

ferential systems is to understand the behavior of its solutions (without knowing
explicitly them), or in other words, to obtain its qualitative behavior. This is a very
hard task that grows exponentially as the number of parameters in the equation
increases. This is the reason why in our second main result among the Abel poly-
nomial differential systems of third kind, we will focus on the quadratic ones. The
Abel quadratic differential polynomial systems of third kind are of the form

ẋ = cy2,
ẏ = a0 + a1x+ a2x

2 + (b0 + b1x)y,
(3)

where c 6= 0 and a0, a1, a2, b0, b1, b2 are real parameters with a2
0 + a2

1 + a2
2 6= 0. We

will obtain the phase portraits of the polynomial vector fields X here studied and
will be given in the Poincaré disk D, see Chapter 5 of [6] for the definition of the
Poincaré disk and the expressions of the compactified polynomial vector fields p(X )
in the local charts U1 and U2 of D that we shall use in the computations.

We say that two polynomial vector fields p(X ) and p(Y) in the Poincaré disk
are topologically equivalent if there exists a homeomorphism from one onto the
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other sending orbits to orbits preserving or reversing the direction of the flow.
The separatrix configuration of p(X ) is formed by all the separatrices of p(X ) plus
an orbit in each one of its canonical regions. Recall that a canonical region is a
connected component of the Poincaré disk after removing from it all the separtrices
of the vector field. Moreover, if p(X ) and p(Y) are two compactified Poincaré
polynomial vector fields with finitely many separatrices, then they are topologically
equivalent if and only if their separatrix configurations are homeomorphic (see [12]
for a proof). This last result will be used for obtaining the phase portraits in the
Poincaré disk of our polynomial differential system (3).

Our second main result is the following one.

Theorem 1.2. The Abel quadratic polynomial differential equations (3) after a
linear change of variables and a rescaling of its independent variable can be written
as one of the following systems

ẋ = y2, ẏ = k0 + k1y + x2 + k2xy k0, k2 ∈ R and k1 ∈ {0, 1}, (i)

ẋ = y2, ẏ = x+ k1y + k2xy k1 ∈ R and k2 ∈ {−1, 0, 1}, (ii)

ẋ = y2, ẏ = 1 + k2xy k2 ∈ {−1, 1}, (iii)

ẋ = y2, ẏ = 1 + k1y k1 ∈ {0, 1}. (iv)

Moreover, the global phase portraits on the Poincaré disk of these families are
topologically equivalent to the following ones in Figures 1, 2 and 3. More precisely,
for system (i) the phase portraits are

(1) when k0 > 0 and k2 < 3/41/3;
(2) when k0 > 0 and k2 = 3/41/3;
(3) when k0 > 0 and k2 > 3/41/3;
(4) when k0 = 0 and k2 < 3/41/3;
(5) when k0 = 0 and k2 = 3/41/3;
(6) when k0 = 0 and k2 > 3/41/3;
(7) when k0 = k1 = 0 and k2 < 3/41/3;
(8) when k0 = k1 = 0 and k2 = 3/41/3;
(9) when k0 = k1 = 0 and k2 > 3/41/3;
(10)–(12) when k0 < 0, k2 < 3/41/3, k1 +

√
−k0k2 > 0 and k1−

√
−k0k2 > 0;

(13)–(17) when k0 < 0, k2 < 3/41/3, k1 +
√
−k0k2 < 0 and k1−

√
−k0k2 > 0;

(19) when k0 < 0, k2 < 3/41/3, k1 +
√
−k0k2 > 0 and k1 −

√
−k0k2 < 0;

(19)–(21) when k0 < 0, k2 = 3/41/3, k1 +
√
−k0k2 > 0 and k1−

√
−k0k2 > 0;

(22)–(26) when k0 < 0, k2 = 3/41/3, k1 +
√
−k0k2 > 0 and k1−

√
−k0k2 < 0;

(27)–(29) when k0 < 0, k2 > 3/41/3, k1 +
√
−k0k2 > 0 and k1−

√
−k0k2 > 0;

(30)–(34) when k0 < 0, k2 > 3/41/3, k1 +
√
−k0k2 > 0 and k1−

√
−k0k2 < 0;

(35) when k0 < 0 and k1 = k2 = 0;
(36) when k0 < 0 and either k1 = −

√
−k0k2 and k2 6= 0, or k1 =

√
−k0k2

and k2 < 3/41/3;
(37) and (38) when k0 < 0, k1 = −

√
−k0k2 and k2 6= 0;

(39) when k0 < 0, k1 =
√
−k0k2 and k2 = 3/41/3;

(40) when k0 < 0, k1 =
√
−k0k2 and k2 > 3/41/3;

For system (ii) the phase portraits are

(4) when k1 6= 0 and k2 ∈ {−1, 0};
(6), (43) and (44) when k1 6= 0 and k2 = 1;
(41) when k1 = 0 and k2 ∈ {−1, 0};
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(42) when k1 = 0 and k2 = 1;

For system (iii) the phase portrait is

(1) when k2 = −1;
(3) when k2 = 1;

For system (iv) the unique phase portrait is (1);

Figure 1. Global phase portraits in the Poincaré disk of systems
(i)–(iv): from (1)–(20). Here S denotes the number of separatrices
and R the number of canonical region of each phase portrait.

The proof of Theorem 1.2 will be given in Sections 3–6.
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Figure 2. Global phase portraits in the Poincaré disk of systems
(i)–(ii): from (21)–(40). Here S denotes the number of separatrices
and R the number of canonical region of each phase portrait.

2. Proof of Theorem 1.1. Let y = p(x) = ξ be a polynomial solution of system
(2) which is constant. As either A 6≡ 0 or B 6≡ 0 the polynomial in y, A(x) +B(x)y
is divisible by y − ξ and, since its degree in y is 1, we get that it has at most 1
different constant root. So, there is at most 1 different constant solution of system
(2). The differential equation

C(x)y2 dy

dx
= y − 1
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Figure 3. Global phase portraits in the Poincaré disk of systems
(ii): from (41)–(44). Here S denotes the number of separatrices
and R the number of canonical region of each phase portrait.

is of the form (2) and has exactly 1 constant solution. This proves statement (a).
Now we prove statement (b). Let y = p(x) be a polynomial solution of system

(2) which is not a constant, that is,

C(x)p(x)2 dp

dx
= b0(x) + b1(x)p+ b2(x)p2.

Since p divides the left-hand side of the above equation, it must also divide the
right-hand side and so A(x) = Ã(x)p(x) for some polynomial Ã(x). In this way
equation (2) becomes

C(x)p
dp

dx
= A(x) +B(x).

Note that p still divides the left-hand side of the above equation and so it must also
divide the right-hand side, which means that A(x) + B(x) = A∗(x)p(x) for some
polynomial A∗. Hence, we have

C(x)
dp

dx
= A∗(x).

Clearly C(x) must divide A∗(x) and so we must have A∗(x) = C(x)Ã(x), for some

polynomial Ã(x). Hence,

p(x) =

∫
Ã(s) ds+ c,

where c is any constant. This proves statement (b).

3. Normal forms given in Theorem 1.2. In this section we describe the normal
forms given in Theorem 1.2, that is, systems (i)–(iv).

Proposition 1. An Abel quadratic polynomial differential system (3) after a linear
change of variables and a rescaling of its independent variable, can be written as
(i), (ii), (iii), or (iv).

Proof. Doing a linear change of variables and a rescaling of the independent variable
(the time) of the form x → αX + σ, y → βY, t → γT, with βδγ 6= 0, system (3)
becomes

Ẋ =cY 2β2γ/α,

Ẏ =b0Y γ + b1XY αγ + (a0γ)/β + (a1Xαγ)/β + (a2X
2α2γ)/β + b1Y γσ + (a1γσ)/β

+ (2a2Xαγσ)/β + (a2γσ
2)/β,

where the dot denotes derivative with respect to the new time T .
Since c 6= 0 we take α = cβ2γ. Now we consider different cases.
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If a2 6= 0 we take σ = −a1/(2a2) and γ = 1/(a
1/3
2 c2/3β) so we get system (i)

with k0 = −((a2
1 − 4a0a2)/(4a

4/3
2 c2/3β2)), k1 = (2a2b0 − a1b1)/(2a

4/3
2 c2/3β) and

k2 = b1/(a
2/3
2 c1/3). Note that if 2a2b0 = a1b1 = 0 then k1 = 0, otherwise we can

take β = 2a
4/3
2 c2/3/(2a2b0 − a1b1) and we get k1 = 0. In short, we get system (i)

with k1 ∈ {0, 1}.
If a2 = 0 and a1 6= 0 we take σ = −a0/a1, β = 1/(a1cγ

2) and we get system (ii)
with k1 = (a1b0 − a0b1)γ/a1 and k2 = b1/(a

2
1cγ

2). Note that if b1 = 0 then k2 = 0.

Otherwise taking γ =
√
b1/(a2

1c) if b1c > 0, or γ =
√
−b1/(a2

1c) if b1c < 0 we get
system (ii) with k2 ∈ {−1, 0, 1}.

If a2 = a1 = 0 then a0 6= 0. If b1 6= 0 we take σ = −b0/b1 and γ = β/a0 and
we get system (iii) with k2 = b1cβ

4/a2
0. Moreover, note that k2 6= 0 because b1 6= 0

and taking β = (a2
0/(b1c))

1/4 if b1c > 0 or β = (−a2
0/(b1c))

1/4 if b1c < 0 we get that
k2 ∈ {−1, 1}.

On the other hand, if b1 = 0 then taking γ = β/a0 we get system (iv) with
k1 = b0β/a0. Note that if b0 = 0 then k1 = 0 and if b0 6= 0 then taking β = a0/b0
we get k1 = 1. In short, we obtain system (iv) with k1 ∈ {0, 1}. This concludes the
proof of the proposition.

4. Global behavior of system (i) of Theorem 1.2. In this section we describe
the global phase portraits of system (i). We will separate the proof in different
subsections. First we study the finite and infinite singular points and then we joint
the obtained information to describe the distinct global phase portraits.

If k0 > 0 there are no finite singular points. If k0 = 0 the unique finite singular
point is the origin and if k0 < 0 there are two finite singular points which are
(
√
−k0, 0) and (−

√
−k0, 0).

If k0 < 0 and (k1 +
√
−k0k2)(k1 −

√
−k0k2) 6= 0 they are semi–hyperbolic and

using Theorem 2.19 in [6] both of them are saddle-nodes. If k0 < 0, k1 +
√
−k0 = 0

and k1−
√
−k0 6= 0 then (

√
−k0, 0) is nilpotent and (−

√
−k0, 0) is semi–hyperbolic.

Using Theorems 3.5 and 2.19 in [6] we conclude that (
√
−k0, 0) is a cusp and

(−
√
−k0, 0) is a saddle-node. If k0 < 0, k1 +

√
−k0 6= 0 and k1 −

√
−k0 = 0

then (−
√
−k0, 0) is nilpotent and (

√
−k0, 0) is semi–hyperbolic. Using Theorems

3.5 and 2.19 in [6] we conclude that (−
√
−k0, 0) is a cusp and (

√
−k0, 0) is a saddle-

node. If k0 < 0 and k1 = k2 = 0 then both (±
√
−k0, 0) are nilpotent and by

Theorem 3.5 in [6] we get that they are both cusps.
If k0 = 0 and k1 = 1 the origin is the unique finite singular point. It is semi–

hyperbolic. Applying Theorem 2.19 in [6] we conclude that it is a saddle-node. If
k0 = k1 = 0 the origin is again the unique finite singular point which in this case is
linearly zero. Applying a blow up in the direction (x, y) → (x,w) where w = y/x
and a rescaling ds = xdt, we get the following system

ẋ = w2x
ẇ = 1 + k2w − w3.

This system either has one or three singular points (counted with multiplicities).
These singular points are of the form (0, w) where w is a real root of 1+k2w−w3 = 0.
The discriminant of the cubic equation is 4k3

2 − 27. If k2 < 3/41/3 there is a unique
real solution (positive) which is hyperbolic. If k2 = 3/41/3 there are two real
solutions, w = −1/21/3 (a saddle-node) and w = 22/3 (a saddle). If k2 > 3/41/3

there are three real different solutions that are hyperbolic. To study the topological
type of these solutions we will study the polynomial f(w) = 1 + k2w − w3. If
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k2 < 0 then f is strictly decreasing and intersects the w-axes in a unique point (the
real root of 1 + k2w − w3). The eigenvalues of the Jacobian matrix at the point
(0, w) are w2 and k2 − 3w2. Note that at this root w 6= 0 and k2 − 3w2 < 0, so

this point is a saddle. If k2 > 0 then f has a maximum at w =
√
k2/3 and a

minimum at w = −
√
k2/3. If k2 ∈ (0, 3/41/3) then f(−

√
k2/3) and f(

√
k2/3) are

both positive. Since limw→∞ f(w) = −∞ and limw→−∞ f(w) = ∞, we get that f
intersects the w-axes in a unique point (the real root). Again by the eigenvalues of
the Jacobian matrix at this point we get that it is a saddle. If k2 > 3/41/3 then

f(−
√
k2/3) is negative and f(

√
k2/3) is positive. Since limw→∞ f(w) = −∞ and

limw→−∞ f(w) =∞ we get that f intersects the w-axes in three points w0, w1 and

w2 (the real roots), where w0 < −
√
k2/3, w1 ∈ −

√
k2/3,

√
k2/3) and w2 >

√
k2/3.

Again by the eigenvalues of the Jacobian matrix at these points we get that w0 and
w2 are saddles and w1 is an unstable node.

Doing the blowing down we get that when k2 < 3/41/3 the origin is formed by
two hyperbolic sectors and when k2 ≥ 3/41/3 it is formed by the union of two
hyperbolic sectors separated by parabolic sectors. See Figure 4 for details about
the blowing down.

Remark 1. Note that ẋ > 0 for y 6= 0 and ẏ|(x0,0) < 0 for x0 ∈ (−
√
−k0,

√
−k0).

This will help when studying the global behavior of the solutions. Moreover, ẏ = 0
yields the nullcline curve y = −(x2 + k0)/(k1 + k2x). The nulllcline curve separates
the phase portrait in two regions such that above it, ẏ is positive and below it, ẏ is
negative.

To study the singular points at infinity of a polynomial vector field via the
Poincaré compactification we need to study the singular points in the local chart
U1 and the origin of the local chart U2.

The Poincaré compactification p(X ) of system (i) in the local chart U1 is given
by

u̇ = 1 + k2u− u3 + k1uv + k0v
2,

v̇ = −u2v.

The singular points in the local chart U1 are (u, 0) where u is a root of the
polynomial 1 + k2u− u3. The same study that we did for the finite singular points
when k0 = k1 = 0 taking into account that the eigenvalues of the Jacobian matrix
at the singular points (u, 0) are −u2 and k2 − 3u2 we get: if k2 < 3/41/3 there is
a unique singular point in the local chart U1 which is a stable node, if k2 = 3/41/3

there are two singular point in the local chart U1 which are (−1/21/3, 0) (a saddle–
node) and (21/3, 0) (a stable node), and if k2 > 3/41/3 there are three singular

points in the local chart U1 which are (u0, 0), (u1, 0) and (u2, 0) with u0 < −
√
k2/3,

u1 ∈ (−
√
k2/3,

√
k2/3) and u2 >

√
k2/3), being (u0, 0), (u2, 0) stable nodes and

(u1, 0) a saddle.
System (i) in the local chart U2 is written as

u̇ = 1− k2u
2 − u3 − k1uv − k0uv

2,
v̇ = −k2uv − u2v − k1v

2 − k0v
3.

So the origin of the local chart U2 is not an infinite singular point.

4.1. Global phase portraits for system (i) with k0 > 0. If k0 > 0 there
are no finite singular points, that is, it is a chordal quadratic system (see [8]). If
k2 < 3/41/3 there is a unique stable node in the local chart U1 and using Remark
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(c)

(b)

(a)

Figure 4. Blowing down process for system (i) at origin when
k0 = k1 = 0 and k2 < 3/41/3 (a), k2 = 3/41/3 (b), and k2 > 3/41/3

(c)

1 we get that the unique possible global phase portrait is (1) of Figure 1. This
phase portrait is topologically equivalent to 8 in [8], where it is described all the
possible global phase portrait for chordal quadratic polynomial differential systems.
As described in [8] when there is a unique stable node in the local chart U1 there
is a unique phase portrait. If k2 = 3/41/3 then we have two singular points in
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the local chart U1, a saddle-node and a stable node. In this case the global phase
portrait is (2) of Figure 1. This is due the fact that ẏ|y=0 = x2 + k0 > 0. This
corresponds to 5 in [8]. Although in [8] there are more possible configurations the
fact that ẏ|y=0 = x2 + k0 > 0 prevent them here. If k2 > 3/41/3 there are three
singular points in the local chart U1, a saddle and two stable nodes. Again using
that ẏ|y=0 = x2 + k0 > 0 we get that the unique global phase portrait is (3) of
Figure 1. This corresponds to 1 in [8]. As in the previous case although in [8] there
are more possible configurations the fact that ẏ|y=0 = x2 + k0 > 0 prevent them
here.

4.2. Global phase portraits for system (i) with k0 = 0 and k1 = 1. In this
case there is a unique singular point, the origin which is a saddle–node. Using
that ẏ|y=0 = x2 + k0 > 0 and ẋ|y=0 = 0 we have a unique possible global phase
portrait for each of the cases depending on whether in the local chart U1 we have
a unique stable node, a saddle-node and a stable node, or a saddle and two stable
nodes. In short we have phase portrait (4) of Figure 1 (when k2 < 3/41/3), phase
portrait (5) of Figure 1 (when k2 = 3/41/3) and phase portrait (6) of Figure 1 (when
k2 > 3/41/3).

4.3. Global phase portraits for system (i) with k0 = k1 = 0. In this case
there is a unique singular point, the origin, which is formed by two hyperbolic
sectors if k2 < 3/41/3, and by two hyperbolic sectors separated by parabolic sectors
if k2 ≥ 3/41/3. Taking into account the information on the local chart U1, that
ẏ|y=0 = x2 + k0 > 0 and that ẋ|y=0 = 0, we conclude that the unique possible

global phase portraits are (7) of Figure 1 (when k2 < 3/41/3), (8) of Figure 1 (when
k2 = 3/41/3) and (9) of Figure 1 (when k2 > 3/41/3).

4.4. Global phase portraits for system (i) with k0 < 0, k2 < 3/41/3 and
(k1 +

√
−k0k2)(k1 −

√
−k0k2) 6= 0. As explained above in this case we have two

finite saddle–nodes at (±
√
−k0, 0) and a stable node in the local chart U1. The

position of the separatrix of these saddle-nodes depend on whether k1+
√
−k0k2 > 0

or k1 +
√
−k0k2 < 0 and k1−

√
−k0k2 > 0 or k1−

√
−k0k2 < 0. So we will separate

our study in three cases (we recall that k1 ∈ {0, 1}):
Case 1: k1 +

√
−k0k2 > 0 and k1 −

√
−k0k2 > 0;

Case 2: k1 +
√
−k0k2 < 0 and k1 −

√
−k0k2 > 0;

Case 3: k1 +
√
−k0k2 > 0 and k1 −

√
−k0k2 < 0.

Taking into account the first statement in Remark 1 and that in Case 1 the two
saddle–nodes are as in Figure 5 (a), the unique possible global phase portraits are
(10)–(12) of Figure 1. Phase portrait (10) is attained, for example, when k0 =
−1/2, k1 = 1, k2 = 1/2 and phase portrait (12) when k0 = −1/2, k1 = 1, k2 = −1/2.
Phase portrait (11) corresponds to the separatrix connexion and its existence comes
from the continuity of the parameters.

In Case 2 the two saddle-nodes are as in Figure 5 (b). Again using the first
statement in Remark 1 we get that the possible global phase portraits are (13)-(17)
of Figure 1 depending on the relative position of the separatrizes of the two saddle–
nodes. Phase portrait (13) is attained when k0 = −1, k1 = 1, k2 = −2 and phase
portrait (15) when k0 = −1, k1 = 0, k2 = −2. Phase portrait (17) is attained when
k0 = −1, k1 = 0, k2 = −1. By continuity of the parameters we get phase portraits
(14) and (16) which correspond to separatrix connections.
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In Case 3 the two saddle-nodes are as in Figure 5 (c). Again using the first
statement in Remark 1 we conclude that the unique global phase portrait is (18) of
Figure 1 which is attained for example when k0 = −1, k1 = 0 and k2 = 14/10.

(a)

(b)

(c)

Figure 5. The position of the separatrices of the two saddle-nodes
(±
√
−k0, 0) for system (i) with k0 < 0, k2 < 3/41/3 and (k1 +√

−k0k2)(k1 −
√
−k0k2) 6= 0

4.5. Global phase portraits for system (i) with k0 < 0, k2 = 3/41/3 and
(k1 +

√
−k0k2)(k1 −

√
−k0k2) 6= 0. We will separate again our study in the three

cases above. Note that the statement about the nullcline in Remark 1 forces that
the α-limit of the separatrix of the saddle–node at infinity must be the finite point
(
√
−k0, 0).
The argument above together with the first statement in Remark 1 imply that

the possibilities of the global behavior of the solutions in Case 1 is limited to phase
portraits (19) and (20) of Figure 1 and, (21) of Figure 2. Phase portrait (19) is
attained at k0 = −3/20, k1 = 1 and phase portrait (21) at k0 = −2/25, k1 = 1.
As in the previous subsection, phase portrait (20) corresponds to the separatrix
connection and it is realized due to the continuity of the parameters. We recall
that phase portraits (10)–(12) of Figure 1 correspond to the case in which the two
infinity singular points at the local chart U1 coalesce.

The argument at the beginning of this subsection together with the first state-
ment in Remark 1 forbids the existence of global phase portraits in Case 2.

The same arguments as in the above subsection imply that in Case 3, the possible
global phase portraits are (22)–(26) of Figure 2. Phase portrait (22) is attained at
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k0 = −14/5, k1 = 1, phase portrait (24) at k0 = −1, k1 = 1/2, and phase portrait
(26) at k0 = −3, k1 = 0. Phase portraits (23) and (25) correspond to the separatrix
connections and they are realized due to the continuity of the parameters.

4.6. Global phase portraits for system (i) with k0 < 0, k2 > 3/41/3 and
(k1 +

√
−k0k2)(k1 −

√
−k0k2) 6= 0. Again we separate our study in three cases.

Note that the statement about the nullcline in Remark 1 forces that the α-limit of
the separatrix of the saddle at infinity must be the separatrix of the finite singular
point (

√
−k0, 0). This information together with the first statement in Remark

1 imply that the possibilities of the global behavior of the solutions in Case 1 is
limited to phase portraits (27)–(29) of Figure 2. Phase portrait (27) is attained
at k0 = −1/20, k1 = 1, k2 = 39/10 and phase portrait (29) at k0 = −1/8, k1 =
1, k2 = 2. Phase portrait (28) is the separatrix connection and it is realized due to
the continuity of the parameters. We remark that phase portraits (19) and (20) of
Figure 1 and, (21) of Figure 2 correspond to the case in which the saddle and stable
node in the local chart U1 coalesce.

As in the previous subsection for Case 2 there are no possible global phase por-
traits.

In Case 3 the possible global phase portraits are (30)–(34) of Figure 2. Phase
portrait (30) is attained at k0 = −1/2, k1 = 1, k2 = 2, phase portrait (32) at
k0 = −1, k1 = 1, k2 = 2 and phase portrait (34) at k0 = −1, k1 = 0, k2 = 2. Phase
portraits (31) and (33) correspond to separatrix connections and they are realized
due to the continuity of the parameters. We remark that phase portraits (22)–(26)
of Figure 2 correspond to the case in which the saddle and stable node in the local
chart U1 coalesce.

4.7. Global phase portraits for system (i) with k0 < 0 and k1 = −
√
−k0k2.

Since k1 ∈ {0, 1} we get that k2 ≤ 0. This implies that in the local chart U1 we
have a unique stable node. Moreover, the finite singular point (

√
−k0, 0) is a cusp.

If k2 6= 0 the finite singular point (−
√
−k0, 0) is a saddle-node and if k2 = 0 it is a

cusp. We remark that the phase portraits of quadratic systems with a finite cusp
were studied by Jager in [11]. Here, using Remark 1 we get that the unique global
phase portraits are (36)–(38) of Figure 2 when k2 6= 0 and phase portrait (35) of
Figure 2 when k2 = 0. Phase portrait (36) is attained when k0 = −2, k2 = −1/2
and it is topologically equivalent to phase portrait 4 of Figure 14 in [11]. Phase
portrait (38) is attained when k0 = −1, k2 = −1 and is topologically equivalent
to phase portrait 1 of Figure 14 in [11]. Phase portrait (37) corresponds to the
separatrix connection, is realized due to the continuity of the parameters and is
topologically equivalent to phase portrait 2 of Figure 14 in [11].

4.8. Global phase portraits for system (i) with k0 < 0, k1 =
√
−k0k2 and

k2 6= 0. In this case k2 > 0 (the case k1 = k2 = 0 is given in subsection 4.7). The
explanation about the nullclines and the first statement in Remark 1 yield that the
unique global phase portraits are (36) of Figure 2 when k2 < 3/41/3 (there is a
unique stable node in the local chart U1), (39) of Figure 2 when k2 = 3/41/3 (there
is a stable node and a saddle-node in the local chart U1) and (40) of Figure 2 when
k2 > 3/41/3 (there are two stable nodes and a stable node in the local chart U1).
Phase portrait (39) is topologically equivalent to phase portrait 7 of Figure 15 in
[11] and phase portrait (40) is topologically equivalent to phase portrait 7 of Figure
16 in [11].
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From the previous subsections we conclude the global study of system (i) of
Theorem 1.2.

5. Global behavior of system (ii) of Theorem 1.2. System (ii) has the origin
as the unique critical point. The eigenvalues of the Jacobian matrix at the origin
are 0 and k1. So, it is semi-hyperbolic if k1 6= 0 and nilpotent if k1 = 0. Applying
Theorems 2.19 and 3.5 from [6] we get that the origin is a saddle-node if k1 6= 0
and a cusp if k1 = 0.

The Poincaré compactification p(X ) of system (ii) in the local chart U1 is given
by

u̇ = k2u− u3 + v + k1uv,
v̇ = −u2v.

If k2 ∈ {−1, 0} the unique singular point in the local chart U1 is the origin. If
k2 = 1 the singular points in the local chart U1 are p1 = (−

√
k2, 0), p2 = (0, 0) and

p3 = (
√
k2, 0).

If k2 = −1 the origin is a semi-hyperbolic stable node, if k2 = 0 the origin is a
nilpotent stable node, and if k2 = 1 the origin is a semi-hyperbolic saddle and the
points p1 and p3 are hyperbolic stable nodes.

System (ii) in the local chart U2 is written as

u̇ = 1− k2u
2 − k1uv − u2v,

v̇ = −k2uv − k1v
2 − uv2.

So the origin of the local chart U2 is not an infinite singular point.

5.1. Global phase portraits for system (ii) with k2 ∈ {−1, 0}. Taking into
account that the unique infinite singular point is the origin of the local chart U1,
which is a stable node, and that the origin is the unique finite singular point (either a
saddle-node or a cusp), we conclude that the unique possible global phase portraits
are (4) of Figure 1 (when k1 6= 0) and (41) Figure 3 (when k1 = 0).

5.2. Global phase portraits for system (ii) with k2 = 1. If k1 = 0 the unique
possible global phase portrait is (42) of Figure 3. If k1 6= 0 there are three possible
global phase portraits according to the ω− limit of the separatrix of the finite
saddle–node. They are (6) of Figure 1 and, (43) and (44) of Figure 3. Phase
portrait (6) is attained, for example when k1 = −2 and phase portrait (44) when
k1 = −1/2. Phase portrait (43) corresponds to the separatrix connection and it is
realized due to the continuity of the parameter k1.

From the previous subsections we conclude the global study of system (ii) of
Theorem 1.2.

6. Global behavior of systems (iii) and (iv) of Theorem 1.2. Systems (iii)
and (iv) do not have finite singular points so they are chordal quadratic systems.

The Poincaré compactification p(X ) of system (iii) in the local chart U1 is given
by

u̇ = k2u− u3 + v2, v̇ = −u2v.

If k2 = −1 the unique singular point in the local chart U1 is the origin which is
a semi–hyperbolic unstable node. If k2 = 1 there are three infinity singular points
which are (0, 0) (a semi-hyperbolic saddle) and (0,±1) which are stable nodes.

System (iii) in the local chart U2 is written as

u̇ = 1− k2u
2 − uv2, v̇ = −k2uv − v3.
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So the origin of the local chart U2 is not an infinite singular point.
When k2 = −1 the unique global phase portrait is (1) of Figure 1 and when

k2 = 1 the unique global phase portrait is (3) of Figure 1.
The Poincaré compactification p(X ) of system (iv) in the local chart U1 is given

by
u̇ = −u3 + k1uv + v2, v̇ = −u2v,

and in the local chart U2 by

u̇ = 1− k1uv − uv2, v̇ = −k1v
2 − v3.

The unique infinite singular point is the origin of the local chart U1 which is a
linearly zero stable node, so the unique global phase portrait is (1) of Figure 1.

The proof of Theorem 1.2 comes from Sections 3–6.
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